-

P
brought to you by, CORE

View metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

Journal of Magnetic Resonance 270 (2016) 47-55

Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

gr-MRI: A software package for magnetic resonance imaging using
software defined radios

@ CrossMark

Christopher J. Hasselwander ¢, Zhipeng Cao *, William A. Grissom *><*

2 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
b Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
€ Vanderbilt University Institute of Imaging Science, Nashville, TN, USA

ARTICLE INFO ABSTRACT

Article history:

Received 18 March 2016
Revised 3 June 2016
Accepted 30 June 2016
Available online 1 July 2016

The goal of this work is to develop software that enables the rapid implementation of custom MRI spec-
trometers using commercially-available software defined radios (SDRs). The developed gr-MRI software
package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for
GNU Radio, an open-source SDR software package that is widely used in communications research. gr-
MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio syn-
chronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a

Keywords:
So%,tware defined radio single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin
Spectrometers echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used

Open-source software to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-
MRI available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse gen-
Frequency-swept RF pulses eration. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization
events and the frequency with which the software recovered from those events was also measured, and
the SDR'’s ability to generate frequency-swept RF waveforms was validated and compared to the scan-
ner’s commercial spectrometer. The spin echo images geometrically matched those acquired using the
commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely
to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the
sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth
frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with
large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-
fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction channels in parallel imaging [5-7], implement parallel transmis-

sion [7-9], and acquire signals in NMR field monitoring probes

Modern commercial magnetic resonance imaging (MRI) and
nuclear magnetic resonance (NMR) spectrometers are sophisti-
cated devices with very high performance. However, many
research and development applications in magnetic resonance
require more configurable, portable, or scalable spectrometers at
a low cost. For example, spectrometers have been developed in-
house to meet the unique needs of low-field MRI scanners [1,2],
deliver point-of-care relaxometry measurements [3], hyperpolar-
ize exogenous contrast agents [4], increase the number of receive

* Corresponding author at: Institute of Imaging Science, Vanderbilt University,
1161 21st Ave. South, MCN AA-3114, Nashville, TN 37232-2310, USA.
E-mail addresses: christopher.j.hasselwander@vanderbilt.edu (CJ. Hasselwan-
der), zhipeng.cao@vanderbilt.edu (Z. Cao), will.grissom@vanderbilt.edu (W.A.
Grissom).

http://dx.doi.org/10.1016/j.jmr.2016.06.023
1090-7807/© 2016 The Authors. Published by Elsevier Inc.

concurrently with imaging [10-12]. In particular, many recent sys-
tems have been designed around field programmable gate arrays
(FPGAs) which perform sequencing and signal processing functions
[1,3,7,13-16]. FPGAs are particularly well-suited for MR at Larmor
frequencies of tens to hundreds of megahertz since they can pro-
cess multiple streams of transmitted and received data in parallel
at high speeds.

While FPGAs are well-suited to application in high-frequency
MR spectrometers, replicating current FPGA-based spectrometers
is challenging for non-electronics experts due to the steep learning
curve involved in FPGA programming, and since most are based on
custom circuitboard designs that would be difficult for non-experts
to recreate. At the same time, communications research has bene-
fited in recent years from the development of the open-source GNU

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/82110973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmr.2016.06.023&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.jmr.2016.06.023
http://creativecommons.org/licenses/by/4.0/
mailto:christopher.j.hasselwander@vanderbilt.edu
mailto:zhipeng.cao@vanderbilt.edu
mailto:will.grissom@vanderbilt.edu
http://dx.doi.org/10.1016/j.jmr.2016.06.023
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr

48 CJ. Hasselwander et al./Journal of Magnetic Resonance 270 (2016) 47-55

Radio software (gnuradio.org), which enables non-hardware
experts to build custom software radios that can be used with a
wide range of low-cost software-defined radio (SDR) devices; at
the time of writing, the GNU Radio website listed ten compatible
SDR vendors, many of which offer several SDR models [17]. SDRs
typically comprise analog-to-digital and digital-to-analog convert-
ers, an FPGA for basic filtering and signal down- and up-
conversion, and a USB interface. They can be thought of as PC
sound cards that operate at RF frequencies, in that they act as an
interface between the digital computer and the analog world,
while the PC handles most of the real-time digital signal manipu-
lations. Depending on their feature set, commercial GNU Radio-
compatible SDRs currently cost between a few hundred and a
few thousand dollars and ship with FPGA software images, so the
user can focus on implementing the functionality of their radios
on the PC side. Software radios are built in the Python program-
ming language (python.org) in GNU Radio, by connecting modular
signal processing components together into a flowgraph, the
inputs and outputs of which are connected to the SDR via a driver
interface.

We describe an open-source software package that extends the
functionality of GNU Radio to perform MRI experiments. The pack-
age comprises a set of Python scripts and two C++-based GNU
Radio flowgraph elements. It implements system timing calibra-
tions, center frequency and transmit power optimization, shaped
RF and gradient pulses, image reconstruction, and three represen-
tative MR imaging sequences: gradient echo, spin echo, and inver-
sion recovery. It was used to operate a commercial 0.5 Tesla
tabletop MRI scanner with a pair of commercially-available SDRs
that generated all RF and gradient pulses and sampled received sig-
nals. Overall, the software will enable users to rapidly implement
custom MRI spectrometers, without recreating or developing hard-
ware. Since it is built on top of the active GNU Radio project, the
software will be compatible with a wide range of current and
future SDR devices. By convention, extensions to GNU Radio are
prefixed with ‘gr-’, so the software is called gr-MRI.

2. Software architecture and implementation
2.1. A basic single-pulse sequence in GNU Radio

To illustrate how GNU Radio works and to motivate the archi-
tecture and features of the gr-MRI package, Fig. 1a shows an imple-
mentation of the most basic NMR pulse sequence using standard
GNU Radio, without gr-MRI. The sequence comprises a single-
pulse excitation with simultaneous reception of the free induction
decay (FID) signal. Specifically, the figure shows a graphical repre-
sentation of this sequence’s flowgraph in GNU Radio Companion, a
GUI-based flowgraph editor packaged with GNU Radio. A GNU

Signal Source Generate Rect Pulse
Sample Rate: 500k
D Waveform: Square

Frequency: 500m

Radio flowgraph is made up of signal generation, signal processing,
and input and output blocks, which are connected by virtual wires
that transmit baseband signals between them. The virtual wires
connect to the blocks at orange ports if they are real-valued float-
ing point signals, and at blue ports if they are complex-valued
floating point signals. Wires conduct signals in one direction, indi-
cated by the arrows. A signal can be connected to as many inputs
as desired, but each input can accept only one signal. All the signal
processing implemented in a flowgraph happens in real-time on
the PC, with inputs and outputs that are connected via a USB or
other interface to stream data continuously between the PC and
the SDR. All signals in the flowgraph are at baseband; modulation
to and from the RF Larmor frequency is performed digitally by the
FPGA chip in the SDR.

In the flowgraph of Fig. 1a, the blocks that produce a baseband
rectangular excitation pulse are outlined in red. The pulse is made
by generating a square wave signal with period equal to the
sequence repetition time (TR) and range zero to one, duplicating
it and subtracting one from its copy to shift it to a range of —1 to
zero so that the copy is half a period out of phase and negated com-
pared to the original, then negating the copy and delaying it by ten
samples, and multiplying it with the original signal to obtain a ten-
sample rectangular pulse. The pulse repeats once per TR and its
duration in seconds is determined by the sample rate of the flow-
graph; in Fig. 1a the 500 kHz sample rate of the flowgraph dictates
that the ten sample pulse is twenty microseconds long. Then the
real-valued rectangular pulse signal is converted to a complex sig-
nal type (with zero imaginary component) and passed into the
USRP Sink block (green box), which interfaces to the transmit
channels of a Universal Software Radio Peripheral SDR (USRP; Ettus
Research, Santa Clara, CA, USA). In this case, only one transmit
channel is used. The demodulated received signal comes back into
the flowgraph via the USRP Source block (blue box) which inter-
faces to the receive channels of the SDR; in this case, only one
receive channel is used. The received signal is then sent to an oscil-
loscope block for continuous display. The Larmor frequency is
specified as an argument to the USRP Sink and Source so that the
SDR’s FPGA digitally modulates the excitation pulse from baseband
to the Larmor frequency, and demodulates received signals to
baseband from the Larmor frequency. The flowgraph is free-
running, and does not record data. Fig. 1b shows the oscilloscope
window that appears when the flowgraph is executed, which dis-
plays the demodulated FID signal in real-time.

This example illustrates that GNU Radio flowgraphs run contin-
uously and are not inherently sequenced as is required for MR
experiments. Furthermore, the software lacks the ability to gener-
ate shaped waveforms such as sinc excitation pulses and gradient
trapezoids with specific timing, as well as the ability to change
pulse amplitudes and phases between repetitions. It also lacks

u Re{Signal}

m m{Signal}

|
| 0.04
: B Amw
. | o G u [Signal|
| ik,
: 2 o ! %%MVW uN/A

ChO: Center Freq (Hz): 20M

I

I

|

! s

I : =

, ;::‘:_":e- 1 Float To Complex Cho: Gain Value: 0 =

| 5 TSB tag name: E [

! ZZc-zzzzzzzzzzzZ-cZzc-zczzzzz: %o

I [}

|) UHD: USRP Source QTGUITimesink || .,

] Add Const Multiply Const Delay 11 Samp Rate (Sps): 500k Number of Points: 1.024k ||

| Constant: -1 Constant: -1 Delay: 10 11 cno: center Freq (Hz): 20M Sample Rate: 500k | T T T T T T T T

L i R R iR 4l | cho: Gain Value: 0 Autoscale: No] 0 01 02 03 04 05 06 07
|] Time (ms)

(@) I Receive and Display Signal 1 (b)
L e el e El

Fig. 1. (a) Basic single-pulse GNU Radio flowgraph without gr-MRI elements. The outlined boxes contain the rectangular excitation pulse generation blocks (red), blocks that
scale the pulse to a desired amplitude and send it to the SDR (green), and the receive chain (blue), comprising a USRP Source block that brings received baseband RF signals
back from the radio into the flowgraph, and an oscilloscope block to continuously display the received signal. Orange ports on the blocks denote real-valued floating point
inputs and outputs, and blue ports denote complex-valued floating point inputs and outputs. (b) The oscilloscope window that appears when the flowgraph is executed,
showing the baseband FID signal in real-time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

http://www.gnuradio.org
http://www.python.org

CJ. Hasselwander et al./Journal of Magnetic Resonance 270 (2016) 47-55 49

the ability to selectively record received signals over specific time
intervals, since the relative timing of transmitted and received sig-
nals within the flowgraph is subject to unknown PC-SDR commu-
nication delays. The ability to average repeated signals further
requires that spectrometer phase drifts are removed from received
signals. To address these needs, gr-MRI pulse sequences use master
clock signals that trigger all sequence events, and sequences can be
dynamically started, stopped, and restarted. gr-MRI provides
shaped RF and gradient pulse generation blocks and signal record-
ing blocks, and tools to calibrate gradient strength, center fre-
quency, and RF power. It can synchronize sequence timing
between multiple radios, compensate spectrometer phase drifts,
and record received signals over desired time intervals. These tools
and features are described in the next sections.

2.2. Sequenced pulse generation and signal recording in gr-MRI

gr-MRI uses square wave signals with period equal to the
sequence TR (or TR plus inversion time (TI) in the inversion recov-
ery sequence described below) as master clock signals to trigger
pulse sequence events. To generate shaped RF and gradient pulses,
gr-MRI provides a C++-based Triggered Vector Source block. The
block plays real- or complex-valued samples from a user-
provided vector that is typically loaded when it is constructed
but can also be changed during sequence execution. After its pulse
has been played completely, a Triggered Vector Source plays zeros
until it receives another trigger. The settings allow the user to
specify amplitude stepping for phase encode gradients and RF
chopping, and how many times to repeat each step to accommo-
date averaging. Received signals are recorded using the Gated Vec-
tor Sink block, which writes a complex data stream from one input
to an internal vector whenever its other input is high. The data in
that vector is accessible to the user during and after a scan.

2.3. gr-MRI Pulse sequences

Sequence execution. To initiate a gr-MRI scan sequence, the user
invokes that sequence’s Python script from the IPython shell [18],
which loads the sequence and flowgraph parameters from a config-
uration file, and creates the RF and gradient waveforms and loads
them into Triggered Vector Sources in the sequence’s flowgraph.
The script then optionally launches the flowgraph into an interac-
tive prescan period, during which the user can dynamically adjust
sequence parameters such as timing and pulse amplitude settings
from the command line, and observe the effect on the received sig-
nal which is displayed in real time. Finally the user invokes the full
scan, and the entire sequence is run while the script saves raw data

into a Gated Vector Sink. After the scan, the user can extract the
data from the Gated Vector Sink into a k-space matrix, and recon-
struct an image.

Basic single-pulse: FID. py. Figs. 2 and 3 show the two parts of a
gr-MRI-enabled flowgraph that implements the same single-pulse
sequence as in Fig. 1. Fig. 2 shows the flowgraph’s transmit section.
The red outlined box contains the TR clock signal generator that
produces a square wave with period equal to the TR. The clock
square wave signal passes through a Multiply Const block which
is used to switch the sequence on and off dynamically without
starting and stopping the whole flowgraph, by switching the
block’s Constant variable to one or zero. The clock signal triggers
two Triggered Vector Sources, which are each loaded with a wave-
form and settings defined in the Python script. The top Triggered
Vector Source produces a scalable rectangular excitation pulse
which is sent to the RF power amplifier, and the bottom one gen-
erates a longer rectangular pulse that defines the signal recording
gate. The latter signal is transmitted from the SDR and directly fed
back into one of its receive channels to trigger the Gated Vector
Sink in Fig. 3 for signal recording. This loopback mechanism is nec-
essary to account for the aforementioned PC-SDR communication
delays which would otherwise prevent accurate timing of signal
recording. The looped-back signal is also used to compensate spec-
trometer phase drift as described below. The blocks outlined in
orange generate a transmit-enable pulse that unblanks the RF
power amplifier during the excitation pulse, by routing the abso-
lute value of the RF pulse through a 10-sample moving average fil-
ter and a thresholding operation, resulting in a rectangular pulse
with an amplitude of 1V that is 10 samples longer than the RF
pulse. All other pulses are delayed by 5 samples to center the RF
pulses in the transmit-enable window. The transmit-enable pulse
is output from the SDR from a channel operating at DC. The rectan-
gular excitation pulse and the signal recording gate pulse are com-
bined as the real and imaginary parts of a single complex-valued
signal, and are output from one SDR transmit channel operating
at the Larmor frequency. The settings of the USRP Sink block at
the end of the flowgraph define which signals are sent to which
SDR transmit channels, and their center frequency. The entire flow-
graph runs at a baseband sampling rate of 250 kHz, corresponding
to a dwell time of 4 ps. The sampling rate can be changed by the
user as desired and as allowed by the hardware.

Fig. 3 shows the receive section of the flowgraph for the single-
pulse sequence. The far left block is the USRP Source which outputs
baseband signals coming from the SDR’s receive channels. The top
data stream from this block is the complex RF data received from
the scanner’s preamplifier, and the bottom stream is the looped-
back signal recording gate pulse, which serves two purposes in

Transmit-Enable Pulse |

TR Clock

I
I

Fe—————————-—- T

| Excitation Pulse (il comsientomes [0
I

Moving Average
Length: 10 Low: 1u
Scale: 1 g g High: 1u i gl

Max Iter: 4k

Threshold

UHD: USRP Sink

Initial State: 0 Device Address: ser..R20UBUL

|

|
Triggered Vector Source |
Waveform Vector: 0, 0, 0 |
Starting Amplitude: 1
Delta Amplitude: 0
Number Amplitudes: 1 |
Number Ampiitude Repeats: 1 | |

|

|

1| stonal Source
Sample Rate: 250k

|| waveform: square

|

|

[}

Frequency: 1
Amplitude: 1
Offset: 0

variabte | |
1D: ex_delay
Value: 0

MbO: Subdev Spec: B:AB AAB
[Samp Rate (Sps): 250k
ChO: Center Freq (Hz): 21.3M

Triggered Vector Source
Waveform Vector: 0, 0,0

A4

Delta Amplitude: 0

Float To Complex

Length tag name:

[i] cno: Gain value: 0
i Cho: Antenna: B:AB
» o ot
O Chl: Gain Value: 0
Ch1: Antenna: A:AB

[}
Multiply Const Delay
wmnmnm 0 oeiay:0 |
1
!
Variable |}
I

1D: readout_delay
Value: 0

Number Amplitudes: 1
Number Amplitude Repeats: 1

-
)
[}
Starting 1 1
[}
)
[}
L}

Fig. 2. Sequence timing and RF excitation portion of the single-pulse sequence flowgraph generated by FID.py. The red outlined box contains the TR clock square wave signal
generator, which triggers a pair of Triggered Vector Sources to generate an RF excitation pulse (green box) and a signal recording gate (blue box). A transmit-enable pulse is
generated from the excitation pulse’s envelope to unblank the RF amplifier (orange). The USRP Sink block on the right routes the baseband signals to two channels on the SDR,
operating at RF (for the excitation pulse and the signal recording gate signal) or DC (for the transmit-enable pulse). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

50 CJ. Hasselwander et al./Journal of Magnetic Resonance 270 (2016) 47-55

UHD: USRP Source
Device Address: ser.. R2BUBUL
MBO: Subdev Spec: AADD
Samp Rate (Sps}: 250k

QT GUI Time Sink
Number of Points: 787

Cho: Gain Value: 15

[20 Conter Frea (He): 2134 g g

Sample Rate: 250k

Muitiply Conjugate

Ch(: Antenna: 44

Chl: Center Freq (Kz): 21.3M
Ch1: Gain Value: 10

Chl: Antenna: B:B

Complex to Mag [J}

Threshold
Il Low: 50m

]

|
|
|
|
|
Autoscale: No :
|
|
|
|
|

o

High: 50m
Initial State: 0

Recording Gate Amplitude Normalization

Fig. 3. RF receive portion of the single-pulse sequence flowgraph generated by FID.py. The red outlined box contains a chain of blocks that normalize the signal recording
gate pulse’s amplitude while preserving its phase. That magnitude-normalized signal is then used to remove spectrometer phase drifts from the FID signal phase using the
Multiply Conjugate block in the blue box. The phase-corrected signal is recorded by the Gated Vector Sink in the green box, and is displayed in real time by the QT GUI Time
Sink block in the orange box. The Gated Vector Sink is gated by the signal recording gate pulse. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

] -- Read Window
0.2 s
4 — Real Signal
] —Imag Signal
0.1 o
1 --RMS
e]
© i
3]
=
3 °7
€ i
< J
0.1
0.2
I T T I T T L T ' LI T T LR . 1
0 0.5 1 1.5 2 2.5 3

Time (ms)

Fig. 4. Screen shot of a received baseband FID signal shown in the QT GUI window while running the single-pulse sequence FID.py.

the flowgraph. First, it controls the Gated Vector Sink in the green
box so that the FID signal is only recorded over the desired interval.
Second, it is used to correct spectrometer phase drifts. To do that,
the blocks in the red box first normalize the magnitude of the sig-
nal recording gate pulse but preserve its phase by dividing the
pulse by its magnitude, and then the received FID signal is multi-
plied with the normalized signal recording gate pulse’s complex
conjugate using the Multiply Conjugate block in the blue box. This
phase removal procedure works because the excitation and signal
recording gate pulses originate from the same transmit channel so
they experience the same phase drift. The orange box on the far
right contains a QT GUI Time Sink block that displays the magnitude
and real and imaginary parts of the signal in real time. A represen-
tative QT GUI Time Sink window is shown in Fig. 4.

The gr-MRI single-pulse sequence implemented in FID.py
addresses the shortcomings of the non-gr-MRI sequence. Specifi-
cally, PC-SDR communication delays and spectrometer phase drifts
are compensated using the looped-back signal recording gate
pulse, enabling timed signal recording and averaging, and the
sequence can generate shaped RF pulse waveforms and change
pulse amplitudes and phases between TRs. The same strategies
used to develop the single-pulse sequence were applied to enable
gradient waveform generation for 2D and 3D imaging. The gr-MRI
package includes three common imaging sequences, and a tem-
plate sequence to enable development of new sequences. These
are described next. The software was built using GNU Radio ver-
sion 3.7.5.1, and uses the scientific Python libraries NumPy
(http://www.numpy.org) and Matplotlib (http://matplotlib.org).

All communication with SDRs occurs via USRP Sink and Source
blocks, which in spite of their vendor-specific name are compatible
with all SDRs that are supported by GNU Radio. The full package
and a detailed user guide can be downloaded at https://bit-
bucket.org/wgrissom/gnuradio-mri.

Spin echo: spinecho.py. Fig. 5 plots the spin echo (SE) pulse
sequence produced by spinecho.py, and defines some relevant
scan parameters. By default the sequence plays a Hamming-
windowed sinc excitation pulse concurrently with a slice-select
gradient trapezoid in the z direction to localize the excitation to
a slice in the sample. Phase encoding and readout prephasor trape-
zoids occur immediately after the pulse. A rectangular refocusing
pulse is played midway between the excitation pulse and the read-
out window. This is followed by the slice rewinder and the readout
gradient and acquisition window which are centered at the echo
time (TE). Compared to the single-pulse sequence described above,
the SE sequence’s flow graph includes three more Triggered Vector
Sources to generate gradient pulse waveforms in three spatial
dimensions. A video demonstrating the SE sequence can be viewed
at https://youtu.be/diGM2nWundl.

Table S1 lists the sequence parameters that can be set in the SE
sequence’s configuration file spinecho_config.txt or dynami-
cally during the prescan period before running the scan. Each time
a parameter is changed, all dependent parameters are updated.
Parameters can be saved to or loaded from Python pickle (.pk1)
files. Table S2 lists the user-callable functions defined by spine-
cho.py. This includes functions that set, store and load parameters,
and various scan control functions. There is a function to plot the

http://www.numpy.org
http://matplotlib.org
https://bitbucket.org/wgrissom/gnuradio-mri
https://bitbucket.org/wgrissom/gnuradio-mri
https://youtu.be/diGM2nWundI

CJ. Hasselwander et al./Journal of Magnetic Resonance 270 (2016) 47-55

51

SI/BW

180
P90
RF J\
G slice / \ /— \
G read [\ R
dead
G phase =
=
Signal

| —

|

TE

Fig. 5. Slice-selective spin echo pulse sequence generated by spinecho.py.

current pulse sequence. Most of the sequence parameters and all
the user-callable functions also apply to the other sequences.

Gradient-recalled echo: gradecho.py. Fig. Sla plots the
gradient-recalled echo (GRE) pulse sequence generated by the
script gradecho.py. Compared to the SE sequence, the GRE
sequence lacks a refocusing pulse, and the slice rewinder gradient
immediately follows the excitation pulse.

Inversion recovery: invrecov.py. Fig. S2a plots the inversion
recovery (IR) sequence produced by invrecov.py. Compared to
the SE sequence, the IR sequence adds a rectangular inversion
pulse played TI (inversion time) seconds before each excitation
and signal readout.

Template sequence: template.py. gr-MRI also provides a tem-
plate sequence to enable rapid development of custom pulse
sequences. The template is based on gradecho.py, and is heavily
commented to give instructions on how to edit the sequence. In the
simplest case, the user only needs to define the RF pulse shape to
generate a valid pulse sequence, however the user can define cus-
tom gradient waveforms, and new data acquisition windows if
desired; multiple windows could also be defined for multi-echo
sequences. The template includes function definitions that provide
the same functionality as the full imaging pulse sequences, and its
configuration file is preloaded with general parameter names that
were used in those pulse sequences.

2.4. System calibrations

Synchronizing Two SDRs. Since one SDR typically does not pro-
vide enough channels for an MRI scan, gr-MRI imaging sequences
assume the use of two SDRs, one for generating RF waveforms
and one for generating gradient waveforms. However, each SDR
can experience a different PC-SDR communication delay (the same
delay that necessitates the looped-back recording gate signal
described previously), resulting in a relative delay between the
two. We have empirically found that this relative delay can be as
long as 20 ms, and that it can vary somewhat during scanning.
Thus, it is essential to continuously synchronize the two SDRs to
ensure that gradient waveforms are played at the correct times
with respect to the RF pulses and signal acquisition. To achieve
this, one SDR is designated the ‘leader’ and the other the ‘follower’.
It is assumed that the leader will produce the RF pulses and the
transmit enable pulse and the follower will generate the gradient
waveforms. Each SDR generates a ten sample rectangular synchro-
nization pulse from a dedicated transmit channel three times per
TR, and both synchronization pulses are sent to dedicated receive
channels on the follower SDR. The two pulse signals are continu-
ously recorded, and a monitoring function in the gr-MRI imaging
sequence script periodically checks the data to compare pulse tim-
ings. A desynchronization event is detected if the pulses do not
overlap in time. When that happens, the pulse sequence is paused
and the function adds a delay to the transmitted signals of the SDR

whose pulse appears earlier, to resynchronize. The delays are
implemented using Delay blocks placed directly in front of each
SDR’s USRP Sink. Desynchronization during data acquisition may
corrupt the received data, so the frequency with which desynchro-
nization events occurred with our setup was characterized as
described below.

Center frequency and transmit voltage. Automatic center fre-
quency and power calibration functions are implemented as part
of the FID.py pulse sequence, and are listed in Table S3. For center
frequency offset calibration, the user specifies the desired number
of signal averages to use for FID measurement, and the system dis-
plays the FFT of the averaged signal, along with a fit Lorentzian
curve. The new center frequency offset is defined to be the fre-
quency corresponding to the peak of the Lorentzian curve, and is
set automatically when the script has completed. This calibration
can be run multiple times for best accuracy, since SNR increases
as the radio’s frequency approaches the Larmor frequency. The
power calibration finds the necessary RF pulse amplitude to
achieve a 90° flip angle for a fixed-duration rectangular pulse.
The user specifies the desired number of signal averages, and the
script acquires signals across a range of pulse amplitudes until a
maximum received signal amplitude has been reached. Both func-
tions save the optimized parameters to a Python pickle file named
cal.pkl which is loaded and used by the imaging pulse sequences.

Gradient strength. The gr-MRI package also provides a gradient
strength calibration script called grad_calibration.py, which
uses a spin echo sequence to measure one-dimensional profiles
of an object of known size. The user defines the gradient dimension
to calibrate, and the object size in that dimension. The sequence
then calibrates the gradient strength as a function of radio output
voltage based on pre-loaded gradient amplitudes and the fre-
quency bandwidth of the object’s profile. Gradient strengths are
saved in units of Gauss/mm/Volt to the file gcal.pkl and are used
by the imaging sequences to convert desired image FOV and matrix
size parameters to gradient pulse amplitudes and step sizes.
Table S4 lists the functions available to the user when running
the grad_calibration.py script. This calibration should only
need to be done once for a given scanner.

2.5. Data processing and image reconstruction

All received data is automatically transferred to an object of
class data after a sequence is run. The object contains the raw data
from the sequence’s Gated Vector Sink, and a time stamp indicat-
ing when the sequence was initiated. When the data.recon()
function is called, the data is reformatted (and averaged, if averag-
ing was performed) to create a 2D matrix. If the readout dimension
was oversampled with respect to the desired readout bandwidth,
the matrix is decimated to the specified matrix size using a 60-
tap anti-aliasing FIR filter. Finally, a 2D inverse FFT reconstruction
is performed, which corrects for RF chopping if it was used. The

52 CJ. Hasselwander et al./Journal of Magnetic Resonance 270 (2016) 47-55

formatted k-space data matrix is returned in data.kdata and the
image is returned in data.imdata.

2.6. Workflow summary

Fig. 6 summarizes the workflow implemented by gr-MRI, for
the spinecho.py imaging sequence. The diagram shows a work-
flow step, the output that the step creates and (where applicable)
the input the step receives. A gr-MRI imaging experiment com-
prises the following steps:

1. RF power and center frequency parameters are calibrated and
saved using FID.py.

2. The user updates the imaging sequence’s config file with the
desired pulse sequence parameters for their scan (spinecho_
config.txt). Then they invoke the imaging sequence script
(spinecho.py). The calibrated parameters from Step 1 are
automatically loaded, as well as the parameters from the config
file.

3. Interactive Mode starts and the raw signal is displayed in real-
time, while the user dynamically adjusts sequence parameters
or loads saved parameters. This step is optional.

4. The user optionally fine-tunes gradient pulse moments to center
the signal in the acquisition window. The figure for the “Tune
pre-phasing gradients” step of Fig. 6 shows an example of a plot
that is shown when tuning the slice gradient. The plot is
integrated signal amplitude versus a parameter rephase_
fudge, which is calibrated by the script and will be used to scale
the slice rephasing gradient during imaging. The maximum

Workflow Step Commands
c
2
]
<
2
S 1. Calibrate pulses run FID.py
g
v
9
<
-8

2. Call imaging run spinecho.py
sequence
P
2 Ty e LT T T \
= I 3. Edit sequence
H ! parameters/ | params.set_param(new_value),
s -): import saved 1 params. import_params (<file>)
v
] \ parameters !
e | | ==t == s
[
: l
2 P A
$:4. Tune pre—phasing\, read_on(),slice_on(),
g X gradients) calib_readout(),
a | | ~=-=-==F-=== - calib_slice()
5. Run sequence run()
2 6. Recon image data.recon()
]
o
v
2
H s
s 7. Save data/ pdaramsk.dsave _pafx'.a;ns (<<ff-llle>>) ,
& pulse parameters ata.kdata.tofile(<file>),
data.imdata.tofile(<file>)

point on this plot corresponds to the scaling of the rephasing
gradient amplitude needed to fully cancel the through-slice
phase. This step was required periodically on our scanner due
to gradient amplifier nonlinearity, but it is optional and it may
not be necessary on other scanners.

5. The user runs the sequence. The raw signal from each TR is dis-
played in a GUI window, and the current phase encode line
index is reported, so the user can monitor the scan.

6. After the scan has completed, the user can save the raw k-space
data for external reconstruction, or call data.recon() to
reconstruct an image.

7. The user can save data or parameters, change parameters, or
begin a new scan.

3. Validation experiments
3.1. Experimental setup

Experiments were performed on a 0.5 Tesla Oxford Maran
tabletop scanner (Resonance Instruments, Witney, U.K.) to validate
the imaging sequences and other functions of the gr-MRI software.
The scanner has a Maran DRX 2 spectrometer, a Tomco BT00500-
AlphaS 500 W RF amplifier (Tomco Technologies, Stepney, Aus-
tralia), and Analogue Crowne Micro-Tech 600 gradient amplifiers
(Crown Audio, Elkhart, Indiana, U.S.A.). The software ran on a PC
running Ubuntu 14.04 (Canonical, London, U.K.), with 16 GB RAM
and a 4 GHz Intel Core i7-4790 CPU (Intel Corp, Santa Clara, CA,
U.S.A.). Prior to imaging scans, gradient calibration was performed
using a 1 x1x1cm® cube phantom filled with CuSO4-doped

Data In/Data Out Visual

FID_config.txt/cal.pkl o 1

spin_config.txt, «:
cal.pkl, gcal.pkl/ 1]
params.param_structure i

params.param_structure/
params.param_structure

params.param_structure/
params.param_structure

data.rawdata

data.rawdata/
data.kdata, data.imdata

data.pkl,
kdata.dat,
imdata.dat

Fig. 6. Workflow illustration for the spinecho.py imaging sequence. Dotted lines in the workflow steps indicate optional steps that can be turned on or off using the
interactive_mode parameter in the configuration file. The second column shows commands as the user would enter them into the IPython shell. The third column
describes the data that is used or produced by each command, and the fourth column shows any images or plots that are created.

CJ. Hasselwander et al./Journal of Magnetic Resonance 270 (2016) 47-55 53

water. A solenoid RF coil was used for all scans, which was made
with 8 turns of 22 gauge wire, with 16 mm diameter and 10 mm
length. All scans used the scanner’s preamplifier (45 dB gain) and
transmit/receive switch in passive mode. A wiring diagram for
the experiments is shown in Fig. 7.

SDR hardware. SDR imaging scans used two Ettus Research
USRP1 SDRs, one for RF transmit and receive, and the other for gra-
dient waveform generation. To minimize timing drifts between the
two radios, their clocks were connected using instructions pro-
vided on the GNU Radio website. The USRP1 comprises an Altera
Cyclone FPGA, a 14 bit (—1V to +1 V), 128 Ms/s digital to analog
converter, and a 12 bit (—=1V to +1V), 64 Ms/s analog to digital
converter. The USRP1 can accommodate up to two transmit daugh-
terboards and two receive daughterboards, each of which provides
two channels. Each daughterboard can be driven at a unique fre-
quency. The USRP1 connects to the PC by USB. The leader radio
in our setup produced the RF excitation pulse and the signal
recording gate pulse on one transmit daughterboard, and DC
transmit-enable and synchronizing pulses on a second transmit
daughterboard. The follower radio produced the gradient pulses
and another synchronizing pulse. Table S5 lists the mapping
between imaging sequence signals and radio channels. Because
the USRP1 produces a maximum pulse amplitude of 1V but our
RF amplifier required at least 3.3V to unblank, the transmit-
enable pulse was used to drive a transistor switch that connected
the SDR’s 6 V power supply to the RF amplifier’s unblanking input.

Imaging scans. An SE imaging scan was run with parameters: TE/
TR=10/1000 ms, 90° flip angle, 128 x 128 image matrix,
20 x 20 mm? field-of-view, 4 mm slice thickness, 41.7 kHz readout
bandwidth, 3 averages. An SE scan was also acquired using the
Maran DRX 2 spectrometer with the same parameters. The scans
used RF chopping to move DC artifacts to the edge of the FOV.
The sequences imaged an 11 x 8 mm? 3D-printed Vanderbilt
University logo-shaped phantom immersed in a 15 mm-diameter
NMR tube filled with sunflower seed oil. The gr-MRI scan was
repeated 15 times with and without running interactive mode first,
to record the number of leader-follower desynchronization events.
Gradient-recalled echo and inversion recovery spin echo images of
the phantom were also acquired. The parameters for those scans
are listed in Table S6 and the results are shown in Figs. S1 and S2.

Frequency-swept pulse generation. To validate the software and
the SDR’s ability to generate frequency-swept waveforms, an
experiment was performed in which a Triggered Vector Source
was used to produce a 500 pus frequency-swept waveform

originally designed for Bloch-Siegert By mapping [19] (Fig. 9, left).
The small signal RF pulse was looped back into a USRP1 receive
channel and recorded. For comparison, the same waveform was
generated using the Maran scanner’s spectrometer, and recorded
the same way.

3.2. Results

Imaging scans. Fig. 8 shows images acquired with gr-MRI'’s
spinecho.py sequence and the Maran spectrometer with
closely-matched parameters. A visual comparison of the images
confirms a lack of geometric distortions in the gr-MRI image. Even
though the images were acquired using the same signal chain up to
the spectrometer, the gr-MRI image has higher SNR than the Maran
image. This may be due to a difference in the noise figure of the
Maran’s receiver, and we do not expect that the USRP1 with gr-
MRI would broadly have better noise performance than other
spectrometers.

Synchronization analysis. Table 1 shows how often desynchro-
nization events occurred during the spinecho.py sequence, with
and without running Interactive Mode prior to running the scan.
The gr-MRI monitoring function corrected the desynchronization
event each time by adjusting the leader and follower delays to
compensate. Desynchronization events occurred more frequently
immediately after starting a flowgraph because the USB interface
dynamically optimizes the data buffer sizes. By running interactive
mode first for approximately 30 s, buffering was more likely to sta-
bilize prior to running the full scan. In that case, only one desyn-
chronization event occurred, and there were no data corruptions.
When Interactive Mode was not run, one of the ten desynchroniza-
tion events led to data corruption. Data corruption is the result of a
desynchronization event that occurs between the most recent
check for synchronization and the time at which the pulses are
transmitted.

Frequency-swept pulse generation. Fig. 9 compares small-signal
frequency-swept pulses generated by the Maran and the USRP1
with gr-MRIL. The USRP1 played the waveform with high fidelity,
while the Maran’s waveform contained spurious dropouts and
undesired phase plateaus due to limited temporal and phase reso-
lution, resulting in large spikes in the transmitted FM waveform.
The RMS error of the Maran’s amplitude waveform was 24.8%,
while that of the radio’s was 4.0%. The RMS error of the Maran’s
frequency waveform was 247 kHz, while that of the radio’s was

Power Amplifier

Recording

gr-MRI

TX-Enable
Gate %
RFTX
> SDR 1
1 RF/Leader |-
: RFRX
y
PC Running SDR 1

Sync Preamplifier

A
1
. SDR 2
= - === Gradient/
Follower
SDR 2

Sync Gradient Amplifiers

T/R Switch

Gradient Coils

Fig. 7. Hardware wiring diagram for the imaging experiments. The dashed black wires represent USB digital baseband signals sent between the computer running gr-MRI and
the SDRs. The gray wires represent DC gradient and control signals, and the solid black wires represent RF signals.

54 CJ. Hasselwander et al./Journal of Magnetic Resonance 270 (2016) 47-55

Maran

gr-MRI

Fig. 8. Spin echo images acquired using (left) the Maran spectrometer, and (right)
gr-MRI. The horizontal direction is frequency-encoded.

Table 1
Frequency of desynchronization events and recovery from them, with and without
entering Interactive Mode before starting a spin echo imaging scan.

Interactive mode off Interactive mode on

TR (s) 1 1

Scan time (s) 128 128
Scans run 15 15
Desync detected 10 (66%) 1 (6.6%)
Desync corrected 10 (100%) 1 (100%)
Data corrupted 1(10%) 0 (0%)

21 kHz. The gr-MRI errors were largest at the ends of the
waveforms.

4. Discussion
4.1. Summary of results

We presented the gr-MRI software package, which comprises a
set of Python scripts, flowgraphs, and signal generation and record-
ing blocks for GNU Radio, an open-source SDR software package
that is widely used in communications research. gr-MRI imple-
ments basic sequencing functionality, and tools for system calibra-
tions, multi-radio synchronization, and MR signal processing and
image reconstruction. It includes four pulse sequences: a single-
pulse sequence to record free induction signals, a gradient-
recalled echo imaging sequence, a spin echo imaging sequence,
and an inversion recovery spin echo imaging sequence.

The imaging sequences were validated in 0.5 T phantom imag-
ing experiments and compared to images acquired using a com-
mercial MRI spectrometer. The gr-MRI images were free of
distortions, and had similar overall geometry and quality to the
commercial spectrometer’s images. The ability to generate

Maran Spectrometer

frequency-swept pulses using gr-MRI was also validated, which
is needed for adiabatic excitations [20] and may be useful for RF
encoding using the Bloch-Siegert shift [21,22].

4.2. Comparison with other research spectrometers

The primary advantage of gr-MRI is that it enables off-the-shelf
SDRs to be used as MRI spectrometers, and requires minimal digital
and RF electronics expertise. The primary tradeoff is that the hard-
ware is not optimized for MRI, which necessitated the development
of the synchronization methods described here. However, most
previously-described MRI spectrometers have been based on new
circuit board designs [13,2,1,14,15,6,7,6] that a user would have to
replicate. Furthermore, the only spectrometer with open-sourced
hardware schematics is the OPENCORE NMR platform [14,15], and
it does not provide gradient control channels. Several spectrometers
have been based wholly or in part on National Instruments hardware
that is straightforward to use but considerably more expensive than
SDRs [2,12]. A further advantage of gr-MRI (which it inherits from
GNU Radio) is that it is not tied to a single device, so it will be com-
patible with many existing and future SDRs.

In gr-MRI, imaging scans are prescribed and controlled via an
iPython command-line interface. Some previous spectrometers
have been based on National Instruments hardware and have GUIs
implemented in National Instruments’ LabView [2] software. The
Medusa console [7] provides a MATLAB-based user interface. Lab-
View and MATLAB interfaces would likely be easier for novices to
use than the gr-MRI command-line interface, though it would be
straightforward to build a GUI for gr-MRI in the future using Python
GUI elements. Some previous spectrometers have also provided
more advanced pulse programming capabilities, enabling users to
define pulse sequences in text files or even graphical editors [1,2].
However, to our knowledge that software is not publicly available.

4.3. SDR hardware requirements & considerations

gr-MRI was validated in this work using Ettus Research USRP1s.
The USRP1 has 12 bit ADCs and 14 bit DACs. This is within the
range of commercial spectrometers which typically have between
12 and 16 bit ADCs and DACs. The USRP1’s maximum Larmor fre-
quency is 32 MHz, which is dictated by its 64 MS/s receiver sam-
pling rate. Without additional hardware, this corresponds to an
upper field strength limit of 0.75 Tesla for proton imaging, though
other nuclei with lower gyromagnetic ratios could be imaged at
higher field strengths. Operation at higher frequencies would
require high-frequency transmit/receive daughterboards with
onboard modulation/demodulation circuits, or external mixing.
Care would need to be taken to make sure that the reference oscil-
lator signals for modulation and demodulation are phase-locked;
the loopback phase corrections implemented in gr-MRI may also

gr-MRI

Nominal

1
3
&
=
<

0

-0.2 0 0.2
ms

500
N
I
=
=
L

0

-0.2 0 0.2
ms

Fig. 9. Comparison of nominal and measured amplitude modulation (AM) and frequency modulation (FM) waveforms of frequency-swept pulses generated by the Maran

spectrometer and the USRP1 SDR with the gr-MRI Triggered Vector Source block.

CJ. Hasselwander et al./Journal of Magnetic Resonance 270 (2016) 47-55 55

be helpful in that scenario. Another consideration is baseband RF
and gradient sampling rate and readout bandwidth. On an SDR
the limits for these parameters are dictated by the baseband sam-
pling rate. Today’s clinical MRI scanners use baseband RF and gra-
dient waveform resolutions between 4 and 10 ps. The imaging
results presented in our validations used the coarsest resolution
that can be selected on the USRP1, 4 ps. However, the USRP1 can
be used with baseband sampling rates as high as 8 MS/s. Thus
we expect that the baseband resolution of modern SDRs is within
the range of what is required for MRI, even at high readout band-
widths. Finally, we also note that since baseband transmitted and
received data are continuously streamed between the PC and
SDR, PC-SDR data transfer rates and buffering are independent of
receiver duty cycle in a pulse sequence, so long readouts and
multi-echo scans could be immediately implemented with gr-MRI.

While the USRP1 is well-suited to MRI at low field strengths, it
is the first Ettus SDR and has a more basic feature set than more
recent models (though it was available for purchase from Ettus
at the time of writing). The gr-MRI software is compatible with
any GNU Radio-compatible SDR, though some of the features we
developed based on the USRP1’s capabilities may not be required
for newer SDRs and could be removed as desired by users. For
example, some newer SDRs have gigabit ethernet connections to
the PC, which reduces latency considerably compared to USB. We
used looped-back signals as a general solution to latency and
between-radio delays; with lower and more stable latency, pulse
sequences may not require this. Additionally, some modern SDRs
allow for time synchronization via time-stamped transmissions
or with a MIMO cable. These simplifications would free up valuable
I/0 channels. Commercial SDRs with onboard ARM-based Linux
PCs that can run GNU Radio are also becoming available for
embedded applications (such as the Ettus E300 series), which in
the future may enable sequences to be run directly from the SDR
and received data to be processed and stored on it until the user
requests it. SDRs with more channels than the USRP1 may be able
to perform both RF and gradient functions.

To obtain a 6V RF amplifier unblanking pulse, we used the
SDR’s 1V transmit enable pulse to turn on a transistor switch that
connected a 6 V DC power source to the amplifier whenever the
pulse was high. It may be possible to use SDR I/O pins to produce
these and other control signals (such as signals needed for coil
detuning circuits); such pins exist on the USRP1 motherboard
but were not supported by GNU Radio at the time of writing.

5. Conclusion

gr-MRI enables commercially-available software-defined radios
to be used as low-cost custom MRI spectrometers, with fidelity
that is comparable to commercial spectrometers. It was designed
to be highly customizable and reconfigurable. This will make it
easier for researchers and engineers to develop custom spectrom-
eters, without requiring significant spectrometer hardware devel-
opment or FPGA programming.

Acknowledgments
This work was supported by NIH grant R21 EB 018521. The

authors would like to thank Pooja Gaur for help in editing the
manuscript.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jmr.2016.06.023.

References

[1] S. Jie, X. Qin, L. Ying, L. Gengying, Home-built magnetic resonance imaging
system (0.3 T) with a complete digital spectrometer, Rev. Sci. Instrum. 76
(2005) 105101.

[2] S.M. Wright, D.G. Brown,].R. Porter, D.C. Spence, E. Esparza, D.C. Cole, F. Russel
Huson, A desktop magnetic resonance imaging system, MAGMA 13 (2002)
177-185.

[3] W.K. Peng, L. Chen,]J. Han, Development of miniaturized, portable magnetic
resonance relaxometry system for point-of-care medical diagnosis, Rev. Sci.
Instrum. 83 (2012) 095115.

[4] S.R. Parnell, E.B. Woolley, S. Boag, C.D. Frost, Digital pulsed NMR spectrometer
for nuclear spin-polarized *He and other hyperpolarized gases, Meas. Sci.
Technol. 19 (2008) 045601.

[5] J. Bodurka, P.J. Ledden, P. van Gelderen, R. Chu, J.A. de Zwart, D. Morris, J.H.
Duyn, Scalable multichannel MRI data acquisition system, Magn. Reson. Med.
51 (1) (2004) 165-171.

[6] W. Tang, H. Sun, W. Wang, A digital receiver module with direct data
acquisition for magnetic resonance imaging systems, Rev. Sci. Instrum. (2012)
104701.

[7] P.P. Stang, S.M. Conolly, J.M. Santos,].M. Pauly, G.C. Scott, Medusa: a scalable
MR console using USB, IEEE Trans. Med. Imag. 31 (2) (2012) 370-379.

[8] P. Stang, A.B. Kerr, J.M. Pauly, G. Scott, An extensible transmit array system
using vector modulation and measurement, in: Proceedings 16th Scientific
Meeting, International Society for Magnetic Resonance in Medicine, Toronto,
2008, p. 145.

[9] W.A. Grissom, D. Xu, A.B. Kerr, J.A. Fessler, D.C. Noll, Fast large-tip-angle
multidimensional and parallel RF pulse design in MRI, IEEE Trans. Med. Imag.
28 (10) (2009) 1548-1559.

[10] C.Barmet, N. De Zanche, B.J. Wilm, K.P. Pruessmann, A transmit/receive system
for magnetic field monitoring of in vivo MRI, Magn. Reson. Med. 62 (2009)
269-276.

[11] P.T. Sipild, S. Greding, G. Wachutka, F. Wiesinger, ?H transmit-receive NMR
probes for magnetic field monitoring in MRI, Magn. Reson. Med. 65 (2011)
1498-1506.

[12] P.T. Sipild, R.F. Schulte, G. Wachutka, F. Wiesinger, Digital multiband receiver
for magnetic resonance, Conc. Magn. Reson. Part B: Magn. Reson. Eng. 35B (4)
(2009) 210-220.

[13] L. Gengying, J. Yu, Y. Xiaolong, J. Yun, Digital nuclear magnetic resonance
spectrometer, Rev. Sci. Instrum. 72 (2001) 4460.

[14] K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance
spectrometer, Rev. Sci. Instrum. 78 (2007) 033103.

[15] K. Takeda, OPENCORE NMR: open-source core modules for implementing an
integrated FPGA-based NMR spectrometer,]. Magn. Reson. 192 (2008) 218-
229.

[16] W. Tang, W. Wang, A single-board NMR spectrometer based on a software
defined radio architecture, Meas. Sci. Technol. 22 (2011) 015902.

[17] A Quick Guide to Hardware and GNU Radio. <https://gnuradio.org/redmine/
projects/gnuradio/wiki/Hardware> (Accessed: December 2015).

[18] F. Pérez, B.E. Granger, IPython: a system for interactive scientific computing,
Comput. Sci. Eng. 9 (3) (2007) 21-29.

[19] M. Jankiewicz,].C. Gore, W.A. Grissom, Improved encoding pulses for Bloch-
Siegert Bf mapping,]. Magn. Reson. 226 (2013) 79-87.

[20] M. Garwood, L. DelaBarre, The return of the frequency sweep: designing
adiabatic pulses for contemporary NMR,]. Magn. Reson. 153 (2) (2001) 155-
177.

[21] R. Kartdusch, T. Driessle, T. Kampf, T.C. Basse-Liisebrink, U.C. Hoelscher, P.M.
Jakob, F. Fidler, X. Helluy, Spatial phase encoding exploiting the Bloch-Siegert
shift effect, Magn. Reson. Mater. Phys. 27 (2014) 363-371.

[22] Z. Cao, E.Y. Chekmenev, W.A. Grissom, Frequency encoding by Bloch-Siegert
shift, in: Proceedings 22nd Scientific Meeting, International Society for
Magnetic Resonance in Medicine, Milan, 2014, p. 4220.

http://dx.doi.org/10.1016/j.jmr.2016.06.023
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0005
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0005
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0005
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0005
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0010
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0010
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0010
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0015
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0015
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0015
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0020
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0020
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0020
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0020
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0025
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0025
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0025
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0030
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0030
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0030
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0035
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0035
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0040
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0040
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0040
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0040
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0040
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0045
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0045
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0045
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0050
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0050
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0050
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0055
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0055
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0055
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0055
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0060
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0060
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0060
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0065
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0065
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0070
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0070
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0075
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0075
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0075
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0080
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0080
https://gnuradio.org/redmine/projects/gnuradio/wiki/Hardware
https://gnuradio.org/redmine/projects/gnuradio/wiki/Hardware
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0090
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0090
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0095
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0095
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0095
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0100
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0100
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0100
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0105
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0105
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0105
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0110
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0110
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0110
http://refhub.elsevier.com/S1090-7807(16)30099-4/h0110

	gr-MRI: A software package for magnetic resonance imaging using software defined radios
	1 Introduction
	2 Software architecture and implementation
	2.1 A basic single-pulse sequence in GNU Radio
	2.2 Sequenced pulse generation and signal recording in gr-MRI
	2.3 gr-MRI Pulse sequences
	2.4 System calibrations
	2.5 Data processing and image reconstruction
	2.6 Workflow summary

	3 Validation experiments
	3.1 Experimental setup
	3.2 Results

	4 Discussion
	4.1 Summary of results
	4.2 Comparison with other research spectrometers
	4.3 SDR hardware requirements & considerations

	5 Conclusion
	Acknowledgments
	Appendix A Supplementary material
	References

