Krull dimension of Iwasawa algebras

Konstantin Ardakov

Received 13 January 2004
Available online 12 August 2004
Communicated by Jan Saxl

1. Introduction

Let G be a compact p-adic Lie group. In the recent years, there has been an increased amount of interest in completed group algebras (Iwasawa algebras)

$$
\Lambda_{G}=\mathbb{Z}_{p} \llbracket G \rrbracket:=\lim _{N \triangleleft_{o} G} \mathbb{Z}_{p}[G / N],
$$

for example, because of their connections with number theory and arithmetic geometry; see the paper by Coates, Schneider and Sujatha [4] for more details.

When G is a uniform pro- p group, Λ_{G} is a concrete example of a complete local Noetherian ring (noncommutative, in general) with good homological properties: it is known that Λ_{G} has finite global dimension and is an Auslander regular ring. Thus, Λ_{G} falls into the class of rings studied by Brown, Hajarnavis and MacEacharn in [1]. There they consider various properties of Noetherian rings R of finite global dimension, including the Krull(-Gabriel-Rentschler) dimension $\mathcal{K}(R)$-a module-theoretic dimension which measures how far R is from being Artinian. They also posed the following question:

Question [1, Section 5]. Let R be a local right Noetherian ring, whose Jacobson radical satisfies the Artin-Rees property. Is the Krull dimension of R always equal to the global dimension of R ?

In this paper, we address the problem of computing $\mathcal{K}\left(\Lambda_{G}\right)$. We establish lower and upper bounds for $\mathcal{K}\left(\Lambda_{G}\right)$ in terms of the Lie algebra $\mathfrak{g}=\mathcal{L}(G)$ of G :

[^0]Theorem A. Let $\lambda(\mathfrak{g})$ be the maximum length m of chains $0=\mathfrak{g}_{0}<\mathfrak{g}_{1}<\cdots<\mathfrak{g}_{m}=\mathfrak{g}$ of sub-Lie-algebras of \mathfrak{g}. Then

$$
\lambda(\mathfrak{g})+1 \leqslant \mathcal{K}\left(\Lambda_{G}\right) \leqslant \operatorname{dim} \mathfrak{g}+1 .
$$

For some groups, the two bounds coincide:
Corollary A. Let \mathfrak{r} be the solvable radical of \mathfrak{g} and suppose that the semisimple part $\mathfrak{g} / \mathfrak{r}$ of \mathfrak{g} is isomorphic to a direct sum of copies of $\mathfrak{s l}_{2}\left(\mathbb{Q}_{p}\right)$. Then $\mathcal{K}\left(\Lambda_{G}\right)=\operatorname{dim} \mathfrak{g}+1$.

We also establish a better upper bound for $\mathcal{K}\left(\Lambda_{G}\right)$ when $\mathcal{L}(G)$ is simple and split over \mathbb{Q}_{p} :

Theorem B. Let $p \geqslant 5$ and suppose $\mathfrak{g} \neq \mathfrak{s l}_{2}\left(\mathbb{Q}_{p}\right)$ is split simple over \mathbb{Q}_{p} with a Cartan subalgebra \mathfrak{t} and a Borel subalgebra \mathfrak{b}. Then

$$
\operatorname{dim} \mathfrak{b}+\operatorname{dim} \mathfrak{t}+1 \leqslant \mathcal{K}\left(\Lambda_{G}\right) \leqslant \operatorname{dim} \mathfrak{g}<\operatorname{gld}\left(\Lambda_{G}\right)
$$

The author believes that $\operatorname{dim} \mathfrak{b}+\operatorname{dim} \mathfrak{t}+1$ is the true value of $\mathcal{K}\left(\Lambda_{G}\right)$, with G as above. Applying Theorem B to a particular case allows us to obtain a negative answer to the question posed above:

Corollary B. Let $p \geqslant 5$ and let $G=\operatorname{ker}\left(S L_{3}\left(\mathbb{Z}_{p}\right) \rightarrow S L_{3}\left(\mathbb{F}_{p}\right)\right)$. Then Λ_{G} is a local right Noetherian ring whose Jacobson radical satisfies the Artin-Rees property, but

$$
\mathcal{K}\left(\Lambda_{G}\right)=8<\operatorname{gld}\left(\Lambda_{G}\right)=9 .
$$

In addition, we reprove a general result of R. Walker connecting $\mathcal{K}(R)$ with $\mathcal{K}(R / I)$ for a certain ring R and a suitable ideal I :

Theorem C (Walker [10]). Suppose R is right Noetherian and x is a right regular normal element belonging to the Jacobson radical of R. If $\mathcal{K}(R)<\infty$ then

$$
\mathcal{K}(R)=\mathcal{K}(R / x R)+1
$$

The reader might like to compare this result with the corresponding one on global dimensions; see Theorem 7.3.7 of [7].

We will denote the completed group algebra of G over \mathbb{F}_{p} by Ω_{G} :

$$
\Omega_{G}:=\lim _{N \triangleleft_{o} G} \mathbb{F}_{p}[G / N] .
$$

Theorem C applies directly to Iwasawa algebras, since it is easy to see that $\Omega_{G} \cong$ $\Lambda_{G} / p \Lambda_{G}:$

Corollary C. $\mathcal{K}\left(\Lambda_{G}\right)=\mathcal{K}\left(\Omega_{G}\right)+1$.

Notation. All rings are assumed to be associative and to possess a unit, but are not necessarily commutative. $J(R)$ always denotes the Jacobson radical of the ring R. All modules are right modules, unless stated otherwise; Mod- R denotes the category of all right modules over R. The symbol p will always mean a fixed prime.

2. Preliminaries

2.1. Filtrations

We will conform with the definitions and notations used in the book [6] throughout this paper. In this section, we briefly recall the most relevant concepts.

A filtration on a ring R is a set of additive subgroups $F R=\left\{F_{n} R: n \in \mathbb{Z}\right\}$, satisfying $1 \in F_{0} R, F_{n} R \subseteq F_{n+1} R, F_{n} R . F_{m} R \subseteq F_{n+m} R$ for all $n, m \in \mathbb{Z}$, and $\bigcup_{n \in \mathbb{Z}} F_{n} R=R$. If R has a filtration, R is said to be a filtered ring. In what follows, we assume R is a filtered ring.

Let M be an R-module. A filtration on M is a set of additive subgroups of $M, F M=$ $\left\{F_{n} M: n \in \mathbb{Z}\right\}$, satisfying $F_{n} M \subseteq F_{n+1} M, F_{n} M . F_{m} R \subseteq F_{n+m} M$ for all $n, m \in \mathbb{Z}$ and $\bigcup_{n \in \mathbb{Z}} F_{n} M=M$. If M has a filtration, M is said to be a filtered R-module. The filtration on M is said to be separated if $\bigcap_{n \in \mathbb{Z}} F_{n} M=0$.

Let I be a two-sided ideal of R. A notable example of a filtration on R is the I-adic filtration given by $F_{n} R:=I^{-n}$ if $n \leqslant 0$ and $F_{n} R=R$ otherwise.

The associated graded ring of R is defined to be $\operatorname{gr} R=\bigoplus_{n \in \mathbb{Z}} F_{n} R / F_{n-1} R$. If $x \in R$, the symbol of x in $\operatorname{gr} R$ is $\sigma(x):=x+F_{n-1} R \in F_{n} R / F_{n-1} R$, where n is such that $x \in$ $F_{n} R \backslash F_{n-1} R$. If $x \in \bigcap_{n \in \mathbb{Z}} F_{n} R$, define $\underset{\sim}{\sigma}(x)=0$.

The Rees ring of R is defined to be $\widetilde{R}=\bigoplus_{n \in \mathbb{Z}} F_{n} R$, which we view to be a subring of the Laurent polynomial ring $R\left[t, t^{-1}\right]$.

The associated graded module and Rees module of a filtered R-module M are defined similarly. We say that the filtration $F M$ on M is good if and only if \tilde{M} is a finitely generated \widetilde{R}-module. Note that a finitely generated R-module M always possesses a good filtration, for example, the deduced filtration given by $F_{n} M=M . F_{n} R$ for $n \in \mathbb{Z}$.

2.2. Ivasawa algebras

By a well-known result of Lazard (see, for example, Theorem 8.36 of [5]), any compact p-adic Lie group G has an open normal uniform pro- p subgroup H. Since H has finite index in G, any open normal subgroup of H contains an open normal subgroup of G. Hence

$$
\Lambda_{H}=\lim _{N \in \mathcal{C}} \mathbb{Z}_{p}[H / N] \quad \text { and } \quad \Lambda_{G}=\lim _{N \in \mathcal{C}} \mathbb{Z}_{p}[G / N],
$$

where $\mathcal{C}=\left\{N \triangleleft_{o} G: N \subseteq H\right\}$. It follows that Λ_{G} is a free right and left Λ_{H}-module of finite rank (an appropriate transversal for H in G will serve as a basis), so $\mathcal{K}\left(\Lambda_{G}\right)=$ $\mathcal{K}\left(\Lambda_{H}\right)$ by Corollary 6.5.3 of [7].

Thus restricting ourselves to the class of uniform pro- p groups does not lose any generality and we will assume that G denotes a uniform pro- p group throughout this paper. For more information about these groups, see the excellent book [5].

Following [5], we will write L_{G} for the \mathbb{Z}_{p}-Lie algebra of G [5, 4.29] and $\mathcal{L}(G)=\mathfrak{g}$ for the \mathbb{Q}_{p}-Lie algebra of $G[5,9.5]$.

The following properties of Λ_{G} and Ω_{G} are more or less well known:
Lemma 2.1. Let $R=\Lambda_{G}$ or Ω_{G} and let $d=\operatorname{dim} G$. Then:
(i) R is a local right Noetherian ring with maximal ideal $J=\operatorname{ker}\left(R \rightarrow \mathbb{F}_{p}\right)$.
(ii) R is complete with respect to the J-adic filtration.
(iii) $\operatorname{gr}_{J} \Omega_{G} \cong \mathbb{F}_{p}\left[X_{1}, \ldots, X_{d}\right]$.
(iv) $\operatorname{gld}\left(\Lambda_{G}\right)=\operatorname{gld}\left(\Omega_{G}\right)+1=\operatorname{dim} G+1$.
(v) J satisfies the right (and left) Artin-Rees property.

Proof. Proofs of (i), (ii) and (iii) can be found in Chapter 7 of [5]. Part (iv) is established in [2]. By Theorem 2.2 of Chapter II of [6], the J-adic filtration has the Artin-Rees property, which is easily seen to imply that the ideal J has the Artin-Rees property in the sense of 4.2.3 of [7].

Henceforth, J_{G} will always denote the maximal ideal of Ω_{G}. We will require the following characterization of Artinian modules of Ω_{G} :

Proposition 2.2. Let G be a uniform pro-p group with lower p-series $\left\{G_{n}: n \geqslant 1\right\}$. Let $M=\Omega_{G} / I$ be a cyclic Ω_{G}-module. The following are equivalent:
(i) M is Artinian.
(ii) $J_{G}^{n} \subseteq I$ for some $n \in \mathbb{N}$.
(iii) $J_{G_{m}} \subseteq I$ for some $m \geqslant 1$.
(iv) M is finite dimensional over \mathbb{F}_{p}.

Proof. Note that by Theorem 3.6 of [5], G_{n} is uniform for each $n \geqslant 1$.
(i) \Rightarrow (ii). As Ω_{G} is Noetherian, M has finite length. Also Ω_{G} / J_{G} is the unique simple Ω_{G}-module, as Ω_{G} is local. Hence $M J_{G}^{n}=0$.
(ii) \Rightarrow (iii). Suppose $J_{G}^{n} \subseteq I$. Choose m such that $p^{m-1} \geqslant n$. Then $g^{p^{m-1}}-1=$ $(g-1)^{p^{m-1}} \in J_{G}^{n} \subseteq I$ for all $g \in G$. As $G_{m}=G^{p^{m-1}}$, we see that $G_{m}-1 \subseteq I$ so $J_{G_{m}} \subseteq I$, as required.
(iii) \Rightarrow (iv). If $J_{G_{m}} \subseteq I, J_{G_{m}} \Omega_{G} \subseteq I$ as I is a right ideal of Ω_{G}. Hence $\mathbb{F}_{p}\left[G / G_{m}\right] \cong$ $\Omega_{G} / J_{G_{m}} \Omega_{G} \rightarrow \Omega_{G} / I=M$. Since $\left|G: G_{m}\right|$ is finite, the result follows.
(iv) \Rightarrow (i). This is clear.

2.3. Krull dimension

The definitions and basic facts about the Krull(-Gabriel-Rentschler) dimension can be found in Chapter 6 of [7]. Recall that an R-module M is said to be n-critical if $\mathcal{K}(M)=n$
and $\mathcal{K}(M / N)<n$ for all nonzero submodules N of M; thus a 0 -critical module is nothing other than a simple module.

The following (well-known) lemma is the basis for many arguments involving the Krull dimension. Since we shall not require the general case of ordinal-valued Krull dimensions, we restrict ourselves to the case when the dimension is finite. We write $\operatorname{Lat}(R)$ for the lattice of all right ideals of a ring R.

Lemma 2.3. Let R and S be rings, with R Noetherian of finite Krull dimension. Let $f: \operatorname{Lat}(R) \rightarrow \operatorname{Lat}(S)$ be an increasing function and let $k, n \in \mathbb{N}$, with $\mathcal{K}_{R}(R) \geqslant n$. Let X and Y be right ideals of R with $Y \subseteq X$ and suppose that $\mathcal{K}_{R}(X / Y)+k \leqslant$ $\mathcal{K}_{S}(f(X) / f(Y))$ whenever X / Y is n-critical. Then $\mathcal{K}_{R}(X / Y)+k \leqslant \mathcal{K}_{S}(f(X) / f(Y))$ whenever $\mathcal{K}_{R}(X / Y) \geqslant n$.

In particular, $\mathcal{K}_{R}(R)+k \leqslant \mathcal{K}_{S}(S)$.

Proof. This follows from [7, 6.1.17].

3. Main results

We now proceed to prove the main theorems stated in the introduction. We prove Theorem C in Section 3.1; the argument is a straightforward induction based on Nakayama's lemma and is different to the one used by Walker in [10].

Theorem A is proved in Section 3.2, where we also consider the length function $\lambda(\mathfrak{g})$ of a finite dimensional Lie algebra \mathfrak{g}. It is also shown that Corollary A follows from Theorem A.

The remainder of the paper is devoted to proving Theorem B.

3.1. Reduction to Ω_{G}

Let R be a ring. Suppose x is a normal element of R and M is an R-module. It is clear that $M x$ is an R-submodule of M; recall that M is said to be x-torsion free if $m x=0 \Rightarrow$ $m=0$ for all $m \in M$.

The following result summarizes various elementary properties of modules.

Lemma 3.1. Let x be a normal element of a ring R and let $B \subseteq A$ be right R-modules with Krull dimension. Then:
(a) If A / B and B are x-torsion free then A is also x-torsion free.
(b) If A / B is x-torsion free then $A x \cap B=B x$ and $\mathcal{K}(B / B x) \leqslant \mathcal{K}(A / A x)$.
(c) If A is x-torsion free then $\mathcal{K}(A / A x)=\mathcal{K}\left(A x^{n-1} / A x^{n}\right)=\mathcal{K}\left(A / A x^{n}\right)$ for all $n \geqslant 1$.

The main step comes next.

Lemma 3.2. Let R be a right Noetherian ring, x a normal element of $J(R)$. Suppose M is a finitely generated x-torsion free R-module with finite Krull dimension. Then $\mathcal{K}(M / M x) \geqslant$ $\mathcal{K}(M)-1$.

Proof. Proceed by induction on $\mathcal{K}(M)=\beta$. Note that $\beta \geqslant 1$ since M is x-torsion free. Since $x \in J(R)$, the base case $\beta=1$ follows from Nakayama's lemma. We can find a chain $M=M_{1}>M_{2}>\cdots>M_{k}>\cdots$ such that M_{i} / M_{i+1} is $(\beta-1)$-critical for all $i \geqslant 1$.

Case 1. $\exists i \geqslant 1$ such that M_{i} / M_{i+1} is not x-torsion free.
Pick a least such i. Let N / M_{i+1} be the x-torsion part of M_{i} / M_{i+1}; thus M_{i} / N is x-torsion free.

As each M_{j} / M_{j+1} is x-torsion free for all $j<i, M / N$ is also x-torsion free by Lemma 3.1(a). Hence, by Lemma 3.1(b), $\mathcal{K}(M / M x) \geqslant \mathcal{K}(N / N x)$.

Since M is x-torsion free and $0<N \subseteq M, N$ is also x-torsion free. Hence, by Lemma 3.1(c), $\mathcal{K}(N / N x)=\mathcal{K}\left(N / N x^{n}\right)$ for all $n \geqslant 1$.

As M is Noetherian and N / M_{i+1} is x-torsion, $\left(N / M_{i+1}\right) x^{n}=0$ for some $n \geqslant 1$. Hence $N x^{n} \subseteq M_{i+1}$, so $N / N x^{n} \rightarrow N / M_{i+1}$ and $\mathcal{K}\left(N / N x^{n}\right) \geqslant \mathcal{K}\left(N / M_{i+1}\right)$.

Since N / M_{i+1} is a nonzero submodule of the $(\beta-1)$-critical M_{i} / M_{i+1}, we deduce that $\mathcal{K}\left(N / M_{i+1}\right)=\beta-1=\mathcal{K}(M)-1$. The result follows.

Case 2. M_{i} / M_{i+1} is x-torsion free for all $i \geqslant 1$.
Consider the chain

$$
M=M x+M_{1} \geqslant M x+M_{2} \geqslant \cdots \geqslant M x .
$$

Now, M_{i} / M_{i+1} is x-torsion free and has Krull dimension $\beta-1$, so by induction, $\mathcal{K}\left(\left(M_{i} / M_{i+1}\right) /\left(M_{i} / M_{i+1}\right) \cdot x\right) \geqslant \beta-2$. But

$$
\begin{aligned}
& \frac{M_{i} / M_{i+1}}{\left(M_{i} / M_{i+1}\right) \cdot x}=\frac{M_{i} / M_{i+1}}{\left(M_{i} x+M_{i+1}\right) / M_{i+1}} \cong \frac{M_{i}}{M_{i} x+M_{i+1}}, \quad \text { and } \\
& \frac{M_{i}+M x}{M_{i+1}+M x} \cong \frac{M_{i}}{\left(M_{i+1}+M x\right) \cap M_{i}}=\frac{M_{i}}{M_{i+1}+\left(M_{i} \cap M x\right)} .
\end{aligned}
$$

Since M / M_{i} is x-torsion free by Lemma 3.1(a), $M_{i} \cap M x=M_{i} x$ by Lemma 3.1(b), so every factor of (\dagger) has Krull dimension $\geqslant \beta-2$. Hence $\mathcal{K}(M / M x) \geqslant \beta-1=$ $\mathcal{K}(M)-1$.

Proof of Theorem C. Since x is right regular, R_{R} is x-torsion free. By Lemma 3.1(c), the chain $R>x R>\cdots>x^{k} R>\cdots$ has infinitely many factors with Krull dimension equal to $\mathcal{K}(R / x R)$, so $\mathcal{K}(R)>\mathcal{K}(R / x R)$. The result follows from Lemma 3.2.

We remark that as x is normal, $x R$ is an ideal of R and so the Krull dimensions of $R / x R$ over R and over the ring $R / x R$ coincide.

3.2. A lower bound for the Krull dimension

Proposition 3.3. Let G be a uniform pro-p group and let H be a closed uniform subgroup such that $|G: H|=\infty$. Then:
(i) The induced module $M=\mathbb{F}_{p} \otimes_{\Omega_{H}} \Omega_{G}$ is not Artinian over Ω_{G}.
(ii) $\mathcal{K}\left(\Omega_{H}\right)<\mathcal{K}\left(\Omega_{G}\right)$.

Proof. (i) Since $\mathbb{F}_{p} \cong \Omega_{H} / J_{H}$ and since $-\otimes_{\Omega_{H}} \Omega_{G}$ is flat by Lemma 4.5 of [2], we see that $M \cong \Omega_{G} / J_{H} \Omega_{G}$ as right Ω_{G}-modules.

Suppose M is Artinian. Then $J_{G_{m}} \subseteq J_{H} \Omega_{G}$ for some $m \geqslant 1$, by Proposition 2.2. It is easy to check that $\left(1+J_{H} \Omega_{G}\right) \cap G=H$ for any closed subgroup H of any profinite group G. Hence

$$
G_{m}=\left(1+J_{G_{m}} \Omega_{G}\right) \cap G \subseteq\left(1+J_{H} \Omega_{G}\right) \cap G=H
$$

which forces $|G: H|$ to be finite, a contradiction.
(ii) Consider the increasing function $f: \operatorname{Lat}\left(\Omega_{H}\right) \rightarrow \operatorname{Lat}\left(\Omega_{G}\right)$, given by $I \mapsto I \otimes_{\Omega_{H}}$ Ω_{G}. Suppose X and Y are right ideals of R such that $Y \subseteq X$ and such that X / Y is simple. Since Ω_{H} is local, $X / Y \cong \mathbb{F}_{p}$ so $f(X) / f(Y) \cong \mathbb{F}_{p} \otimes_{\Omega_{H}} \Omega_{G} \cong M$ as Ω_{G} is a flat $\Omega_{H^{-}}$ module. As M is not Artinian by part (i), $\mathcal{K}(f(X) / f(Y)) \geqslant 1$, so by Lemma 2.3, $\mathcal{K}\left(\Omega_{H}\right)+$ $1 \leqslant \mathcal{K}\left(\Omega_{G}\right)$, as required.

Note that the analogous proposition for universal enveloping algebras is false: for example, the Verma module of highest weight zero for $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C})$ is Artinian, and indeed, $\mathcal{K}(\mathcal{U}(\mathfrak{g}))=\mathcal{K}(\mathcal{U}(\mathfrak{b}))=2$, where \mathfrak{b} is a Borel subalgebra of \mathfrak{g}.

We can now give a proof of the first result stated in the introduction:
Proof of Theorem A. By Theorem C, it is sufficient to show $\lambda(\mathfrak{g}) \leqslant \mathcal{K}\left(\Omega_{G}\right) \leqslant d$, where $d=\operatorname{dim} \mathfrak{g}$. First, we show that $\lambda(\mathfrak{g}) \leqslant \mathcal{K}\left(\Omega_{G}\right)$.

Proceed by induction on $\lambda(\mathfrak{g})$. Let $0=\mathfrak{g}_{0}<\mathfrak{g}_{1}<\cdots<\mathfrak{g}_{k}=\mathfrak{g}$ be a chain of maximal length $k=\lambda(\mathfrak{g})$ in \mathfrak{g}.

We can find a closed uniform subgroup H of G with Lie algebra \mathfrak{g}_{k-1}. Since $\mathfrak{g}_{k-1}<\mathfrak{g}$, $|G: H|=\infty$.

By the inductive hypothesis, $k-1=\lambda\left(\mathfrak{g}_{k-1}\right) \leqslant \mathcal{K}\left(\Omega_{H}\right)$. By Proposition 3.3, $\mathcal{K}\left(\Omega_{H}\right)<$ $\mathcal{K}\left(\Omega_{G}\right)$, so $k=\lambda(\mathfrak{g}) \leqslant \mathcal{K}\left(\Omega_{G}\right)$.

By Lemma 2.1, we see that Ω_{G} is a complete filtered ring with gr $\Omega_{G} \cong \mathbb{F}_{p}\left[X_{1}, \ldots, X_{d}\right]$. It follows from Proposition 7.1.2 of Chapter I of [6] and Corollary 6.4.8 of [7] that $\mathcal{K}\left(\Omega_{G}\right) \leqslant \mathcal{K}\left(\operatorname{gr} \Omega_{G}\right)=d$, as required.

Theorem A stimulates interest in the length $\lambda(\mathfrak{g})$ of a finite dimensional Lie algebra \mathfrak{g}. The following facts about this invariant are known:

Proposition 3.4. Let \mathfrak{g} be a finite dimensional Lie algebra over a field k.
(i) If \mathfrak{h} is an ideal of $\mathfrak{g}, \lambda(\mathfrak{g})=\lambda(\mathfrak{h})+\lambda(\mathfrak{g} / \mathfrak{h})$.
(ii) If \mathfrak{g} is solvable, $\lambda(\mathfrak{g})=\operatorname{dim}_{k}(\mathfrak{g})$.
(iii) If \mathfrak{g} is split semisimple, $\lambda(\mathfrak{g}) \geqslant \operatorname{dim} \mathfrak{b}+\operatorname{dim} \mathfrak{t}$, where \mathfrak{t} and \mathfrak{b} are some Cartan and Borel subalgebras of \mathfrak{g}, respectively.
(iv) $\lambda\left(\mathfrak{s l}_{2}(k)\right)=3$.

Proof. (i) Putting together two chains of maximal length in \mathfrak{h} and $\mathfrak{g} / \mathfrak{h}$ shows that $\lambda(\mathfrak{g}) \geqslant$ $\lambda(\mathfrak{h})+\lambda(\mathfrak{g} / \mathfrak{h})$. The reverse inequality follows by considering the chains $0=\mathfrak{g}_{0} \cap \mathfrak{h} \subseteq \cdots \subseteq$ $\mathfrak{g}_{i} \cap \mathfrak{h} \subseteq \cdots \subseteq \mathfrak{h}$ and $\mathfrak{h} \subseteq \mathfrak{g}_{1}+\mathfrak{h} \subseteq \cdots \subseteq \mathfrak{g}_{i}+\mathfrak{h} \subseteq \cdots \subseteq \mathfrak{g}$ whenever $0=\mathfrak{g}_{0}<\cdots<\mathfrak{g}_{i}<$ $\cdots<\mathfrak{g}_{n}=\mathfrak{g}$ is a chain of subalgebras of maximal length in \mathfrak{g}.
(ii) This follows directly from (i).
(iii) Let $l=\operatorname{dim} \mathfrak{t}$. Given a Borel subalgebra \mathfrak{b}, there are exactly 2^{l} parabolic subalgebras containing it, corresponding $1-1$ with the subsets of the set of simple roots of \mathfrak{g}. This correspondence preserves inclusions, so we can find a chain of subalgebras of length l starting with \mathfrak{b}. Combining this together with a maximal chain of length $\operatorname{dim} \mathfrak{b}$ in \mathfrak{b} gives the result.
(iv) This follows from (iii), since for $\mathfrak{g}=\mathfrak{s l}_{2}(k), \operatorname{dim} \mathfrak{t}=1, \operatorname{dim} \mathfrak{b}=2$ and $\operatorname{dim} \mathfrak{g}=3$.

Proof of Corollary A. This now follows directly from Theorem A and Proposition 3.4.

3.3. An upper bound

The method of proof of Theorem B is similar in spirit to that used by S.P. Smith in his proof of the following theorem, providing an analogous better upper bound for $\mathcal{K}(\mathcal{U}(\mathfrak{g}))$ when \mathfrak{g} is semisimple:

Theorem 3.5 (Smith). Let \mathfrak{g} be a complex semisimple Lie algebra. Let $2 r+1$ be the dimension of the largest Heisenberg Lie algebra contained in \mathfrak{g}. Then $\mathcal{K}(\mathcal{U}(\mathfrak{g})) \leqslant \operatorname{dim} \mathfrak{g}-r-1$.

Proof. See Corollary 4.3 of [8], bearing in mind the comments contained in Section 3.1 of that paper.

Definition 3.6. Let k be a field. The Heisenberg k-Lie algebra of dimension $2 r+1$ is defined by the presentation

$$
\begin{aligned}
\mathfrak{h}_{2 r+1}=k \mid w, u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{r}: & {\left[u_{i}, v_{j}\right]=\delta_{i j} w,\left[w, u_{i}\right]=\left[w, v_{i}\right]=0, } \\
& {\left.\left[u_{i}, u_{j}\right]=\left[v_{i}, v_{j}\right]=0\right\rangle, }
\end{aligned}
$$

here $\delta_{i j}$ is the Kronecker delta.
First we establish a useful fact about uniform pro- p groups H with \mathbb{Q}_{p}-Lie algebra isomorphic to a Heisenberg Lie algebra.

Lemma 3.7. Let H be a uniform pro-p group such that $\mathcal{L}(H)$ is isomorphic to $\mathfrak{h}_{2 r+1}$. Let the centre $Z(H)$ of H be topologically generated by z. Then there exist $x, y \in H$ and $k \in \mathbb{N}$ such that $[x, y]=z^{p^{k}}$.

Proof. By Theorem 9.10 of [5], we may assume that the group law on H is given by the Campbell-Hausdorff formula on L_{H}. Let (,) denote the Lie bracket on $\mathcal{L}(H)=\mathfrak{h}_{2 r+1}$.

Since $\left(L_{H},\left(L_{H}, L_{H}\right)\right) \subseteq\left(\mathfrak{h}_{2 r+1},\left(\mathfrak{h}_{2 r+1}, \mathfrak{h}_{2 r+1}\right)\right)=0$, the group law on L_{H} given by the Campbell-Hausdorff series reduces to

$$
\alpha * \beta=\alpha+\beta+\frac{1}{2}(\alpha, \beta)
$$

for $\alpha, \beta \in L_{H}$. It is then easily checked that the group commutator satisfies

$$
[\alpha, \beta]=\alpha^{-1} * \beta^{-1} * \alpha * \beta=(\alpha, \beta) .
$$

Now as $\mathbb{Q}_{p} L_{H}=\mathfrak{h}_{2 r+1}$ there exists $n \in \mathbb{N}$ such that $p^{n} u_{1}, p^{n} v_{1} \in L_{H}$, whence $\left(p^{n} u_{1}, p^{n} v_{1}\right) \in L_{H} \cap \mathbb{Q}_{p} w=\mathbb{Z}_{p} z$. Hence $\left(p^{n} u_{1}, p^{n} v_{1}\right)=p^{k} \lambda z$ for some unit $\lambda \in \mathbb{Z}_{p}$ and some $k \in \mathbb{N}$, an equation inside L_{H}. We may now take $x=p^{n} \lambda^{-1} u_{1}, y=p^{n} v_{1}$ and apply (\dagger).

Next we develop some dimension theory for finitely generated Ω_{G}-modules, where G is an arbitrary uniform pro- p group. Recall that the J_{G}-adic filtration on Ω_{G} gives rise to a polynomial associated graded ring.

Definition 3.8. Let M be a finitely generated Ω_{G}-module, equipped with some good filtration $F M$. The characteristic ideal of M is defined to be

$$
J(M):=\sqrt{\text { Anngr } M} .
$$

The graded dimension of M is defined to be

$$
d(M):=\mathcal{K}\left(\operatorname{gr} \Omega_{G} / J(M)\right)
$$

Lemma 4.1.9 of Chapter III of [6] shows that $J(M)$ and hence $d(M)$ does not depend on the choice of a good filtration for M. It is easy to prove that $d(M)=\mathcal{K}(\operatorname{gr} M)$ for any good filtration $F M$ on M.

Let \mathfrak{h} be a \mathbb{Q}_{p}-Lie subalgebra of \mathfrak{g}, the \mathbb{Q}_{p}-Lie algebra of G. Let $H=\mathfrak{h} \cap L_{G}$; since L_{G} / H injects into $\mathfrak{g} / \mathfrak{h}$ which is torsion-free, we see that H is actually a closed uniform subgroup of G, by Theorem 7.15 of [5].

We will call H the isolated uniform subgroup of G with \mathbb{Q}_{p}-Lie algebra \mathfrak{h}.
The following proposition is the main step in our proof of the upper bound for $\mathcal{K}\left(\Omega_{G}\right)$. Recall that J_{G} denotes the maximal ideal of Ω_{G}.

Proposition 3.9. Let G be a uniform pro-p group with \mathbb{Q}_{p}-Lie algebra \mathfrak{g} such that $\mathfrak{h}_{3} \subseteq \mathfrak{g}$. Let H be the isolated uniform subgroup of G with Lie algebra \mathfrak{h}_{3}. Let $Z=Z(H)=\overline{\langle z\rangle}$, say. Let M be a finitely generated Ω_{G}-module such that $d(M) \leqslant 1$. Then $\sigma(z-1) \in J(M)$.

Proof. Let A be a uniform subgroup of G with torsion-free L_{G} / L_{A}. Using Theorem 7.23(ii) of [5] it is easy to check that the subspace filtration on Ω_{A} induced from the J_{G}-adic filtration on Ω_{G} coincides with the J_{A}-adic filtration.

It follows that the Rees ring $\widetilde{\Omega}_{A}$ of Ω_{A} embeds into $\widetilde{\Omega}_{G}$ and that $\widetilde{\Omega}_{A} \cap t \widetilde{\Omega}_{G}=t \widetilde{\Omega}_{A}$, so this embedding induces a natural embedding of graded rings

$$
\operatorname{gr} \Omega_{A}=\widetilde{\Omega}_{A} / t \widetilde{\Omega}_{A} \hookrightarrow \widetilde{\Omega}_{G} / t \widetilde{\Omega}_{G}=\operatorname{gr} \Omega_{G}
$$

It is easy to see that L_{H} / L_{Z} is torsion-free. Since L_{G} / L_{H} is torsion-free by assumption on $H, L_{G} / L_{Z}$ is also torsion-free so the above discussion applies to both Z and H.

Now, equip M with a good filtration $F M$ and consider the Rees module \widetilde{M}. This is an $\widetilde{\Omega}_{G}$-module, so we can view it as an $\widetilde{\Omega}_{H}$-module by restriction.

Let $S=\widetilde{\Omega}_{Z}-t \widetilde{\Omega}_{Z}$. This is a central multiplicatively closed subset of the domain $\widetilde{\Omega}_{H}$, so we may form the localizations $\widetilde{\Omega}_{Z} S^{-1} \hookrightarrow \widetilde{\Omega}_{H} S^{-1}$ and the localized $\widetilde{\Omega}_{H} \cdot S^{-1}$-module $\tilde{M} S^{-1}$.

Let $R=\lim \widetilde{\Omega}_{Z} S^{-1} / t^{n} \cdot \widetilde{\Omega}_{Z} S^{-1}$ and let $N=\lim \tilde{M} S^{-1} / t^{n} \cdot \tilde{M} S^{-1}$.
It is clear that N is an R-module. Also, as t is central in $\widetilde{\Omega}_{H} S^{-1}, N$ has the structure of a $\widetilde{\Omega}_{H} S^{-1}$-module. In particular, as H embeds into $\widetilde{\Omega}_{H} S^{-1}, N$ is an H-module.

Now, consider the t-adic filtration on R. It is easy to see that

$$
R / t R=\widetilde{\Omega}_{Z} S^{-1} / t \widetilde{\Omega}_{Z} S^{-1} \cong \operatorname{gr} \Omega_{Z} \cdot \bar{S}^{-1}
$$

where $\bar{S}=\operatorname{gr} \Omega_{Z}-\{0\}$. Thus $R / t R \cong k$, the field of fractions of $\operatorname{gr} \Omega_{Z}$.
As t acts injectively on $\widetilde{\Omega}_{Z} S^{-1}, t^{n} R / t^{n+1} R \cong k$ for all $n \geqslant 0$. Hence the graded ring of R with respect to the t-adic filtration is

$$
\operatorname{gr}_{t} R=\bigoplus_{n=0}^{\infty} \frac{t^{n} R}{t^{n+1} R} \cong k[s],
$$

where $s=t+t^{2} R \in t R / t^{2} R$.
We can also consider the t-adic filtration on N. Again, we see that $N / t N \cong$ $t^{n} N / t^{n+1} N \cong \operatorname{gr} M \cdot \bar{S}^{-1}$. Hence

$$
\operatorname{gr}_{t} N=\bigoplus_{n=0}^{\infty} t^{n} N / t^{n+1} N \cong\left(\operatorname{gr} M \cdot \bar{S}^{-1}\right) \otimes_{k} k[s]
$$

Now, because $d(M) \leqslant 1, \operatorname{gr} M \cdot \bar{S}^{-1}$ is finite dimensional over k. It follows that $\operatorname{gr}_{t} N$ is a finitely generated $\mathrm{gr}_{t} R$-module.

Because N is complete with respect to the t-adic filtration, this filtration on N is separated. Also R is complete, so by Theorem 5.7 of Chapter I of [6], N is finitely generated over R.

Now $\widetilde{\Omega}_{Z} S^{-1}$ is a local ring with maximal ideal $t \widetilde{\Omega}_{Z} S^{-1}$. Hence R is a commutative local ring with maximal ideal $t R$; since $\bigcap_{n=0}^{\infty} t^{n} R=0$, the only ideals of R are $\left\{t^{n} R: n \geqslant 0\right\}$.

Hence R is a commutative PID and N is a finitely generated t-torsion-free R-module. This forces N to be free over R, say $N \cong R^{n}$, for some $n \geqslant 0$.

Now, Z embeds into R and the action of R commutes with the action of H on N. Hence we get a group homomorphism

$$
\rho: H \rightarrow G L_{n}(R)
$$

such that $\rho(z)=z I$, where I is the $n \times n$ identity matrix.
But H is a uniform pro- p group with \mathbb{Q}_{p}-Lie algebra \mathfrak{h}_{3}, so by Lemma 3.7 we can find elements $x, y \in H$ such that $[x, y]=z^{p^{k}}$ for some $k \geqslant 1$.

Hence $[\rho(x), \rho(y)]=\rho(z)^{p^{k}}=z^{p^{k}}$.I. Taking determinants yields $z^{n p^{k}}=1$. Since $Z=$ $\overline{\langle z\rangle} \cong \mathbb{Z}_{p}$, this is only possible if $n=0$.

Therefore $N=0$ and so $N / t N=\operatorname{gr} M \cdot \bar{S}^{-1}=0$. Hence $Q \cap \bar{S} \neq \emptyset$, where $Q=$ $\operatorname{Ann}_{\operatorname{gr} \Omega_{G}} \operatorname{gr} M$. Because Q is graded and because $\operatorname{gr} \Omega_{Z} \cong \mathbb{F}_{p}[\sigma(z-1)]$, we see that $\sigma(z-1)^{m} \in Q$ for some $m \geqslant 0$. Hence $\sigma(z-1) \in J(M)=\sqrt{Q}$.

The above result should be compared to the Bernstein inequality for finitely generated modules M for the Weyl algebra $A_{1}(\mathbb{C})$, which gives a restriction on the possible values of the dimension of M. When \mathfrak{g} is itself a Heisenberg Lie algebra, a stronger result has been proved by Wadsley [9, Theorem B]:

Theorem 3.10. Let G be a uniform pro-p group with \mathbb{Q}_{p}-Lie algebra $\mathfrak{h}_{2 r+1}$ and let M be a finitely generated Ω_{G}-module. If $d(M) \leqslant r$, then $\operatorname{Ann}_{\Omega_{G}}(M) \cap \Omega_{Z} \neq 0$, where $Z=Z(G)$.

We are tempted to conjecture that the following generalization of Proposition 3.9 holds:
Conjecture. Let G be a uniform pro-p group with \mathbb{Q}_{p}-Lie algebra \mathfrak{g} such that $\mathfrak{h}_{2 r+1} \subseteq \mathfrak{g}$. Let H be the isolated uniform subgroup of G with Lie algebra $\mathfrak{h}_{2 r+1}$ and let $Z=Z(H)=$ $\overline{\langle z\rangle}$, say. Let M be a finitely generated Ω_{G}-module such that $d(M) \leqslant r$. Then $\sigma(z-1) \in$ $J(M)$.

This is a more general analogue of Lemma 3.2 of [8] corresponding to the Bernstein inequality for $A_{r}(\mathbb{C})$. If this conjecture is correct, we would be able to sharpen the upper bound on $\mathcal{K}\left(\Omega_{G}\right)$ from $\operatorname{dim} \mathfrak{g}-1$ to $\operatorname{dim} \mathfrak{g}-r$, when G is as in Theorem B.

Let G be a uniform pro- p group, and consider the set G / G_{2}, where $G_{2}=P_{2}(G)=G^{p}$. We know that G / G_{2} is a vector space over \mathbb{F}_{p} of dimension $d=\operatorname{dim}(G)$. The automorphism group $\operatorname{Aut}(G)$ of G acts naturally on G / G_{2}; this action commutes with the \mathbb{F}_{p}-linear structure on G / G_{2}. Because $[G, G] \subseteq G_{2}$ the action of $\operatorname{Inn}(G)$ is trivial, so we see that G / G_{2} is naturally an $\mathbb{F}_{p}[\operatorname{Out}(G)]$-module.

Similarly, we obtain an action of $\operatorname{Aut}(G)$ on J / J^{2} where $J=J_{G} \triangleleft \Omega_{G}$; it is easy to see that $\operatorname{Inn}(G)$ again acts trivially, so J / J^{2} is also an $\mathbb{F}_{p}[\operatorname{Out}(G)]$-module.

Lemma 3.11. The map $\varphi: G / G_{2} \rightarrow J / J^{2}$ given by $\varphi\left(g G_{2}\right)=\sigma(g-1)=g-1+J^{2}$ is an isomorphism of $\mathbb{F}_{p}[\operatorname{Out}(G)]$-modules.

Proof. It is easy to check that φ is an \mathbb{F}_{p}-linear map preserving the $\operatorname{Out}(G)$-structure.
Now $\left\{g_{1} G_{2}, \ldots, g_{d} G_{2}\right\}$ is a basis for G / G_{2}, if $\left\{g_{1}, \ldots, g_{d}\right\}$ is a topological generating set for G. By Theorem 7.24 of [5], $\left\{X_{1}, \ldots, X_{d}\right\}$ is a basis for J / J^{2}, where $X_{i}=\sigma\left(g_{i}-1\right)=\varphi\left(g_{i} G_{2}\right)$. The result follows.

Theorem 3.12. Let G, H, z be as in Proposition 3.9. Suppose $z G_{2}$ generates the $\mathbb{F}_{p}[\operatorname{Out}(G)]$-module G / G_{2}. Then
(i) Ω_{G} has no finitely generated modules M with $d(M)=1$.
(ii) $\mathcal{K}\left(\Omega_{G}\right) \leqslant \operatorname{dimg}-1$.

Proof. Let M be a finitely generated Ω_{G}-module with $d(M) \leqslant 1$. By Lemma 3.11, $G / G_{2} \cong J / J^{2}$ as $\mathbb{F}_{p}[\operatorname{Out}(G)]$-modules. Because $z G_{2}$ generates $G / G_{2}, \varphi\left(z G_{2}\right)=\sigma(z-$ 1) $\in J / J^{2}$ generates J / J^{2}. In other words, $\mathbb{F}_{p} .\left\{\sigma(z-1)^{\alpha}: \alpha \in \operatorname{Out}(G)\right\}=J / J^{2}$.

Let $\theta \in \operatorname{Aut}(G)$. By Proposition 3.9 applied to $H^{\theta}, \sigma\left(z^{\theta}-1\right)=\sigma(z-1)^{\bar{\theta}} \in J(M)$, where ${ }^{-}: \operatorname{Aut}(G) \rightarrow \operatorname{Out}(G)$ is the natural surjection.

Hence $J / J^{2}=\mathbb{F}_{p} \cdot\left\{\sigma(z-1)^{\alpha}: \alpha \in \operatorname{Out}(G)\right\} \subseteq J(M)$. This forces

$$
\left(X_{1}, \ldots, X_{d}\right) \subseteq J(M) \subseteq \mathbb{F}_{p}\left[X_{1}, \ldots, X_{d}\right]=\operatorname{gr} \Omega_{G}
$$

whence $d(M)=0$ and part (i) follows.
Consider the increasing map gr: $\operatorname{Lat}\left(\Omega_{G}\right) \rightarrow \operatorname{Lat}\left(\operatorname{gr} \Omega_{G}\right)$, where we endow each right ideal of Ω_{G} with the subspace filtration from the J_{G}-adic filtration on G. If $X, Y \triangleleft_{r} \Omega_{G}$ are such that $M=X / Y$ is 1 -critical, then $\mathcal{K}(\operatorname{gr} M)=\mathcal{K}(\operatorname{gr} X / \operatorname{gr} Y) \geqslant 1$, giving M the subquotient filtration from Ω_{G}.

Now, by Proposition 1.2.3 of Chapter II of [6], this subquotient filtration is good, since Ω_{G} is a complete filtered ring with Noetherian $\operatorname{gr} \Omega_{G}$. Hence $\mathcal{K}(\operatorname{gr} M)=d(M) \geqslant 1$ by the remarks following Definition 3.8. By part (i), $\mathcal{K}(\operatorname{gr} X / \operatorname{gr} Y) \geqslant 2$ so part (ii) follows from Lemma 2.3.

We will use this result to deduce Theorem B.

3.4. Chevalley groups over \mathbb{Z}_{p}

We recall some facts from the theory of Chevalley groups:
Let $X \in\left\{A_{l}, B_{l}, C_{l}, D_{l}, E_{6}, E_{7}, E_{8}, F_{4}, G_{2}\right\}$ be an indecomposable root system and let R be a commutative ring. Let $\mathcal{B}=\left\{h_{r}: r \in \Pi\right\} \cup\left\{e_{r}: r \in X\right\}$ be the Chevalley basis for the R-Lie algebra X_{R}.

Let $X(R)=\left\langle x_{r}(t): r \in X, t \in R\right\rangle \subseteq \operatorname{Aut}\left(X_{R}\right)$ be the adjoint Chevalley group over R. Here $x_{r}(t) \in \operatorname{Aut}\left(X_{R}\right)$ is given by

$$
\begin{aligned}
& x_{r}(t) \cdot e_{r}=e_{r}, \\
& x_{r}(t) \cdot e_{-r}=e_{-r}+t h_{r}-t^{2} e_{r}, \\
& x_{r}(t) \cdot h_{s}=h_{s}-A_{s r} t e_{r},
\end{aligned}
$$

$$
x_{r}(t) . e_{s}=\sum_{i=0}^{b} M_{r, s, i} t^{i} e_{i r+s}
$$

where $s \in X$ is a root linearly independent from $r, a \in \mathbb{N}$ is the largest integer such that $s-a r \in X, b \in \mathbb{N}$ is the largest integer such that $s+b r \in X$,

$$
A_{s r}=\frac{2(s, r)}{(r, r)} \quad \text { and } \quad M_{r, s, i}= \pm\binom{ a+i}{i}
$$

Let R^{*} denote the group of units of R. When $t \in R^{*}$ and $r \in X$, define

$$
n_{r}(t)=x_{r}(t) x_{-r}\left(-t^{-1}\right) x_{r}(t) \quad \text { and } \quad h_{r}(t)=n_{r}(t) n_{r}(-1) .
$$

The actions of $h_{r}(t)$ and $n_{r}=n_{r}(1)$ on X_{R} are as follows:

$$
\begin{aligned}
& h_{r}(t) \cdot h_{s}=h_{s}, \quad s \in \Pi, \\
& h_{r}(t) \cdot e_{s}=t^{A_{r s}} e_{s}, \quad s \in X, \\
& n_{r} \cdot h_{s}=h_{w_{r}(s)}, \\
& n_{r} \cdot e_{s}=\eta_{r, s} e_{w_{r}(s)} .
\end{aligned}
$$

Here w_{r} is the Weyl reflection on X corresponding to the root r and $\eta_{r, s}= \pm 1$.
The Steinberg relations hold in $X(R)$:

$$
\begin{aligned}
& h_{r}\left(t_{1}\right) h_{r}\left(t_{2}\right)=h_{r}\left(t_{1} t_{2}\right), \quad t_{1}, t_{1} \in R^{*}, r \in X, \\
& x_{r}(t) x_{s}(u) x_{r}(t)^{-1}=x_{s}(u) . \prod_{i, j>0} x_{i r+j s}\left(C_{i j r s} t^{i} u^{j}\right), \quad t, u \in R, r, s \in X, \\
& h_{s}(u) x_{r}(t) h_{s}(u)^{-1}=x_{r}\left(u^{A_{s r}} t\right), \quad t \in R, u \in R^{*}, r, s \in X .
\end{aligned}
$$

Here $C_{i j r s}$ are certain integers such that $C_{i 1 r s}=M_{r, s, i}$.
For more details on the above, see [3].
Now, consider the \mathbb{Z}_{p}-Lie algebra $X_{\mathbb{Z}_{p}}$. Since $\left[p X_{\mathbb{Z}_{p}}, p X_{\mathbb{Z}_{p}}\right]=p^{2}\left[X_{\mathbb{Z}_{p}}, X_{\mathbb{Z}_{p}}\right] \subseteq$ $p \cdot p X_{\mathbb{Z}_{p}}$, we see that $p X_{\mathbb{Z}_{p}}$ is a powerful \mathbb{Z}_{p}-Lie algebra. Let $Y=\left(p X_{\mathbb{Z}_{p}}, *\right)$ be the uniform pro- p group constructed from $p X_{\mathbb{Z}_{p}}$ using the Campbell-Hausdorff formula.

We have a group homomorphism $\operatorname{Ad}: Y \rightarrow G L\left(p X_{\mathbb{Z}_{p}}\right)$ given by $\operatorname{Ad}(g)(u)=g u g^{-1}$. It is shown in Exercise 9.10 of [5] that

$$
\mathrm{Ad}=\exp \circ \mathrm{ad}
$$

where $\exp : \mathfrak{g l}\left(p X_{\mathbb{Z}_{p}}\right) \rightarrow G L\left(p X_{\mathbb{Z}_{p}}\right)$ is the exponential map.
It is clear that $\operatorname{ker} \mathrm{Ad}=Z(Y)$. Since the Lie algebra $X_{\mathbb{Q}_{p}}$ of Y is simple, it is easy to see that $\mathcal{L}(Z(Y))=Z(\mathcal{L}(Y))=0$; hence ker $\mathrm{Ad}=1$ and Ad is an injection.

Lemma 3.13. Let $N=\operatorname{Ad}(Y)$ and $G=X\left(\mathbb{Z}_{p}\right)$. Then $N \triangleleft G$.
Proof. First we show that $N \subseteq G$. It is clear that the \mathbb{Z}_{p}-linear action of N on $p X_{\mathbb{Z}_{p}}$ extends naturally to a \mathbb{Z}_{p}-linear action of N on $X_{\mathbb{Z}_{p}}$. Now, direct computation shows that

$$
\begin{aligned}
& \operatorname{Ad}\left(t e_{r}\right)=x_{r}(t), \quad t \in p \mathbb{Z}_{p}, r \in X \quad \text { and } \\
& \operatorname{Ad}\left(t h_{r}\right)=h_{r}(\exp (t)), \quad t \in p \mathbb{Z}_{p}, r \in \Pi
\end{aligned}
$$

Hence $\operatorname{Ad}\left(p u \mathbb{Z}_{p}\right) \subseteq G$ for all $u \in \mathcal{B}$. The set $p \mathcal{B}$ is a \mathbb{Z}_{p}-basis for $p X_{\mathbb{Z}_{p}}$ and hence a topological generating set for Y by Theorem 9.8 of [5]. By Proposition 3.7 of [5], Y is equal to the product of the procyclic subgroups $p u \mathbb{Z}_{p}$ as u ranges over \mathcal{B}. Hence $N \subseteq G$.

Now, let $r, s \in X, t \in \mathbb{Z}_{p}$ and $u \in p \mathbb{Z}_{p}$. By the Steinberg relations, we have

$$
x_{r}(t) x_{s}(u) x_{r}(t)^{-1}=x_{s}(u) . \prod_{i, j>0} x_{i r+j s}\left(C_{i j r s} t^{i} u^{j}\right) \in N
$$

and

$$
x_{r}(t) h_{s}(\exp (u)) x_{r}(t)^{-1}=h_{s}(\exp (u)) x_{r}\left(\exp \left(-A_{s r} u\right) t\right) x_{r}(-t) \in N
$$

since $C_{i j r s} t^{i} u^{j} \in p \mathbb{Z}_{p}$ and $\exp \left(-A_{s r} u\right)-1 \in p \mathbb{Z}_{p}$, whenever $u \in p \mathbb{Z}_{p}$.
Hence $N \triangleleft G$, as required.
Theorem 3.14. Let G, N be as in Lemma 3.13. There exists a commutative diagram of group homomorphisms:

Proof. We begin by defining all the relevant maps. Any automorphism f of $X_{\mathbb{Z}_{p}}$ must fix $p X_{\mathbb{Z}_{p}}$ and hence induces an automorphism $\alpha(f)$ of $X_{\mathbb{F}_{p}} \cong X_{\mathbb{Z}_{p}} / p X_{\mathbb{Z}_{p}}$. It is clear from the definition of the Chevalley groups that $\alpha\left(x_{r}(t)\right)=x_{r}(\bar{t})$ where ${ }^{-}: \mathbb{Z}_{p} \rightarrow \mathbb{F}_{p}$ is reduction $\bmod p$ and that α is a surjection.

Since Ad is an isomorphism of Y onto N, N is a uniform pro- p group, and we have an \mathbb{F}_{p}-linear bijection $\varphi: X_{\mathbb{F}_{p}} \rightarrow N / N_{2}$ given by $\varphi(\bar{x})=\operatorname{Ad}(p x) N_{2}$, where ${ }^{-}: X_{\mathbb{Z}_{p}} \rightarrow X_{\mathbb{F}_{p}}$ is the natural map. This induces an isomorphism $\varphi^{*}: \operatorname{Aut}\left(X_{\mathbb{F}_{p}}\right) \rightarrow \operatorname{Aut}\left(N / N_{2}\right)$ given by $\varphi^{*}(f)=\varphi f \varphi^{-1}$.

We have observed in the remarks preceding Lemma 3.11 that $\operatorname{Out}(N)$ acts naturally on N / N_{2}; we denote this action by γ. By Lemma 3.13, N is normal in G, and we denote the conjugation action of G on N by β.

Finally, ι is the natural injection of $X\left(\mathbb{F}_{p}\right)$ into $\operatorname{Aut}\left(X_{\mathbb{F}_{p}}\right)$ and π is the natural projection of $\operatorname{Aut}(N)$ onto $\operatorname{Out}(N)$.

It remains to check that $\varphi^{*} \iota \alpha=\gamma \pi \beta$. It is sufficient to show $\varphi^{*} \iota \alpha\left(x_{r}(t)\right)=\gamma \pi \beta\left(x_{r}(t)\right)$ for any $r \in X$ and $t \in \mathbb{Z}_{p}$. We check these maps agree on the basis $\left\{\operatorname{Ad}(p u) . N_{2}: u \in \mathcal{B}\right\}$ of N / N_{2}. On the one hand, we have

$$
\begin{align*}
\varphi^{*} \iota \alpha\left(x_{r}(t)\right)\left(\operatorname{Ad}\left(p e_{s}\right) N_{2}\right) & =\varphi^{*}\left(x_{r}(\bar{t})\right)\left(\operatorname{Ad}\left(p e_{s}\right) N_{2}\right)=\varphi\left(x_{r}(\bar{t})\left(\overline{e_{s}}\right)\right) \\
& =\varphi\left(\sum_{i=0}^{b} M_{r, s, i} \bar{t}^{i} \frac{e_{i r+s}}{)}=\prod_{i=0}^{b} \operatorname{Ad}\left(p M_{r, s, i} t^{i} e_{i r+s}\right) N_{2}\right. \\
& =\prod_{i=0}^{b} x_{i r+s}\left(p M_{r, s, i} t^{i}\right) N_{2},
\end{align*}
$$

using the definition of the action of $x_{r}(\bar{t})$ on $X_{\mathbb{F}_{p}}$. On the other hand,

$$
\begin{aligned}
\gamma \pi \beta\left(x_{r}(t)\right)\left(\operatorname{Ad}\left(p e_{s}\right) N_{2}\right) & =x_{r}(t) x_{s}(p) x_{r}(-t) N_{2} \\
& =x_{s}(p) \prod_{i, j>0} x_{i r+j s}\left(C_{i j r s} t^{i} p^{j}\right) N_{2},
\end{aligned}
$$

using the Steinberg relations.
Since $x_{\alpha}\left(p^{2}\right) \in N_{2}$ for any $\alpha \in X$, we see that the all the terms in the above product with $j>1$ vanish, and the remaining expression is equal to the result of (\dagger), since $C_{i 1 r s}=M_{r, s, i}$.

A similar computation shows that $\varphi^{*} \iota \alpha\left(x_{r}(t)\right)$ also agrees with $\gamma \pi \beta\left(x_{r}(t)\right)$ on $\operatorname{Ad}\left(p h_{s}\right) N_{2}$ for any $s \in \Pi$, and the result follows.

The above theorem shows that the action of $\operatorname{Out}(N)$ on N / N_{2} which was of interest in the preceding section is linked to the natural action of $X\left(\mathbb{F}_{p}\right)$ on $X_{\mathbb{F}_{p}}$. Since α is surjective, we see that if \bar{e}_{r} generates $X_{\mathbb{F}_{p}}$ as an $\mathbb{F}_{p}\left[X\left(\mathbb{F}_{p}\right)\right]$-module, then $\operatorname{Ad}\left(p e_{r}\right) N_{2}$ generates N / N_{2} as an $\mathbb{F}_{p}[\operatorname{Out}(N)]$-module. We drop the bars in the following proposition.

Proposition 3.15. Suppose $p \geqslant 5$ and let $R=\mathbb{F}_{p}\left[X\left(\mathbb{F}_{p}\right)\right]$. Then $X_{\mathbb{F}_{p}}=$ R. e_{r} for any $r \in X$.
Proof. This is probably well known and is purely a matter of computation. Let W denote the Weyl group of X.

Note that $\left(x_{-r}(1)+\eta_{r, r} n_{r}-1\right) . e_{r}=h_{-r} \in R . e_{r}$, whence $h_{r}=-h_{-r} \in R . e_{r}$ also.
By Proposition 2.1.8 of [3], we can choose $w \in W$ such that $w(r) \in \Pi$. Hence $n_{w} \cdot h_{r}=$ $h_{w(r)} \in R . e_{r}$.

Let α, β be adjacent fundamental roots. Then $n_{\alpha} \cdot h_{\beta}=h_{w_{\alpha}(\beta)}=h_{\beta}-A_{\beta \alpha} h_{\alpha}$ where $A_{\beta \alpha}=-1,-2$ or -3 . The condition on p implies that if $h_{\beta} \in R . e_{r}$ then $h_{\alpha} \in$ R. e_{r} also.

Since X is indecomposable, $h_{\alpha} \subseteq R . e_{r}$ for any $\alpha \in \Pi$. Since the fundamental coroots span the Cartan subalgebra, $h_{s} \in R . e_{r}$ for any $s \in X$.

Finally, $x_{s}(1) . h_{s}=h_{s}-2 e_{s}$, whence $e_{s} \in R . e_{r}$ for any $s \in X$, since $p \neq 2$. Since $\left\{e_{s}, h_{r}: s \in X, r \in \Pi\right\}$ is a basis for $X_{\mathbb{F}_{p}}$, the result follows.

The condition on p in the above proposition can be relaxed somewhat-it might even be the case that it can be dropped altogether. Since this is a small detail of no interest to us, we restrict ourselves to the case $p \geqslant 5$.

We can finally provide a proof of our main result.
Proof of Theorem B. In view of Theorem C and Lemma 2.1, it is sufficient to prove that

$$
\operatorname{dim} \mathfrak{b}+\operatorname{dim} \mathfrak{t} \leqslant \mathcal{K}\left(\Omega_{G}\right) \leqslant \operatorname{dim} \mathfrak{g}-1
$$

Note that the lower bound on $\mathcal{K}\left(\Omega_{G}\right)$ follows from Proposition 3.4 and Theorem A.
Let X be the root system of \mathfrak{g}; thus $\mathfrak{g}=X_{\mathbb{Q}_{p}}$. Since X is not of type A_{1} by assumption on \mathfrak{g}, we can find two roots $r, s \in X$ such that $r+s \in X$ but $r+2 s, 2 r+s \notin X$; it is then easy to see that the root spaces of r and s generate a subalgebra of \mathfrak{g} isomorphic to \mathfrak{h}_{3} with centre $\mathbb{Q}_{p} e_{r+s}$.

Let N be the uniform pro- p group appearing in the statement of Theorem 3.14. By construction, \mathfrak{g} is the Lie algebra of N. By Proposition 3.15 and the remarks preceding it, we see that $\operatorname{Ad}\left(p e_{r+s}\right) N_{2} \in N / N_{2}$ generates the $\mathbb{F}_{p}[\operatorname{Out}(N)]$-module N / N_{2}. Hence $\mathcal{K}\left(\Omega_{N}\right) \leqslant \operatorname{dim} \mathfrak{g}-1$ by Theorem 3.12.

Since the Lie algebra of G is $\mathfrak{g}=\mathbb{Q}_{p} L_{G}=\mathbb{Q}_{p} L_{N}$, we see that $N \cap G$ is an open subgroup of both N and G, whence $\mathcal{K}\left(\Omega_{G}\right)=\mathcal{K}\left(\Omega_{N}\right) \leqslant \operatorname{dim} \mathfrak{g}-1$, as required.

Proof of Corollary B. It is readily seen that G is a uniform pro- p group with \mathbb{Q}_{p}-Lie algebra $\mathfrak{s l}_{3}\left(\mathbb{Q}_{p}\right)$ which is split simple over \mathbb{Q}_{p}. We have observed in Lemma 2.1 that Λ_{G} is a local right Noetherian ring whose Jacobson radical satisfies the right Artin-Rees property, and that $\operatorname{gld}\left(\Lambda_{G}\right)=\operatorname{dim} \mathfrak{g}+1=9$.

If \mathfrak{b} and \mathfrak{t} denote the Borel and Cartan subalgebras of \mathfrak{g}, then $\operatorname{dim} \mathfrak{b}=5$ and $\operatorname{dim} \mathfrak{t}=2$. The result follows from Theorems B and C.

Acknowledgments

The author thanks his supervisor, C.J.B. Brookes for many helpful conversations. Financial assistance from the EPSRC is also gratefully acknowledged.

References

[1] K.A. Brown, C.R. Hajarnavis, A.B. MacEacharn, Noetherian rings of finite global dimension, Proc. London Math. Soc. (3) 44 (2) (1982) 349-371.
[2] A. Brumer, Pseudocompact algebras, profinite groups and class formations, Bull. Amer. Math. Soc. 72 (1966) 321-324.
[3] R. Carter, Simple Groups of Lie Type, Wiley, London, 1989.
[4] J. Coates, P. Schneider, R. Sujatha, Modules over Iwasawa algebras, J. Inst. Math. Jussieu 2 (1) (2003) 73-108.
[5] J.D. Dixon, M.P.F. Du Sautoy, A. Mann, D. Segal, Analytic Pro-p Groups, 2nd ed., Cambridge University Press, 1999.
[6] L. Huishi, F. van Oystaeyen, Zariskian Filtrations, K-Monographs in Math., vol. 2, Kluwer Academic, 1996.
[7] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, Grad. Stud. in Math., vol. 30, Amer. Math. Soc.
[8] S.P. Smith, Krull dimension of factor rings of the enveloping algebra of a semi-simple Lie algebra, Math. Proc. Cambridge Philos. Soc. 93 (1983) 459-466.
[9] S.J. Wadsley, Finite presentation of Abelian-by-(finite rank) pro- p groups, preprint.
[10] R. Walker, Local rings and normalizing sets of elements, Proc. London Math. Soc. 24 (1972) 27-45.

[^0]: E-mail address: k.ardakov@dpmms.cam.ac.uk.
 0021-8693/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2004.06.014

