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1. Introduction

Let G be a compacp-adic Lie group. In the recent yearthere has been an increased
amount of interest in completed group algebras (lwasawa algebras)

A =Zp[G1:=lim,_ . Z,[G/N],

N<,G
for example, because of their connectionthwiumber theory and arithmetic geometry;
see the paper by Coates, Schneider and Sujatha [4] for more details.

When G is a uniform prop group, Ag is a concrete example of a complete local
Noetherian ring (noncommutative, in general) with good homological properties: it is
known thatAg has finite global dimension and is an Auslander regular ring. THys,
falls into the class of rings studied by Brown, Hajarnavis and MacEacharnin [1]. There they
consider various properties of Noetherian rirysf finite global dimension, including the
Krull(—Gabriel-Rentschler) dimensidé(R)—a module-theoretic dimension which mea-
sures how far is from being Artinian. They also posed the following question:

Question [1, Section 5] Let R be alocal right Noetherian ring, whose Jacobson radical
satisfies the Artin—Rees property. Is the Krull dimension of R always equal to the global
dimension of R?

In this paper, we address the problem of compufiiigi;). We establish lower and

upper bounds fokC(Ag) in terms of the Lie algebra= £(G) of G:
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Theorem A. Let A(g) be the maximum length mof chains0=go<g1 <--- < g =g Of
sub-Lie-algebrasof g. Then

Mg +1<K(Ag) <dimg+ 1.
For some groups, the two bounds coincide:

Corollary A. Let ¢ be the solvable radical of g and suppose that the semisimple part g/t
of g isisomorphic to a direct sum of copies of s[2(Q,). Then K(Ag) =dimg + 1.

We also establish a better upper bound ftAg) when £(G) is simple and split
overQ,:

Theorem B. Let p > 5 and suppose g # s(>(Q),) is split simple over @, with a Cartan
subalgebra t and a Borel subalgebra b. Then

dimb + dimt + 1 < K(Ag) < dimg < gld(Ag).

The author believes that dibr+ dimt + 1 is the true value of(Ag), with G as above.
Applying Theorem B to a particular case allows us to obtain a negative answer to the
guestion posed above:

Corollary B. Let p > 5and let G = kern(SL3(Z,) — SL3(F),)). Then Ag isalocal right
Noetherian ring whose Jacobson radical satisfies the Artin—Rees property, but

K(Ag) =8 <gld(Ag) =09.

In addition, we reprove a general result Bf Walker connectingC(R) with IC(R/T)
for a certain ringR and a suitable idedl:

Theorem C (Walker [10]). Suppose R isright Noetherian and x isa right regular normal
element belonging to the Jacobson radical of R. If L(R) < oo then

K(R) = K(R/xR) + 1.

The reader might like to compare this result with the corresponding one on global di-
mensions; see Theorem 7.3.7 of [7].
We will denote the completed group algebrabverF, by 2¢:

26 :=1lim

im, _ ;Fp[G/N1.

Theorem C applies directly to lwasaw#gebras, since it is easy to see th@g =
AG/pAc:

Corollary C. K(Ag) = K(2¢) + 1.
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Notation. All rings are assumed to be associative and to possess a unit, but are not neces-
sarily commutativeJ (R) always denotes the Jacobson radical of the Rng\ll modules

are right modules, unless stated otherwise; Mbdenotes the category of all right mod-

ules overR. The symbolp will always mean a fixed prime.

2. Preliminaries
2.1. Filtrations

We will conform with the definitions and notations used in the book [6] throughout this
paper. In this section, we briefly recall the most relevant concepts.

A filtration on a ringR is a set of additive subgrougdR = {F,,R: n € Z}, satisfying
1€ FoR, F,R C Fy41R, FyR.FyR C FyymR foralln,m € Z, andJ, ., FaR=R. If R
has a filtration,R is said to be diltered ring. In what follows, we assumeg is a filtered
ring.

Let M be anR-module. Afiltration on M is a set of additive subgroups &f, FM =
{F,M: n € 7}, satisfyingF,M C F, 1M, F,M.F,R C F,,4,,M for all n,m € Z and
Upez FaM = M. If M has a filtration M is said to be diltered R-module. The filtration
on M is said to beseparated if (), ., F,M =0.

Let I be a two-sided ideal oR. A notable example of a filtration oR is the I-adic
filtration given by F, R := 7" if n <0 andF, R = R otherwise.

Theassociated graded ring of R is defined to be gR =P, ., FuR/Fu—1R. If x € R,
thesymbol of x in grR iso(x) :=x + F,—1R € F,R/F,_1R, wheren is such thatx €
FyR\F,_1R.If x € ",z Fu R, defineo (x) =0.

TheReesring of R is defined to bek =
the Laurent polynomial ring|z, 1.

Theassociated graded module andRees module of a filtered R-moduleM are defined
similarly. We say that the filtratioff M on M is good if and only if M is a finitely generated
R-module. Note that a finitely generat®&module M always possesses a good filtration,
for example, theleduced filtration given by F,, M = M.F,,R for n € Z.

x<z Fn R, Which we view to be a subring of

2.2. lwasawa algebras

By a well-known result of Lazard (see, for example, Theorem 8.36 of [5]), any compact
p-adic Lie groupG has an open normal uniform ppe-subgroupH . SinceH has finite
index in G, any open normal subgroup @&f contains an open normal subgroup @f
Hence

Ag =i

<—Ne

¢ LplH/N] and Ag =Ilm Zp[G/N],

NeC
whereC = {N <, G: N C H}. It follows that A is a free right and leftA z-module
of finite rank (an appropriate transversal f@rin G will serve as a basis), skB(A¢g) =
K(Ag) by Corollary 6.5.3 of [7].
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Thus restricting ourselves to the class of uniform prgroups does not lose any gener-
ality and we will assume that denotes a uniform prg-group throughout this paper. For
more information about these groups, see the excellent book [5].

Following [5], we will write Ls for the Z,-Lie algebra ofG [5, 4.29] andL(G) =g
for the Q,-Lie algebra ofG [5, 9.5].

The following properties ofA\¢ and$2; are more or less well known:

Lemma2.l. Let R=Ag or 2 andlet d =dimG. Then:

(i) R isalocal right Noetherian ring with maximal ideal J = ker(R — F)).
(ii) R iscomplete with respect to the J-adic filtration.
(i) gr; 26 =F,[Xq,..., X4l
(iv) gld(Ag) =gld(£26) +1=dimG + 1.
(v) J satisfiestheright (and left) Artin—Rees property.

Proof. Proofs of (i), (i) and (iii) can be found in Chapter 7 of [5]. Part (iv) is established
in [2]. By Theorem 2.2 of Chapter Il of [6], thé-adic filtration has the Artin—Rees prop-
erty, which is easily seen to imply that the iddahas the Artin—Rees property in the sense
of4.230f[7]. DO

Henceforth,Jg will always denote the maximal ideal 2. We will require the fol-
lowing characterization of Artinian modules 6%;:

Proposition 2.2. Let G be a uniform pro-p group with lower p-series {G,: n > 1}. Let
M = /1 beacyclic £2¢-module. The following are equivalent:

(i) M isArtinian.
(i) J& <1 for somen €N,
(iiiy Jg,, <1 for somem > 1.
(iv) M isfinite dimensional over F,.

Proof. Note that by Theorem 3.6 of [5{7,, is uniform for eachn > 1.
(i) = (ii). As £2¢ is NoetherianM has finite length. Als@2;/ J¢ is the unique simple

2¢-module, as2¢ is local. HenceMf J. = 0.

(i) = (iii). SupposeJ2 C I. Choosem such thatp™~1 > n. Then P -
(g—DM" e JicIforallge G.AsG, = G, we seethaG,, — 1< I soJg, €1,
as required.

(i) = (iv). If Jg,, €1, JG,, 826 € I asl is aright ideal of2g. HenceF ,[G/ G, ] =
2¢/JG, 26 — 2¢/1 = M. Since|G : G| is finite, the result follows.

m

(iv) = (i). Thisis clear. O
2.3. Krull dimension

The definitions and basic facts about the Krull(-Gabriel-Rentschler) dimension can be
found in Chapter 6 of [7]. Recall that @rmoduleM is said to be:-critical if (M) =n
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and/C(M/N) < n for all nonzero submodule® of M; thus a O-critical module is nothing
other than a simple module.

The following (well-known) lemma is the basis for many arguments involving the Krull
dimension. Since we shall not require the general case of ordinal-valued Krull dimensions,
we restrict ourselves to the case when the dimension is finite. We writ®k L&br the
lattice of all right ideals of a ringr.

Lemma 2.3. Let R and S be rings, with R Noetherian of finite Krull dimension.
Let f:Lat(R) — Lat(S) be an increasing function and let k,n € N, with Cg(R) > n.
Let X and Y be right ideals of R with Y € X and suppose that r(X/Y) + k <
Ks(f(X)/f(Y)) whenever X/Y is n-critical. Then Kg(X/Y) + k < Ks(f(X)/f(Y))
whenever Kr(X/Y) >n.

Inparticular, Cr(R) + k < Ks(S).

Proof. This follows from [7, 6.1.17]. O

3. Main results

We now proceed to prove the main theorems stated in the introduction. We prove The-
orem C in Section 3.1; the argument is a straightforward induction based on Nakayama'’s
lemma and is different to the one used by Walker in [10].

Theorem A is proved in Section 3.2, where we also consider the length furigion
of a finite dimensional Lie algebga It is also shown that Corollary A follows from Theo-
rem A.

The remainder of the paper is devoted to proving Theorem B.

3.1. Reductionto 2

Let R be aring. Suppose is a hormal element aR andM is an R-module. It is clear
that Mx is an R-submodule ofM; recall thatM is said to bex-torsion freeif mx =0=
m=0forallme M.

The following result summarizes various elementary properties of modules.

Lemma 3.1. Let x beanormal element of aring R andlet B C A beright R-moduleswith
Krull dimension. Then:

(@) If A/B and B are x-torsion freethen A isalso x-torsion free.
(b) If A/B isx-torsionfreethen Ax N B = Bx and (B/Bx) < K(A/Ax).
(c) If Aisx-torsion freethen C(A/Ax) = K(Ax" "1/ Ax™) = K(A/Ax™) for all n > 1.

The main step comes next.
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Lemma 3.2. Let R bearight Noetherianring, x a normal element of J(R). Suppose M isa
finitely generated x-torsion free R-modulewith finite Krull dimension. Then (M /M x) >
K(M) — 1.

Proof. Proceed by induction oft(M) = 8. Note thatg > 1 sinceM is x-torsion free.
Sincex € J(R), the base casg = 1 follows from Nakayama’'s lemma. We can find a
chainM =My > My > --- > My > --- such thatM; /M; 1 is (8 — 1)-critical for all i > 1.

Casel. 3 > 1 suchthat M; /M;;1 isnot x-torsion free.

Pick a least sucli. Let N/M;,1 be thex-torsion part ofM;/M;,1; thus M;/N is
x-torsion free.

As eachM;/M;,, is x-torsion free for allj < i, M/N is alsox-torsion free by
Lemma 3.1(a). Hence, by Lemma 3.1(k)M/Mx) > K(N/Nx).

Since M is x-torsion free and < N € M, N is also x-torsion free. Hence, by
Lemma 3.1(c)KC(N/Nx) =K (N/Nx") foralln > 1.

As M is Noetherian an@// M; ;1 is x-torsion,(N/M;+1)x" = 0 for somen > 1. Hence
Nx" C M1, SON/Nx" — N/M; 1 andK(N/Nx") > K(N/Mii1).

SinceN/M; 1 is anonzero submodule of tl4g — 1)-critical M; /M; 1, we deduce that
K(N/Miy1) =B —1=K(M) — 1. The result follows.

Case2. M;/M;1 isx-torsion freefor all i > 1.
Consider the chain
M=Mx+Mi>2Mx+M>>--->Mx. (1)

Now, M;/M;;1 is x-torsion free and has Krull dimensiog — 1, so by induction,
K((M;/Mi41)/(M;/M;11).x) > p — 2. But

Mi/Mit1 Mi/Miy1 ~ M;
(Mi/Mi1).x — (Mix +Mi1)/Miv1— Mix+ Miqq’

M; +Mx _ M; _ M;
Misi+Mx  (Miga+Mx)OM;  Mig1+ (M; N Mx)’

and

SinceM/M; is x-torsion free by Lemma 3.1(aM; N Mx = M;x by Lemma 3.1(b),
so every factor of(t) has Krull dimension> 8 — 2. HenceXX(M/Mx) > 8 — 1 =
KM)—-1. O

Proof of Theorem C. Sincex is right regularRy is x-torsion free. By Lemma 3.1(c), the
chainR > xR > --- > xR > --- has infinitely many factors with Krull dimension equal
to L(R/xR), SOK(R) > K(R/xR). The result follows from Lemma 3.2.0

We remark that as is normal x R is an ideal ofR and so the Krull dimensions &f/x R
over R and over the ring? /x R coincide.
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3.2. Alower bound for the Krull dimension

Proposition 3.3. Let G be a uniformpro- p group and let H be a closed uniform subgroup
suchthat |G : H| = co. Then:

(i) Theinduced module M =F, ®¢, 2 isnot Artinian over 2.
(i) K(2n) <K(26).

Proof. (i) SinceF, = 2y /Jy and since- ®g, $2¢ is flat by Lemma 4.5 of [2], we see
thatM = 25/ Jy 26 as rightf2g-modules.

SupposeM is Artinian. ThenJg,, € Ju$2¢ for somem > 1, by Proposition 2.2. It
is easy to check thatl + Jy 2g) N G = H for any closed subgroufy of any profinite
groupG. Hence

Gn=04+J5,2c)NG<S 1+ Ju2¢6)NG=H
which forces G : H| to be finite, a contradiction.

(if) Consider the increasing functiofi: Lat(2y) — Lat(2¢g), given byl — I ®g,
£2¢. Suppose&X andY are right ideals ok such thatr € X and such thak'/Y is simple.
Sincef2y is local, X/Y =F, so f(X)/f(Y) =F, Qq, 2¢ =M as 2 is a flat2y-
module. AsM is not Artinian by part (i) C(f(X)/f(Y)) > 1,so by Lemma 2.3C(2y) +
1< K(£2¢), as required. O

Note that the analogous proposition for universal enveloping algebras is false: for ex-
ample, the Verma module of highest weight zerodet sl(C) is Artinian, and indeed,
KU(g)) = KU (b)) =2, whereb is a Borel subalgebra gf.

We can now give a proof of the first result stated in the introduction:

Proof of Theorem A. By Theorem C, it is sufficient to showm(g) < K(£2¢) < d, where
d = dimg. First, we show that(g) < K(£2¢).

Proceed by induction oi(g). Let 0=gp < g1 < --- < gr = g be a chain of maximal
lengthk = A(g) in g.

We can find a closed uniform subgro#pof G with Lie algebrag,_1. Sincegy_1 < g,
|G : H| = oo.

By the inductive hypothesi&,— 1 = A(gx—1) < K(£2y). By Proposition 3.3K(2y) <
K($2¢), sok = A(g) < K(£2¢).

By Lemma 2.1, we see th&g is a complete filtered ring with g2 = F ,[ X1, ..., X4].
It follows from Proposition 7.1.2 of Chaptd of [6] and Corollary 6.4.8 of [7] that
K(£2¢) < K(gr82¢) =d, as required. O

Theorem A stimulates interest in the lengtfy) of a finite dimensional Lie algebra
The following facts about this invariant are known:

Proposition 3.4. Let g be a finite dimensional Lie algebra over afield k.

() Ifpisanideal of g, A(g) = A(h) + A(g/b).
(i) If g issolvable, A(g) = dim(g).
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(iii) If g is split semisimple, A(g) > dimb + dim¢, where t and b are some Cartan and
Borel subalgebras of g, respectively.
(iv) A(sla(k)) =3.

Proof. (i) Putting together two chains of maximal lengthhrandg/h shows that.(g) >
A(h) +X1(g/h). The reverse inequality follows by considering the chaiesgyNh < --- C
ginhc---ChandhCgr+h<---Cgi+h<---CgwheneverG=go<- - <g; <
... < gn, = g is a chain of subalgebras of maximal lengttyin

(i) This follows directly from (i).

(iii) Let / = dimt. Given a Borel subalgebta there are exactly'arabolic subalgebras
containing it, corresponding 1-1 with the subsets of the set of simple roags Tfis
correspondence preserves inclusions, so we can find a chain of subalgebras of length
starting withb. Combining this together with a maximal chain of length diim b gives
the result.

(iv) This follows from (iii), since forg = sl>(k), dimt =1, dimb =2 and dimg=3. O

Proof of Corollary A. This now follows directly from Theorem A and Proposi-
tion3.4. O

3.3. An upper bound

The method of proof of Theorem B is similar in spirit to that used by S.P. Smith in his
proof of the following theorem, providing an analogous better upper boundd @/xg))
wheng is semisimple:

Theorem 3.5 (Smith). Let g bea complex semisimple Liealgebra. Let 2r 4 1 bethe dimen-
sion of the largest Heisenberg Lie algebra contained in g. Then (U (g)) < dimg —r — 1.

Proof. See Corollary 4.3 of [8], bearing in mind the comments contained in Section 3.1 of
that paper. O

Definition 3.6. Let k be a field. TheHeisenberg k-Lie algebra of dimension 2 + 1 is
defined by the presentation

h2r+l:k<w7 Mls MR ur» Uls MR Ur: [uls v]] 281]w7 [w1 ul] = [w7 Ul] :07
(i, uj]=[vi,v;]1=0),
heres;; is the Kronecker delta.

First we establish a useful fact about uniform gragroupsH with Q,-Lie algebra
isomorphic to a Heisenberg Lie algebra.

Lemma 3.7. Let H be a uniform pro- p group such that £(H) isisomorphic to ho,41. Let
thecentre Z(H) of H betopologically generated by z. Thenthereexist x, y € H andk € N

suchthat [x, y] = s
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Proof. By Theorem 9.10 of [5], we may assume that the group lawHois given by the
Campbell-Hausdorff formula ohy. Let (, ) denote the Lie bracket o&(H) = h2,+1.

Since(Ly, (Ly, Lu)) S (h2r+1, (h2r+1, h2-+1)) = 0, the group law oL given by
the Campbell-Hausdorff series reduces to

1
a*,B:oz—i—,B-i-E(Ol,,B)
fora, B € Ly. Itis then easily checked thatdlgroup commutator satisfies

[, Bl=a % xax f= (o, B) (t)

Now as Q,Ly = hz-4+1 there existsn € N such thatp"ui, p"vi € Ly, whence
(p"u1, p"v1) € Ly N Qpw = Z,z. Hence(p"us, p"v1) = p¥iz for some unitr € Z,,
and someé € N, an equation insidé ;. We may now take: = p"A~1uy, y = p"v1 and
apply(t). O

Next we develop some dimension theory for finitely genera2gdmodules, wherer
is an arbitrary uniform prgs group. Recall that thd-adic filtration ong2s gives rise to
a polynomial associated graded ring.

Definition 3.8. Let M be a finitely generate@;-module, equipped with some good filtra-
tion FM. Thecharacteristic ideal of M is defined to be

J(M):=/AnngrMm.
Thegraded dimension of M is defined to be
d(M) :=K(gr2¢/J (M)).

Lemma 4.1.9 of Chapter Il of [6] shows thd{M) and hencel(M) does not depend
on the choice of a good filtration fa¥. It is easy to prove that(M) = KC(gr M) for any
good filtrationF M on M.

Let h be aQ,-Lie subalgebra of, the Q,-Lie algebra ofG. Let H = N Lg; since
L /H injects intog/h which is torsion-free, we see that is actually a closed uniform
subgroup oiG, by Theorem 7.15 of [5].

We will call H theisolated uniform subgroup ot with Q,-Lie algebral.

The following proposition is the main step in our proof of the upper boun&igeg).
Recall that/; denotes the maximal ideal &f.

Proposition 3.9. Let G be a uniform pro-p group with Q,-Lie algebra g such that hz < g.

Let H be the isolated uniform subgroup of G with Lie algebra h3. Let Z = Z(H) = (z),
say. Let M beafinitely generated £2-modulesuchthat d(M) < 1. Theno (z — 1) € J (M).
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Proof. Let A be a uniform subgroup ot; with torsion-freeLg/L4. Using Theo-
rem 7.23(ii) of [5] it is easy to check that the subspace filtrationsaninduced from
the Jg-adic filtration on$2g coincides with the/4-adic filtration.

It follows that the Rees ring@ 4 of 24 embeds inta2 and that24 N12¢ =124, SO
this embedding induces a natural embedding of graded rings

gr.QA =§A/I§A — §G/I§G :gr.QG.

Itis easy to see thdty /L  is torsion-free. Sincé /L g is torsion-free by assumption
onH, Lg/L7 is also torsion-free so the above discussion applies to b@thd H .

Now, equipM with a good filtration"M and consider the Rees module This is an
Q6- -module, so we can view it as ady-module by restriction.

Let S = 27 — 1£2,. This is a central multiplicatively closed subset of the donfajp,
so we may form the localization®, St < 245~ and the localized2.S~*-module
MS1,

LetR =1im 2,571/1".2,5~* and letN = lim MS~1/¢".MS~2.

Itis clear thatV is anR-module. Also, as is central in2 S~1, N has the structure of
a2y S 1-module. In particular, a& embeds inta2; S, N is an H-module.

Now, consider the-adic filtration onR. It is easy to see that

R/tR=82,5"1/1£2,8 = gr2,.571,

whereS = gr2, — {0}. ThusR/tR =k, the field of fractions of gf2.
As acts injectively orf2;S~1, 1" R/t"T1R = k for all n > 0. Hence the graded ring of
R with respect to the-adic filtration is

o0

"R
gl’t R = @ tn+—lR :k[s],
n=0

wheres =t + t°R € tR/1°R.
We can also consider the-adic filtration on N. Again, we see thatv/iN =
"N /"IN = grM.S—1. Hence

o0
gr,N = @t"N/t"HN x~ (ng.S_l) ®x k[s].
n=0

Now, becausd (M) < 1, grM.S~ L is finite dimensional ovet. It follows that gr N is
a finitely generated giR-module.

BecauseV is complete with respect to theadic filtration, this filtration onVv is sepa-
rated. AlsoR is complete, so by Theorem 5.7 of Chapter | of [8],is finitely generated
overR.

Now 2751 is a local ring with maximal ideal2, S—. Hencer is a commutative lo-
cal ring with maximal ideal R; since( 2, " R = 0, the only ideals ok are{s" R: n > 0}.
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Hencer is a commutative PID and is a finitely generated-torsion-freeR-module.
This forcesN to be free overR, sayN = R", for somen > 0.

Now, Z embeds intak and the action oR commutes with the action @f on N. Hence
we get a group homomorphism

0:H — GL,(R)

such thaip(z) = zI, wherel is then x n identity matrix.

But H is a uniform prop group withQ,-Lie algebrahz, so by Lemma 3.7 we can find
elementsc, y € H such thafx, y] = z”k for somek > 1.

Hencel[p(x), p(¥)] = p(z)”k =PI Taking determinants yielckS”’k =1.SinceZ =
(z) =Z,, this is only possible ifi = 0.

ThereforeN = 0 and SoN/tN = grM.S~1 = 0. HenceQ N § # @, where Q =
Anngro; grM. BecauseQ is graded and because @y = F,[o(z — 1)], we see that
o(z—1" e Qforsomem >0.Hences(z —1) e J(M)=+/0. O

The above result should be compared to the Bernstein inequality for finitely generated
modulesM for the Weyl algebrai1(C), which gives a restriction on the possible values of
the dimension oM. Whenyg is itself a Heisenberg Lie algebra, a stronger result has been
proved by Wadsley [9, Theorem BJ:

Theorem 3.10. Let G beauniformpro-p groupwith Q,-Lie algebra b, 1 andlet M bea
finitely generated £2g-module. If d (M) < r, then Anng, (M) N2z # 0, where Z = Z(G).

We are tempted to conjecture that the follogyigeneralization of Proposition 3.9 holds:

Conjecture. Let G be a uniform pro-p group with Q,-Lie algebra g such that h2,41 C g.
Let H be theisolated uniform subgroup of G with Liealgebra .11 andlet Z = Z(H) =

(z), say. Let M be a finitely generated 2-module such that d(M) <r. Theno(z — 1) €
J(M).

This is a more general analogue of Lemma 3.2 of [8] corresponding to the Bernstein
inequality for A, (C). If this conjecture is correct, we would be able to sharpen the upper
bound onk(£2¢) from dimg — 1 to dimg — r, whenG is as in Theorem B.

Let G be a uniform prop group, and consider the S8 G, whereGo = P2(G) = G?.

We know thatG/G> is a vector space ovéf, of dimensiond = dim(G). The automor-
phism group AuWtG) of G acts naturally oG / G 2; this action commutes with tHe, -linear
structure onG/G». Becausd G, G] C G2 the action of IngG) is trivial, so we see that
G/ G2 is naturally anF ,[Out(G)]-module.

Similarly, we obtain an action of AuG) on J/J? whereJ = Jg < 26, it is easy to
see that IntG) again acts trivially, so//J2 is also ant ,[Out(G)]-module.

Lemma3.11. Themap ¢:G/G2 — J/J? givenby ¢(gG2) =o(g— 1) =g — 1+ J2is
an isomorphism of F ,[Out(G)]-modules.



K. Ardakov / Journal of Algebra 280 (2004) 190-206 201

Proof. Itis easy to check that is anlF,-linear map preserving the Quit)-structure.

Now {g1Go,...,g4G2} is a basis forG/Go, if {g1,...,gq} iS a topological gen-
erating set forG. By Theorem 7.24 of [5]{X1,..., X4} is a basis forJ/J?, where
Xi=0(gi — 1) = ¢(g;G2). The result follows. O

Theorem 3.12. Let G, H, z be as in Proposition 3.9. Suppose zG2 generates the
F,[Out(G)]-module G/ G». Then

(i) 26 hasno finitely generated modules M with d(M) = 1.
(i) K(2¢) <dimg-—1.

Proof. Let M be a finitely generated2g-module withd(M) < 1. By Lemma 3.11,
G/G2= J/J? asF,[Out(G)]-modules. BecauseG, generatess/ Gz, ¢(2G2) = o (z —
1) € J/J? generated /J2. In other wordsF ,.{o (z — 1)*: a € OUl(G)} = J/J2.

Let 6 € Aut(G). By Proposition 3.9 applied t¢/?, o (z’ — 1) = o (z — 1)? € J(M),
where™: Aut(G) — Out(G) is the natural surjection.

HenceJ/J? =T ,.{o (z — 1)%: « € Out(G)} C J(M). This forces

(X1,.... Xa) €S JM) S Fp[X1,..., Xal =09r 82,

whenced (M) = 0 and part (i) follows.

Consider the increasing map gr: (&) — Lat(gr$2¢), where we endow each right
ideal of £2¢ with the subspace filtration from thg;-adic filtration onG. If X, Y <, 2¢
are such thal = X/Y is 1-critical, then/C(grM) = K(grX/arY) > 1, giving M the
subquotient filtration from2.

Now, by Proposition 1.2.3 of Chapter Il of [6], this subquotient filtration is good, since
2 is a complete filtered ring with Noetherian@g;. HencelC(grM) =d(M) > 1 by the
remarks following Definition 3.8. By part (i})c(grX/grY) > 2 so part (ii) follows from
Lemma2.3. O

We will use this result to deduce Theorem B.
3.4. Chevalley groupsover Z,

We recall some facts from the theory of Chevalley groups:

Let X € {A;, B;, Cy, Dy, Eg, E7, Es, F4, G2} be an indecomposable root system and let
R be a commutative ring. L8 = {h,: r € [T} U{e,: r € X} be theChevalley basis for the
R-Lie algebraXp.

Let X(R) = (x,(t): r € X, t € R) C Aut(Xg) be the adjoinChevalley group over R.
Herex, (t) € Aut(XR) is given by

xp(t).er = ey,
xr(t).e—p =e_, +th, — tzery

Xp(t).hy = hg — Agrtey,
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b

xp(t).eg = Z Mr,s,itleirJrs
i=0

wheres € X is a root linearly independent from a € N is the largest integer such that
s —ar € X, b e Nis the largest integer such that+ br € X,

2(s, [
Asr = (s r) and M, s, = + . _.|_l .
(r,r) v i

Let R* denote the group of units &. Whent € R* andr € X, define
np(t) = xp(£)x—r (_t_l)xr(t) and h,(t) =n,(t)n,(—1).
The actions ofi,(t) andn, = n, (1) on X are as follows:

hy(t).hg=hs, sell,
hy(t).eg = tA”eS, seX,
Ny = hy, (s),

Ny.€5 =My sy, (s)-

Herew, is the Weyl reflection orX corresponding to the roetandn, ; = £1.
The Steinberg relations hold Xi(R):

hy(tD)h(t2) = hy(11t2), 11,11 € R*, r € X,

1 o
X () xs (W)x, ()7 = x5(u). l_[ Xir4js(Cijrst'u’), t,u€R, r,seX,
i,j>0

s )x (Ohs @)™t =x,(ut), teR, ueR* rseX.

HereC;j,s are certain integers such th@ity, = M, s ;.

For more details on the above, see [3].

Now, consider theZ,-Lie aIgebraXZp. Since (pXz,, pXz,] = pZ[XZP, Xz,1 <
p-pXz,, we see thap Xz, is a powerfulZ,-Lie algebra. LetV = (pXz,, *) be the uni-
form pro-p group constructed fromp Xz, using the Campbell-Hausdorff formula.

We have a group homomorphism Ad - GL(pXz,) given by Adg)(u) = gqug L It
is shown in Exercise 9.10 of [5] that

Ad = expo ad
where expgl(pXz,) - GL(pXz,) is the exponential map.

It is clear that ker Ad= Z(Y). Since the Lie algebrag, of Y is simple, it is easy to
see thatC(Z(Y)) = Z(L(Y)) = 0; hence ker Ad= 1 and Ad is an injection.
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Lemma3.13.Let N =Ad(Y) and G = X(Z,). Then N < G.

Proof. First we show thatv € G. It is clear that theZ,-linear action of N on pXz,
extends naturally to & ,-linear action ofN¥ on Xz, Now, direct computation shows that

Ad(te,) =x,(t), tepZ, reX and
Ad(th,) = h.(exp(t)), € pZy,, rell.

Hence AdpuZ,) € G for all u € B. The setpB is a Z,-basis forpXz, and hence a

topological generating set faf by Theorem 9.8 of [5]. By Proposition 3.7 of [5Y, is

equal to the product of the procyclic subgroypsZ, asu ranges ovel5. HenceN C G.
Now, letr,s € X, t € Z, andu € pZ,. By the Steinberg relations, we have

X (0x;)x ()" = x5). [ Xirass (Cijrst'u!) €N
i,j>0

and
X () hy (€XPp))x, (1) ™1 = hs (exp(u) ) x, (EXP(— Agru)t)x, (—1) € N

sinceCjjyst'u’ € pZ, and exgi—Asru) — 1 € pZ,, wheneveu € pZ,.
HenceN < G, as required. O

Theorem 3.14. Let G, N be asin Lemma 3.13 There exists a commutative diagram of
group homomor phisms:

G —— X(F,) —— Aut(Xr,)

ﬂl E

AUt(N) e Out(N) — AUt(N/N2)

Proof. We begin by defining all the relevant maps. Any automorphfsof X7z, must fix
Xz, and hence induces an automorphisaf) of Xr, = Xz,/pXz, It is clear from the
definition of the Chevalley groups thaix, (1)) = x,(t) where™:Z, — F, is reduction
mod p and thatx is a surjection.

Since Ad is an isomorphism af onto N, N is a uniform prop group, and we have an
Fp-linear bijectiony: Xr, — N/N2 given by ¢(x) = Ad(px)N2, where™: Xz, — Xp,
is the natural map. This induces an isomorphigsm Aut(Xr,) — Aut(N/N2) given by
P () =efet.

We have observed in the remarks preceding Lemma 3.11 thav@atts naturally on
N/N2; we denote this action by. By Lemma 3.13) is normal inG, and we denote the
conjugation action of; on N by 8.
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Finally, ¢ is the natural injection ok (IF,) into Aut(Xp,) andr is the natural projection
of Aut(N) onto OutN).

It remains to check that*ia = y 8. Itis sufficient to show™ i (x, (1)) = y B (x- (1))
foranyr € X andt € Z,,. We check these maps agree on the bl pu).No: u € B} of
N/N>. On the one hand, we have

¢*1(x, (1)) (Ad(pes) N2) = ¢* (x, (1)) (Ad(pes) N2) = ¢(x, (7)(&5))

b b
=@ < Z Mr,s,i;im> = HAd(er,s,itieir—i-s)NZ

i=0 i=0

b
=[Txir+s(pMrsit') N2, 1)
i=0

using the definition of the action af () on Xr,.On the other hand,

ynp (xr (t)) (Ad(pes)NZ) =xr(0)xs(p)xr(—1)N2

= x5(p) l_[ Xir+js (Cijrstipj)NZ,
i,j>0

using the Steinberg relations.

Sincex, (p?) € N, foranya € X, we see that the all the terms in the above product with
J > lvanish, and the remaining expression is equal to the result of (),6inge= M, 5 ;.

A similar computation shows thap*wa(x,(t)) also agrees withyzg(x,(t)) on
Ad(phs)N> for anys € IT, and the result follows. O

The above theorem shows that the action of(@uton N /N> which was of interest in
the preceding sectiois linked to the natural action &f (F,) on Xr,- Sincex is surjective,
we see that ié, generateXy, as ar,[X (F,)]-module, then Adpe, ) N> generated’ /N>
as ankF ,[Out(N)]-module. We drop the bars in the following proposition.

Proposition 3.15. Suppose p > 5andlet R =F,[X (IF,)]. Then XF, =R.er foranyr € X.

Proof. This is probably well known and is purely a matter of computation.Wedenote
the Weyl group ofX.

Note that(x_,(1) + n, n, — 1).e, =h_, € R.e,, whenceh, = —h_, € R.e, also.

By Proposition 2.1.8 of [3], we can chooges W such thatw(r) € I1. Henceny,.h, =
hw(r) € R.e,.

Let «, B be adjacent fundamental roots. Thephg = hy,g) = hg — Agehe Where
Age = —1, =2 or—3. The condition orp implies that ifzg € R.e, thenh, € R.e, also.

SinceX is indecomposabléi, € R.e, for anya € I1. Since the fundamental coroots
span the Cartan subalgebkg,c R.e, for anys € X.

Finally, xs(1).hs = hy — 2e5, Whencee; € R.e, for any s € X, sincep # 2. Since
{es,h,: s € X, r € IT} is a basis forXFp, the result follows. O
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The condition orp in the above proposition can be relaxed somewhat—it might even
be the case that it can be dropped altogether. Since this is a small detail of no interest to us,
we restrict ourselves to the cage> 5.

We can finally provide a proof of our main result.

Proof of Theorem B. In view of Theorem C and Lemma 2.1, it is sufficient to prove that
dimb + dimt < £(2¢) <dimg — 1.

Note that the lower bound ofi(£2¢) follows from Proposition 3.4 and Theorem A.

Let X be the root system af; thusg = X, . SinceX is not of typeA1 by assumption
on g, we can find two roots, s € X such that +s € X butr +2s,2r + s ¢ X; itis then
easy to see that the root spaces ahds generate a subalgebragifsomorphic tohs with
centreQpe; 1.

Let N be the uniform prop group appearing in the statement of Theorem 3.14. By
constructiong is the Lie algebra ofV. By Proposition 3.15 and the remarks preceding
it, we see that Adpe,;)N2 € N/N> generates th& ,[Out(N)]-module N/N>. Hence
K(£2y) <dimg — 1 by Theorem 3.12.

Since the Lie algebra o is g =Q,Lc = Q,Ly, we see thatv N G is an open
subgroup of bothV andG, whencekC(22¢) = K(2y) < dimg — 1, as required. O

Proof of Corollary B. It is readily seen thaG is a uniform prop group withQ,-Lie
algebras(3(Q,) which is split simple ove),,. We have observed in Lemma 2.1 theg is
a local right Noetherian ring whose Jacobson radical satisfies the right Artin—Rees property,
and that gldAg) =dimg+1=09.

If b andt denote the Borel and Cartan subalgebrag,dhen dimb =5 and dimt = 2.
The result follows from Theorems B and CoO
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