

Available online at www.sciencedirect.com

Journal of Algebra 280 (2004) 190-206

www.elsevier.com/locate/jalgebra

Krull dimension of Iwasawa algebras

Konstantin Ardakov

Received 13 January 2004 Available online 12 August 2004 Communicated by Jan Saxl

1. Introduction

Let G be a compact p-adic Lie group. In the recent years, there has been an increased amount of interest in completed group algebras (Iwasawa algebras)

$$\Lambda_G = \mathbb{Z}_p[\![G]\!] := \varprojlim_{N \triangleleft_o G} \mathbb{Z}_p[G/N],$$

for example, because of their connections with number theory and arithmetic geometry; see the paper by Coates, Schneider and Sujatha [4] for more details.

When G is a uniform pro-p group, Λ_G is a concrete example of a complete local Noetherian ring (noncommutative, in general) with good homological properties: it is known that Λ_G has finite global dimension and is an Auslander regular ring. Thus, Λ_G falls into the class of rings studied by Brown, Hajarnavis and MacEacharn in [1]. There they consider various properties of Noetherian rings R of finite global dimension, including the Krull(–Gabriel–Rentschler) dimension $\mathcal{K}(R)$ —a module-theoretic dimension which measures how far R is from being Artinian. They also posed the following question:

Question [1, Section 5]. Let *R* be a local right Noetherian ring, whose Jacobson radical satisfies the Artin–Rees property. Is the Krull dimension of *R* always equal to the global dimension of *R*?

In this paper, we address the problem of computing $\mathcal{K}(\Lambda_G)$. We establish lower and upper bounds for $\mathcal{K}(\Lambda_G)$ in terms of the Lie algebra $\mathfrak{g} = \mathcal{L}(G)$ of G:

E-mail address: k.ardakov@dpmms.cam.ac.uk.

^{0021-8693/\$ –} see front matter $\,$ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2004.06.014

Theorem A. Let $\lambda(\mathfrak{g})$ be the maximum length *m* of chains $0 = \mathfrak{g}_0 < \mathfrak{g}_1 < \cdots < \mathfrak{g}_m = \mathfrak{g}$ of sub-Lie-algebras of \mathfrak{g} . Then

$$\lambda(\mathfrak{g}) + 1 \leq \mathcal{K}(\Lambda_G) \leq \dim \mathfrak{g} + 1.$$

For some groups, the two bounds coincide:

Corollary A. Let \mathfrak{r} be the solvable radical of \mathfrak{g} and suppose that the semisimple part $\mathfrak{g}/\mathfrak{r}$ of \mathfrak{g} is isomorphic to a direct sum of copies of $\mathfrak{sl}_2(\mathbb{Q}_p)$. Then $\mathcal{K}(\Lambda_G) = \dim \mathfrak{g} + 1$.

We also establish a better upper bound for $\mathcal{K}(\Lambda_G)$ when $\mathcal{L}(G)$ is simple and split over \mathbb{Q}_p :

Theorem B. Let $p \ge 5$ and suppose $\mathfrak{g} \neq \mathfrak{sl}_2(\mathbb{Q}_p)$ is split simple over \mathbb{Q}_p with a Cartan subalgebra \mathfrak{t} and a Borel subalgebra \mathfrak{b} . Then

$$\dim \mathfrak{b} + \dim \mathfrak{t} + 1 \leq \mathcal{K}(\Lambda_G) \leq \dim \mathfrak{g} < \operatorname{gld}(\Lambda_G).$$

The author believes that dim b + dim t + 1 is the true value of $\mathcal{K}(\Lambda_G)$, with G as above. Applying Theorem B to a particular case allows us to obtain a negative answer to the question posed above:

Corollary B. Let $p \ge 5$ and let $G = \ker(SL_3(\mathbb{Z}_p) \to SL_3(\mathbb{F}_p))$. Then Λ_G is a local right Noetherian ring whose Jacobson radical satisfies the Artin–Rees property, but

$$\mathcal{K}(\Lambda_G) = 8 < \text{gld}(\Lambda_G) = 9.$$

In addition, we reprove a general result of *R*. Walker connecting $\mathcal{K}(R)$ with $\mathcal{K}(R/I)$ for a certain ring *R* and a suitable ideal *I*:

Theorem C (Walker [10]). Suppose *R* is right Noetherian and *x* is a right regular normal element belonging to the Jacobson radical of *R*. If $\mathcal{K}(R) < \infty$ then

$$\mathcal{K}(R) = \mathcal{K}(R/xR) + 1.$$

The reader might like to compare this result with the corresponding one on global dimensions; see Theorem 7.3.7 of [7].

We will denote the completed group algebra of *G* over \mathbb{F}_p by Ω_G :

$$\Omega_G := \varprojlim_{N \triangleleft_o G} \mathbb{F}_p[G/N].$$

Theorem C applies directly to Iwasawa algebras, since it is easy to see that $\Omega_G \cong \Lambda_G/p\Lambda_G$:

Corollary C. $\mathcal{K}(\Lambda_G) = \mathcal{K}(\Omega_G) + 1.$

Notation. All rings are assumed to be associative and to possess a unit, but are not necessarily commutative. J(R) always denotes the Jacobson radical of the ring R. All modules are right modules, unless stated otherwise; Mod-R denotes the category of all right modules over R. The symbol p will always mean a fixed prime.

2. Preliminaries

2.1. Filtrations

We will conform with the definitions and notations used in the book [6] throughout this paper. In this section, we briefly recall the most relevant concepts.

A *filtration* on a ring *R* is a set of additive subgroups $FR = \{F_nR: n \in \mathbb{Z}\}$, satisfying $1 \in F_0R$, $F_nR \subseteq F_{n+1}R$, $F_nR.F_mR \subseteq F_{n+m}R$ for all $n, m \in \mathbb{Z}$, and $\bigcup_{n \in \mathbb{Z}} F_nR = R$. If *R* has a filtration, *R* is said to be a *filtered ring*. In what follows, we assume *R* is a filtered ring.

Let *M* be an *R*-module. A *filtration* on *M* is a set of additive subgroups of *M*, $FM = \{F_nM: n \in \mathbb{Z}\}$, satisfying $F_nM \subseteq F_{n+1}M$, $F_nM.F_mR \subseteq F_{n+m}M$ for all $n, m \in \mathbb{Z}$ and $\bigcup_{n \in \mathbb{Z}} F_nM = M$. If *M* has a filtration, *M* is said to be a *filtered R*-module. The filtration on *M* is said to be *separated* if $\bigcap_{n \in \mathbb{Z}} F_nM = 0$.

Let *I* be a two-sided ideal of *R*. A notable example of a filtration on *R* is the *I*-adic filtration given by $F_n R := I^{-n}$ if $n \leq 0$ and $F_n R = R$ otherwise.

The associated graded ring of *R* is defined to be gr $R = \bigoplus_{n \in \mathbb{Z}} F_n R / F_{n-1} R$. If $x \in R$, the symbol of *x* in gr *R* is $\sigma(x) := x + F_{n-1}R \in F_n R / F_{n-1}R$, where *n* is such that $x \in F_n R \setminus F_{n-1}R$. If $x \in \bigcap_{n \in \mathbb{Z}} F_n R$, define $\sigma(x) = 0$.

The *Rees ring* of *R* is defined to be $\widehat{R} = \bigoplus_{n \in \mathbb{Z}} F_n R$, which we view to be a subring of the Laurent polynomial ring $R[t, t^{-1}]$.

The associated graded module and Rees module of a filtered *R*-module *M* are defined similarly. We say that the filtration *F M* on *M* is good if and only if \widetilde{M} is a finitely generated \widetilde{R} -module. Note that a finitely generated *R*-module *M* always possesses a good filtration, for example, the *deduced filtration* given by $F_n M = M \cdot F_n R$ for $n \in \mathbb{Z}$.

2.2. Iwasawa algebras

By a well-known result of Lazard (see, for example, Theorem 8.36 of [5]), any compact p-adic Lie group G has an open normal uniform pro-p subgroup H. Since H has finite index in G, any open normal subgroup of H contains an open normal subgroup of G. Hence

$$\Lambda_H = \lim_{N \in \mathcal{C}} \mathbb{Z}_p[H/N] \quad \text{and} \quad \Lambda_G = \lim_{N \in \mathcal{C}} \mathbb{Z}_p[G/N],$$

where $C = \{N \triangleleft_o G: N \subseteq H\}$. It follows that Λ_G is a free right and left Λ_H -module of finite rank (an appropriate transversal for H in G will serve as a basis), so $\mathcal{K}(\Lambda_G) = \mathcal{K}(\Lambda_H)$ by Corollary 6.5.3 of [7].

Thus restricting ourselves to the class of uniform pro-p groups does not lose any generality and we will assume that G denotes a uniform pro-p group throughout this paper. For more information about these groups, see the excellent book [5].

Following [5], we will write L_G for the \mathbb{Z}_p -Lie algebra of G [5, 4.29] and $\mathcal{L}(G) = \mathfrak{g}$ for the \mathbb{Q}_p -Lie algebra of G [5, 9.5].

The following properties of Λ_G and Ω_G are more or less well known:

Lemma 2.1. Let $R = \Lambda_G$ or Ω_G and let $d = \dim G$. Then:

(i) *R* is a local right Noetherian ring with maximal ideal $J = \ker(R \rightarrow \mathbb{F}_p)$.

(ii) R is complete with respect to the J-adic filtration.

(iii) $\operatorname{gr}_J \Omega_G \cong \mathbb{F}_p[X_1, \ldots, X_d].$

(iv) $\operatorname{gld}(\Lambda_G) = \operatorname{gld}(\Omega_G) + 1 = \dim G + 1.$

(v) J satisfies the right (and left) Artin–Rees property.

Proof. Proofs of (i), (ii) and (iii) can be found in Chapter 7 of [5]. Part (iv) is established in [2]. By Theorem 2.2 of Chapter II of [6], the *J*-adic filtration has the Artin–Rees property, which is easily seen to imply that the ideal *J* has the Artin–Rees property in the sense of 4.2.3 of [7]. \Box

Henceforth, J_G will always denote the maximal ideal of Ω_G . We will require the following characterization of Artinian modules of Ω_G :

Proposition 2.2. Let G be a uniform pro-p group with lower p-series $\{G_n: n \ge 1\}$. Let $M = \Omega_G/I$ be a cyclic Ω_G -module. The following are equivalent:

- (i) M is Artinian.
- (ii) $J_G^n \subseteq I$ for some $n \in \mathbb{N}$.

(iii) $J_{G_m} \subseteq I$ for some $m \ge 1$.

(iv) *M* is finite dimensional over \mathbb{F}_p .

Proof. Note that by Theorem 3.6 of [5], G_n is uniform for each $n \ge 1$.

(i) \Rightarrow (ii). As Ω_G is Noetherian, *M* has finite length. Also Ω_G/J_G is the unique simple Ω_G -module, as Ω_G is local. Hence $MJ_G^n = 0$.

(ii) \Rightarrow (iii). Suppose $J_G^n \subseteq I$. Choose *m* such that $p^{m-1} \ge n$. Then $g^{p^{m-1}} - 1 = (g-1)^{p^{m-1}} \in J_G^n \subseteq I$ for all $g \in G$. As $G_m = G^{p^{m-1}}$, we see that $G_m - 1 \subseteq I$ so $J_{G_m} \subseteq I$, as required.

(iii) \Rightarrow (iv). If $J_{G_m} \subseteq I$, $J_{G_m} \Omega_G \subseteq I$ as I is a right ideal of Ω_G . Hence $\mathbb{F}_p[G/G_m] \cong \Omega_G/J_{G_m} \Omega_G \twoheadrightarrow \Omega_G/I = M$. Since $|G:G_m|$ is finite, the result follows.

 $(iv) \Rightarrow (i)$. This is clear. \Box

2.3. Krull dimension

The definitions and basic facts about the Krull(–Gabriel–Rentschler) dimension can be found in Chapter 6 of [7]. Recall that an *R*-module *M* is said to be *n*-critical if $\mathcal{K}(M) = n$

and $\mathcal{K}(M/N) < n$ for all nonzero submodules *N* of *M*; thus a 0-critical module is nothing other than a simple module.

The following (well-known) lemma is the basis for many arguments involving the Krull dimension. Since we shall not require the general case of ordinal-valued Krull dimensions, we restrict ourselves to the case when the dimension is finite. We write Lat(R) for the lattice of all right ideals of a ring R.

Lemma 2.3. Let R and S be rings, with R Noetherian of finite Krull dimension. Let $f: \text{Lat}(R) \to \text{Lat}(S)$ be an increasing function and let $k, n \in \mathbb{N}$, with $\mathcal{K}_R(R) \ge n$. Let X and Y be right ideals of R with $Y \subseteq X$ and suppose that $\mathcal{K}_R(X/Y) + k \le \mathcal{K}_S(f(X)/f(Y))$ whenever X/Y is n-critical. Then $\mathcal{K}_R(X/Y) + k \le \mathcal{K}_S(f(X)/f(Y))$ whenever $\mathcal{K}_R(X/Y) \ge n$.

In particular, $\mathcal{K}_R(R) + k \leq \mathcal{K}_S(S)$.

Proof. This follows from [7, 6.1.17].

3. Main results

We now proceed to prove the main theorems stated in the introduction. We prove Theorem C in Section 3.1; the argument is a straightforward induction based on Nakayama's lemma and is different to the one used by Walker in [10].

Theorem A is proved in Section 3.2, where we also consider the length function $\lambda(\mathfrak{g})$ of a finite dimensional Lie algebra \mathfrak{g} . It is also shown that Corollary A follows from Theorem A.

The remainder of the paper is devoted to proving Theorem B.

3.1. Reduction to Ω_G

Let *R* be a ring. Suppose *x* is a normal element of *R* and *M* is an *R*-module. It is clear that *Mx* is an *R*-submodule of *M*; recall that *M* is said to be *x*-torsion free if $mx = 0 \Rightarrow m = 0$ for all $m \in M$.

The following result summarizes various elementary properties of modules.

Lemma 3.1. Let x be a normal element of a ring R and let $B \subseteq A$ be right R-modules with *Krull dimension*. Then:

- (a) If A/B and B are x-torsion free then A is also x-torsion free.
- (b) If A/B is x-torsion free then $Ax \cap B = Bx$ and $\mathcal{K}(B/Bx) \leq \mathcal{K}(A/Ax)$.
- (c) If A is x-torsion free then $\mathcal{K}(A/Ax) = \mathcal{K}(Ax^{n-1}/Ax^n) = \mathcal{K}(A/Ax^n)$ for all $n \ge 1$.

The main step comes next.

Lemma 3.2. Let *R* be a right Noetherian ring, *x* a normal element of J(R). Suppose *M* is a finitely generated *x*-torsion free *R*-module with finite Krull dimension. Then $\mathcal{K}(M/Mx) \ge \mathcal{K}(M) - 1$.

Proof. Proceed by induction on $\mathcal{K}(M) = \beta$. Note that $\beta \ge 1$ since M is x-torsion free. Since $x \in J(R)$, the base case $\beta = 1$ follows from Nakayama's lemma. We can find a chain $M = M_1 > M_2 > \cdots > M_k > \cdots$ such that M_i/M_{i+1} is $(\beta - 1)$ -critical for all $i \ge 1$.

Case 1. $\exists i \ge 1$ such that M_i/M_{i+1} is not x-torsion free.

Pick a least such *i*. Let N/M_{i+1} be the *x*-torsion part of M_i/M_{i+1} ; thus M_i/N is *x*-torsion free.

As each M_j/M_{j+1} is x-torsion free for all j < i, M/N is also x-torsion free by Lemma 3.1(a). Hence, by Lemma 3.1(b), $\mathcal{K}(M/Mx) \ge \mathcal{K}(N/Nx)$.

Since *M* is *x*-torsion free and $0 < N \subseteq M$, *N* is also *x*-torsion free. Hence, by Lemma 3.1(c), $\mathcal{K}(N/Nx) = \mathcal{K}(N/Nx^n)$ for all $n \ge 1$.

As *M* is Noetherian and N/M_{i+1} is *x*-torsion, $(N/M_{i+1})x^n = 0$ for some $n \ge 1$. Hence $Nx^n \subseteq M_{i+1}$, so $N/Nx^n \twoheadrightarrow N/M_{i+1}$ and $\mathcal{K}(N/Nx^n) \ge \mathcal{K}(N/M_{i+1})$.

Since N/M_{i+1} is a nonzero submodule of the $(\beta - 1)$ -critical M_i/M_{i+1} , we deduce that $\mathcal{K}(N/M_{i+1}) = \beta - 1 = \mathcal{K}(M) - 1$. The result follows.

Case 2. M_i/M_{i+1} is x-torsion free for all $i \ge 1$.

Consider the chain

$$M = Mx + M_1 \ge Mx + M_2 \ge \dots \ge Mx. \tag{(†)}$$

Now, M_i/M_{i+1} is x-torsion free and has Krull dimension $\beta - 1$, so by induction, $\mathcal{K}((M_i/M_{i+1})/(M_i/M_{i+1}).x) \ge \beta - 2$. But

$$\frac{M_i/M_{i+1}}{(M_i/M_{i+1}).x} = \frac{M_i/M_{i+1}}{(M_ix + M_{i+1})/M_{i+1}} \cong \frac{M_i}{M_ix + M_{i+1}}, \text{ and}$$
$$\frac{M_i + M_x}{M_{i+1} + M_x} \cong \frac{M_i}{(M_{i+1} + M_x) \cap M_i} = \frac{M_i}{M_{i+1} + (M_i \cap M_x)}.$$

Since M/M_i is x-torsion free by Lemma 3.1(a), $M_i \cap Mx = M_i x$ by Lemma 3.1(b), so every factor of (†) has Krull dimension $\geq \beta - 2$. Hence $\mathcal{K}(M/Mx) \geq \beta - 1 = \mathcal{K}(M) - 1$. \Box

Proof of Theorem C. Since *x* is right regular, R_R is *x*-torsion free. By Lemma 3.1(c), the chain $R > xR > \cdots > x^kR > \cdots$ has infinitely many factors with Krull dimension equal to $\mathcal{K}(R/xR)$, so $\mathcal{K}(R) > \mathcal{K}(R/xR)$. The result follows from Lemma 3.2. \Box

We remark that as x is normal, x R is an ideal of R and so the Krull dimensions of R/xR over R and over the ring R/xR coincide.

3.2. A lower bound for the Krull dimension

Proposition 3.3. *Let G be a uniform pro-p group and let H be a closed uniform subgroup such that* $|G:H| = \infty$ *. Then:*

(i) The induced module M = F_p ⊗_{Ω_H} Ω_G is not Artinian over Ω_G.
(ii) K(Ω_H) < K(Ω_G).

Proof. (i) Since $\mathbb{F}_p \cong \Omega_H / J_H$ and since $- \otimes_{\Omega_H} \Omega_G$ is flat by Lemma 4.5 of [2], we see that $M \cong \Omega_G / J_H \Omega_G$ as right Ω_G -modules.

Suppose *M* is Artinian. Then $J_{G_m} \subseteq J_H \Omega_G$ for some $m \ge 1$, by Proposition 2.2. It is easy to check that $(1 + J_H \Omega_G) \cap G = H$ for any closed subgroup *H* of any profinite group *G*. Hence

$$G_m = (1 + J_{G_m} \Omega_G) \cap G \subseteq (1 + J_H \Omega_G) \cap G = H$$

which forces |G:H| to be finite, a contradiction.

(ii) Consider the increasing function $f : \operatorname{Lat}(\Omega_H) \to \operatorname{Lat}(\Omega_G)$, given by $I \mapsto I \otimes_{\Omega_H}$ Ω_G . Suppose X and Y are right ideals of R such that $Y \subseteq X$ and such that X/Y is simple. Since Ω_H is local, $X/Y \cong \mathbb{F}_p$ so $f(X)/f(Y) \cong \mathbb{F}_p \otimes_{\Omega_H} \Omega_G \cong M$ as Ω_G is a flat Ω_H module. As M is not Artinian by part (i), $\mathcal{K}(f(X)/f(Y)) \ge 1$, so by Lemma 2.3, $\mathcal{K}(\Omega_H) + 1 \le \mathcal{K}(\Omega_G)$, as required. \Box

Note that the analogous proposition for universal enveloping algebras is false: for example, the Verma module of highest weight zero for $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ is Artinian, and indeed, $\mathcal{K}(\mathcal{U}(\mathfrak{g})) = \mathcal{K}(\mathcal{U}(\mathfrak{b})) = 2$, where \mathfrak{b} is a Borel subalgebra of \mathfrak{g} .

We can now give a proof of the first result stated in the introduction:

Proof of Theorem A. By Theorem C, it is sufficient to show $\lambda(\mathfrak{g}) \leq \mathcal{K}(\Omega_G) \leq d$, where $d = \dim \mathfrak{g}$. First, we show that $\lambda(\mathfrak{g}) \leq \mathcal{K}(\Omega_G)$.

Proceed by induction on $\lambda(\mathfrak{g})$. Let $0 = \mathfrak{g}_0 < \mathfrak{g}_1 < \cdots < \mathfrak{g}_k = \mathfrak{g}$ be a chain of maximal length $k = \lambda(\mathfrak{g})$ in \mathfrak{g} .

We can find a closed uniform subgroup *H* of *G* with Lie algebra \mathfrak{g}_{k-1} . Since $\mathfrak{g}_{k-1} < \mathfrak{g}$, $|G:H| = \infty$.

By the inductive hypothesis, $k - 1 = \lambda(\mathfrak{g}_{k-1}) \leq \mathcal{K}(\Omega_H)$. By Proposition 3.3, $\mathcal{K}(\Omega_H) < \mathcal{K}(\Omega_G)$, so $k = \lambda(\mathfrak{g}) \leq \mathcal{K}(\Omega_G)$.

By Lemma 2.1, we see that Ω_G is a complete filtered ring with gr $\Omega_G \cong \mathbb{F}_p[X_1, \ldots, X_d]$. It follows from Proposition 7.1.2 of Chapter I of [6] and Corollary 6.4.8 of [7] that $\mathcal{K}(\Omega_G) \leq \mathcal{K}(\operatorname{gr} \Omega_G) = d$, as required. \Box

Theorem A stimulates interest in the length $\lambda(\mathfrak{g})$ of a finite dimensional Lie algebra \mathfrak{g} . The following facts about this invariant are known:

Proposition 3.4. *Let* g *be a finite dimensional Lie algebra over a field k.*

(i) If \mathfrak{h} is an ideal of \mathfrak{g} , $\lambda(\mathfrak{g}) = \lambda(\mathfrak{h}) + \lambda(\mathfrak{g}/\mathfrak{h})$.

(ii) If \mathfrak{g} is solvable, $\lambda(\mathfrak{g}) = \dim_k(\mathfrak{g})$.

196

- (iii) If \mathfrak{g} is split semisimple, $\lambda(\mathfrak{g}) \ge \dim \mathfrak{b} + \dim \mathfrak{t}$, where \mathfrak{t} and \mathfrak{b} are some Cartan and Borel subalgebras of \mathfrak{g} , respectively.
- (iv) $\lambda(\mathfrak{sl}_2(k)) = 3.$

Proof. (i) Putting together two chains of maximal length in \mathfrak{h} and $\mathfrak{g}/\mathfrak{h}$ shows that $\lambda(\mathfrak{g}) \ge \lambda(\mathfrak{h}) + \lambda(\mathfrak{g}/\mathfrak{h})$. The reverse inequality follows by considering the chains $0 = \mathfrak{g}_0 \cap \mathfrak{h} \subseteq \cdots \subseteq \mathfrak{g}_i \cap \mathfrak{h} \subseteq \cdots \subseteq \mathfrak{h}$ and $\mathfrak{h} \subseteq \mathfrak{g}_1 + \mathfrak{h} \subseteq \cdots \subseteq \mathfrak{g}_i + \mathfrak{h} \subseteq \cdots \subseteq \mathfrak{g}$ whenever $0 = \mathfrak{g}_0 < \cdots < \mathfrak{g}_i < \cdots < \mathfrak{g}_n = \mathfrak{g}$ is a chain of subalgebras of maximal length in \mathfrak{g} .

(ii) This follows directly from (i).

(iii) Let $l = \dim \mathfrak{t}$. Given a Borel subalgebra \mathfrak{b} , there are exactly 2^l parabolic subalgebras containing it, corresponding 1–1 with the subsets of the set of simple roots of \mathfrak{g} . This correspondence preserves inclusions, so we can find a chain of subalgebras of length l starting with \mathfrak{b} . Combining this together with a maximal chain of length dim \mathfrak{b} in \mathfrak{b} gives the result.

(iv) This follows from (iii), since for $\mathfrak{g} = \mathfrak{sl}_2(k)$, dim $\mathfrak{t} = 1$, dim $\mathfrak{b} = 2$ and dim $\mathfrak{g} = 3$. \Box

Proof of Corollary A. This now follows directly from Theorem A and Proposition 3.4. \Box

3.3. An upper bound

The method of proof of Theorem B is similar in spirit to that used by S.P. Smith in his proof of the following theorem, providing an analogous better upper bound for $\mathcal{K}(\mathcal{U}(\mathfrak{g}))$ when \mathfrak{g} is semisimple:

Theorem 3.5 (Smith). Let \mathfrak{g} be a complex semisimple Lie algebra. Let 2r + 1 be the dimension of the largest Heisenberg Lie algebra contained in \mathfrak{g} . Then $\mathcal{K}(\mathcal{U}(\mathfrak{g})) \leq \dim \mathfrak{g} - r - 1$.

Proof. See Corollary 4.3 of [8], bearing in mind the comments contained in Section 3.1 of that paper. \Box

Definition 3.6. Let k be a field. The *Heisenberg k-Lie algebra* of dimension 2r + 1 is defined by the presentation

$$\mathfrak{h}_{2r+1} = k \langle w, u_1, \dots, u_r, v_1, \dots, v_r \colon [u_i, v_j] = \delta_{ij} w, [w, u_i] = [w, v_i] = 0,$$
$$[u_i, u_j] = [v_i, v_j] = 0 \rangle,$$

here δ_{ii} is the Kronecker delta.

First we establish a useful fact about uniform pro-p groups H with \mathbb{Q}_p -Lie algebra isomorphic to a Heisenberg Lie algebra.

Lemma 3.7. Let *H* be a uniform pro-*p* group such that $\mathcal{L}(H)$ is isomorphic to \mathfrak{h}_{2r+1} . Let the centre Z(H) of *H* be topologically generated by *z*. Then there exist $x, y \in H$ and $k \in \mathbb{N}$ such that $[x, y] = z^{p^k}$.

Proof. By Theorem 9.10 of [5], we may assume that the group law on *H* is given by the Campbell–Hausdorff formula on L_H . Let (,) denote the Lie bracket on $\mathcal{L}(H) = \mathfrak{h}_{2r+1}$.

Since $(L_H, (L_H, L_H)) \subseteq (\mathfrak{h}_{2r+1}, (\mathfrak{h}_{2r+1}, \mathfrak{h}_{2r+1})) = 0$, the group law on L_H given by the Campbell–Hausdorff series reduces to

$$\alpha * \beta = \alpha + \beta + \frac{1}{2}(\alpha, \beta)$$

for $\alpha, \beta \in L_H$. It is then easily checked that the group commutator satisfies

$$[\alpha, \beta] = \alpha^{-1} * \beta^{-1} * \alpha * \beta = (\alpha, \beta).$$
^(†)

Now as $\mathbb{Q}_p L_H = \mathfrak{h}_{2r+1}$ there exists $n \in \mathbb{N}$ such that $p^n u_1, p^n v_1 \in L_H$, whence $(p^n u_1, p^n v_1) \in L_H \cap \mathbb{Q}_p w = \mathbb{Z}_p z$. Hence $(p^n u_1, p^n v_1) = p^k \lambda z$ for some unit $\lambda \in \mathbb{Z}_p$ and some $k \in \mathbb{N}$, an equation inside L_H . We may now take $x = p^n \lambda^{-1} u_1$, $y = p^n v_1$ and apply (†). \Box

Next we develop some dimension theory for finitely generated Ω_G -modules, where G is an arbitrary uniform pro-p group. Recall that the J_G -adic filtration on Ω_G gives rise to a polynomial associated graded ring.

Definition 3.8. Let *M* be a finitely generated Ω_G -module, equipped with some good filtration *F M*. The *characteristic ideal* of *M* is defined to be

$$J(M) := \sqrt{\operatorname{Ann} \operatorname{gr} M}.$$

The graded dimension of M is defined to be

$$d(M) := \mathcal{K}(\operatorname{gr} \Omega_G / J(M)).$$

Lemma 4.1.9 of Chapter III of [6] shows that J(M) and hence d(M) does not depend on the choice of a good filtration for M. It is easy to prove that $d(M) = \mathcal{K}(\operatorname{gr} M)$ for any good filtration FM on M.

Let \mathfrak{h} be a \mathbb{Q}_p -Lie subalgebra of \mathfrak{g} , the \mathbb{Q}_p -Lie algebra of G. Let $H = \mathfrak{h} \cap L_G$; since L_G/H injects into $\mathfrak{g}/\mathfrak{h}$ which is torsion-free, we see that H is actually a closed uniform subgroup of G, by Theorem 7.15 of [5].

We will call *H* the *isolated* uniform subgroup of *G* with \mathbb{Q}_p -Lie algebra \mathfrak{h} .

The following proposition is the main step in our proof of the upper bound for $\mathcal{K}(\Omega_G)$. Recall that J_G denotes the maximal ideal of Ω_G .

Proposition 3.9. Let G be a uniform pro-p group with \mathbb{Q}_p -Lie algebra \mathfrak{g} such that $\mathfrak{h}_3 \subseteq \mathfrak{g}$. Let H be the isolated uniform subgroup of G with Lie algebra \mathfrak{h}_3 . Let $Z = Z(H) = \overline{\langle z \rangle}$, say. Let M be a finitely generated Ω_G -module such that $d(M) \leq 1$. Then $\sigma(z-1) \in J(M)$. **Proof.** Let A be a uniform subgroup of G with torsion-free L_G/L_A . Using Theorem 7.23(ii) of [5] it is easy to check that the subspace filtration on Ω_A induced from the J_G -adic filtration on Ω_G coincides with the J_A -adic filtration.

It follows that the Rees ring $\widetilde{\Omega}_A$ of Ω_A embeds into $\widetilde{\Omega}_G$ and that $\widetilde{\Omega}_A \cap t \widetilde{\Omega}_G = t \widetilde{\Omega}_A$, so this embedding induces a natural embedding of graded rings

$$\operatorname{gr} \Omega_A = \widetilde{\Omega}_A / t \widetilde{\Omega}_A \hookrightarrow \widetilde{\Omega}_G / t \widetilde{\Omega}_G = \operatorname{gr} \Omega_G.$$

It is easy to see that L_H/L_Z is torsion-free. Since L_G/L_H is torsion-free by assumption on H, L_G/L_Z is also torsion-free so the above discussion applies to both Z and H.

Now, equip M with a good filtration FM and consider the Rees module M. This is an $\widetilde{\Omega}_G$ -module, so we can view it as an $\widetilde{\Omega}_H$ -module by restriction.

Let $S = \widetilde{\Omega}_Z - t \widetilde{\Omega}_Z$. This is a central multiplicatively closed subset of the domain $\widetilde{\Omega}_H$, so we may form the localizations $\widetilde{\Omega}_Z S^{-1} \hookrightarrow \widetilde{\Omega}_H S^{-1}$ and the localized $\widetilde{\Omega}_H . S^{-1}$ -module $\widetilde{M} S^{-1}$.

Let $R = \varprojlim \widetilde{\Omega}_Z S^{-1} / t^n . \widetilde{\Omega}_Z S^{-1}$ and let $N = \varprojlim \widetilde{M} S^{-1} / t^n . \widetilde{M} S^{-1}$.

It is clear that N is an R-module. Also, as t is central in $\widetilde{\Omega}_H S^{-1}$, N has the structure of a $\widetilde{\Omega}_H S^{-1}$ -module. In particular, as H embeds into $\widetilde{\Omega}_H S^{-1}$, N is an H-module.

Now, consider the *t*-adic filtration on *R*. It is easy to see that

$$R/tR = \widetilde{\Omega}_Z S^{-1}/t\widetilde{\Omega}_Z S^{-1} \cong \operatorname{gr} \Omega_Z . \overline{S}^{-1},$$

where $\overline{S} = \operatorname{gr} \Omega_Z - \{0\}$. Thus $R/tR \cong k$, the field of fractions of $\operatorname{gr} \Omega_Z$.

As *t* acts injectively on $\widetilde{\Omega}_Z S^{-1}$, $t^n R/t^{n+1} R \cong k$ for all $n \ge 0$. Hence the graded ring of *R* with respect to the *t*-adic filtration is

$$\operatorname{gr}_{t} R = \bigoplus_{n=0}^{\infty} \frac{t^{n} R}{t^{n+1} R} \cong k[s],$$

where $s = t + t^2 R \in t R/t^2 R$.

We can also consider the *t*-adic filtration on N. Again, we see that $N/tN \cong t^n N/t^{n+1}N \cong \operatorname{gr} M.\overline{S}^{-1}$. Hence

$$\operatorname{gr}_t N = \bigoplus_{n=0}^{\infty} t^n N / t^{n+1} N \cong \left(\operatorname{gr} M . \overline{S}^{-1} \right) \otimes_k k[s].$$

Now, because $d(M) \leq 1$, gr $M.\overline{S}^{-1}$ is finite dimensional over k. It follows that gr_t N is a finitely generated gr_t R-module.

Because N is complete with respect to the *t*-adic filtration, this filtration on N is separated. Also R is complete, so by Theorem 5.7 of Chapter I of [6], N is finitely generated over R.

Now $\widetilde{\Omega}_Z S^{-1}$ is a local ring with maximal ideal $t\widetilde{\Omega}_Z S^{-1}$. Hence *R* is a commutative local ring with maximal ideal tR; since $\bigcap_{n=0}^{\infty} t^n R = 0$, the only ideals of *R* are $\{t^n R: n \ge 0\}$.

Hence *R* is a commutative PID and *N* is a finitely generated *t*-torsion-free *R*-module. This forces *N* to be free over *R*, say $N \cong R^n$, for some $n \ge 0$.

Now, Z embeds into R and the action of R commutes with the action of H on N. Hence we get a group homomorphism

$$\rho: H \to GL_n(R)$$

such that $\rho(z) = zI$, where *I* is the $n \times n$ identity matrix.

But *H* is a uniform pro-*p* group with \mathbb{Q}_p -Lie algebra \mathfrak{h}_3 , so by Lemma 3.7 we can find elements $x, y \in H$ such that $[x, y] = z^{p^k}$ for some $k \ge 1$.

Hence $[\rho(x), \rho(y)] = \rho(z)^{p^k} = z^{p^k} I$. Taking determinants yields $z^{np^k} = 1$. Since $Z = \overline{\langle z \rangle} \cong \mathbb{Z}_p$, this is only possible if n = 0.

Therefore N = 0 and so $N/tN = \text{gr } M.\overline{S}^{-1} = 0$. Hence $Q \cap \overline{S} \neq \emptyset$, where $Q = \text{Ann}_{\text{gr }\Omega_G}$ gr M. Because Q is graded and because $\text{gr }\Omega_Z \cong \mathbb{F}_p[\sigma(z-1)]$, we see that $\sigma(z-1)^m \in Q$ for some $m \ge 0$. Hence $\sigma(z-1) \in J(M) = \sqrt{Q}$. \Box

The above result should be compared to the Bernstein inequality for finitely generated modules M for the Weyl algebra $A_1(\mathbb{C})$, which gives a restriction on the possible values of the dimension of M. When \mathfrak{g} is itself a Heisenberg Lie algebra, a stronger result has been proved by Wadsley [9, Theorem B]:

Theorem 3.10. Let G be a uniform pro-p group with \mathbb{Q}_p -Lie algebra \mathfrak{h}_{2r+1} and let M be a finitely generated Ω_G -module. If $d(M) \leq r$, then $\operatorname{Ann}_{\Omega_G}(M) \cap \Omega_Z \neq 0$, where Z = Z(G).

We are tempted to conjecture that the following generalization of Proposition 3.9 holds:

Conjecture. Let G be a uniform pro-p group with \mathbb{Q}_p -Lie algebra \mathfrak{g} such that $\mathfrak{h}_{2r+1} \subseteq \mathfrak{g}$. Let H be the isolated uniform subgroup of G with Lie algebra \mathfrak{h}_{2r+1} and let $Z = Z(H) = \overline{\langle z \rangle}$, say. Let M be a finitely generated Ω_G -module such that $d(M) \leq r$. Then $\sigma(z-1) \in J(M)$.

This is a more general analogue of Lemma 3.2 of [8] corresponding to the Bernstein inequality for $A_r(\mathbb{C})$. If this conjecture is correct, we would be able to sharpen the upper bound on $\mathcal{K}(\Omega_G)$ from dim $\mathfrak{g} - 1$ to dim $\mathfrak{g} - r$, when *G* is as in Theorem B.

Let *G* be a uniform pro-*p* group, and consider the set G/G_2 , where $G_2 = P_2(G) = G^p$. We know that G/G_2 is a vector space over \mathbb{F}_p of dimension $d = \dim(G)$. The automorphism group Aut(*G*) of *G* acts naturally on G/G_2 ; this action commutes with the \mathbb{F}_p -linear structure on G/G_2 . Because $[G, G] \subseteq G_2$ the action of Inn(*G*) is trivial, so we see that G/G_2 is naturally an $\mathbb{F}_p[\text{Out}(G)]$ -module.

Similarly, we obtain an action of Aut(G) on J/J^2 where $J = J_G \triangleleft \Omega_G$; it is easy to see that Inn(G) again acts trivially, so J/J^2 is also an $\mathbb{F}_p[\text{Out}(G)]$ -module.

Lemma 3.11. The map $\varphi: G/G_2 \to J/J^2$ given by $\varphi(gG_2) = \sigma(g-1) = g-1+J^2$ is an isomorphism of $\mathbb{F}_p[\text{Out}(G)]$ -modules.

Proof. It is easy to check that φ is an \mathbb{F}_p -linear map preserving the Out(G)-structure.

Now $\{g_1G_2, \ldots, g_dG_2\}$ is a basis for G/G_2 , if $\{g_1, \ldots, g_d\}$ is a topological generating set for *G*. By Theorem 7.24 of [5], $\{X_1, \ldots, X_d\}$ is a basis for J/J^2 , where $X_i = \sigma(g_i - 1) = \varphi(g_iG_2)$. The result follows. \Box

Theorem 3.12. Let G, H, z be as in Proposition 3.9. Suppose zG_2 generates the $\mathbb{F}_p[\operatorname{Out}(G)]$ -module G/G_2 . Then

- (i) Ω_G has no finitely generated modules M with d(M) = 1.
- (ii) $\mathcal{K}(\Omega_G) \leq \dim \mathfrak{g} 1$.

Proof. Let *M* be a finitely generated Ω_G -module with $d(M) \leq 1$. By Lemma 3.11, $G/G_2 \cong J/J^2$ as $\mathbb{F}_p[\operatorname{Out}(G)]$ -modules. Because zG_2 generates G/G_2 , $\varphi(zG_2) = \sigma(z-1) \in J/J^2$ generates J/J^2 . In other words, $\mathbb{F}_p.\{\sigma(z-1)^{\alpha}: \alpha \in \operatorname{Out}(G)\} = J/J^2$.

Let $\theta \in \text{Aut}(G)$. By Proposition 3.9 applied to H^{θ} , $\sigma(z^{\theta} - 1) = \sigma(z - 1)^{\overline{\theta}} \in J(M)$, where $\overline{:} \text{Aut}(G) \to \text{Out}(G)$ is the natural surjection.

Hence $J/J^2 = \mathbb{F}_p \{ \sigma(z-1)^{\alpha} : \alpha \in \text{Out}(G) \} \subseteq J(M)$. This forces

$$(X_1,\ldots,X_d)\subseteq J(M)\subseteq \mathbb{F}_p[X_1,\ldots,X_d]=\operatorname{gr}\Omega_G,$$

whence d(M) = 0 and part (i) follows.

Consider the increasing map $\operatorname{gr}:\operatorname{Lat}(\Omega_G) \to \operatorname{Lat}(\operatorname{gr} \Omega_G)$, where we endow each right ideal of Ω_G with the subspace filtration from the J_G -adic filtration on G. If $X, Y \triangleleft_r \Omega_G$ are such that M = X/Y is 1-critical, then $\mathcal{K}(\operatorname{gr} M) = \mathcal{K}(\operatorname{gr} X/\operatorname{gr} Y) \ge 1$, giving M the subquotient filtration from Ω_G .

Now, by Proposition 1.2.3 of Chapter II of [6], this subquotient filtration is good, since Ω_G is a complete filtered ring with Noetherian gr Ω_G . Hence $\mathcal{K}(\operatorname{gr} M) = d(M) \ge 1$ by the remarks following Definition 3.8. By part (i), $\mathcal{K}(\operatorname{gr} X/\operatorname{gr} Y) \ge 2$ so part (ii) follows from Lemma 2.3. \Box

We will use this result to deduce Theorem B.

3.4. Chevalley groups over \mathbb{Z}_p

We recall some facts from the theory of Chevalley groups:

Let $X \in \{A_l, B_l, C_l, D_l, E_6, E_7, E_8, F_4, G_2\}$ be an indecomposable root system and let R be a commutative ring. Let $\mathcal{B} = \{h_r : r \in \Pi\} \cup \{e_r : r \in X\}$ be the *Chevalley basis* for the R-Lie algebra X_R .

Let $X(R) = \langle x_r(t) : r \in X, t \in R \rangle \subseteq Aut(X_R)$ be the adjoint *Chevalley group* over *R*. Here $x_r(t) \in Aut(X_R)$ is given by

$$x_r(t).e_r = e_r,$$

$$x_r(t).e_{-r} = e_{-r} + th_r - t^2 e_r,$$

$$x_r(t).h_s = h_s - A_{sr}te_r,$$

K. Ardakov / Journal of Algebra 280 (2004) 190-206

$$x_r(t).e_s = \sum_{i=0}^b M_{r,s,i} t^i e_{ir+s}$$

where $s \in X$ is a root linearly independent from $r, a \in \mathbb{N}$ is the largest integer such that $s - ar \in X, b \in \mathbb{N}$ is the largest integer such that $s + br \in X$,

$$A_{sr} = \frac{2(s,r)}{(r,r)}$$
 and $M_{r,s,i} = \pm {a+i \choose i}$.

Let R^* denote the group of units of R. When $t \in R^*$ and $r \in X$, define

$$n_r(t) = x_r(t)x_{-r}(-t^{-1})x_r(t)$$
 and $h_r(t) = n_r(t)n_r(-1)$.

The actions of $h_r(t)$ and $n_r = n_r(1)$ on X_R are as follows:

$$h_r(t).h_s = h_s, \quad s \in \Pi,$$

$$h_r(t).e_s = t^{A_{rs}}e_s, \quad s \in X,$$

$$n_r.h_s = h_{w_r(s)},$$

$$n_r.e_s = \eta_{r,s}e_{w_r(s)}.$$

Here w_r is the Weyl reflection on X corresponding to the root r and $\eta_{r,s} = \pm 1$.

The Steinberg relations hold in X(R):

$$\begin{aligned} h_r(t_1)h_r(t_2) &= h_r(t_1t_2), \quad t_1, t_1 \in R^*, \ r \in X, \\ x_r(t)x_s(u)x_r(t)^{-1} &= x_s(u). \prod_{i,j>0} x_{ir+js} \left(C_{ijrs}t^i u^j\right), \quad t, u \in R, \ r, s \in X, \\ h_s(u)x_r(t)h_s(u)^{-1} &= x_r \left(u^{A_{sr}}t\right), \quad t \in R, \ u \in R^*, \ r, s \in X. \end{aligned}$$

Here C_{ijrs} are certain integers such that $C_{i1rs} = M_{r,s,i}$.

For more details on the above, see [3].

Now, consider the \mathbb{Z}_p -Lie algebra $X_{\mathbb{Z}_p}$. Since $[pX_{\mathbb{Z}_p}, pX_{\mathbb{Z}_p}] = p^2[X_{\mathbb{Z}_p}, X_{\mathbb{Z}_p}] \subseteq p.pX_{\mathbb{Z}_p}$, we see that $pX_{\mathbb{Z}_p}$ is a powerful \mathbb{Z}_p -Lie algebra. Let $Y = (pX_{\mathbb{Z}_p}, *)$ be the uniform pro-p group constructed from $pX_{\mathbb{Z}_p}$ using the Campbell–Hausdorff formula.

We have a group homomorphism $\operatorname{Ad}: Y \to GL(pX_{\mathbb{Z}_p})$ given by $\operatorname{Ad}(g)(u) = gug^{-1}$. It is shown in Exercise 9.10 of [5] that

$$Ad = exp \circ ad$$

where $\exp: \mathfrak{gl}(pX_{\mathbb{Z}_p}) \to GL(pX_{\mathbb{Z}_p})$ is the exponential map.

It is clear that ker Ad = Z(Y). Since the Lie algebra $X_{\mathbb{Q}_p}$ of Y is simple, it is easy to see that $\mathcal{L}(Z(Y)) = Z(\mathcal{L}(Y)) = 0$; hence ker Ad = 1 and Ad is an injection.

202

Lemma 3.13. Let N = Ad(Y) and $G = X(\mathbb{Z}_p)$. Then $N \triangleleft G$.

Proof. First we show that $N \subseteq G$. It is clear that the \mathbb{Z}_p -linear action of N on $pX_{\mathbb{Z}_p}$ extends naturally to a \mathbb{Z}_p -linear action of N on $X_{\mathbb{Z}_p}$. Now, direct computation shows that

$$Ad(te_r) = x_r(t), \quad t \in p\mathbb{Z}_p, \ r \in X \quad \text{and}$$
$$Ad(th_r) = h_r(\exp(t)), \quad t \in p\mathbb{Z}_p, \ r \in \Pi.$$

Hence $\operatorname{Ad}(pu\mathbb{Z}_p) \subseteq G$ for all $u \in \mathcal{B}$. The set $p\mathcal{B}$ is a \mathbb{Z}_p -basis for $pX_{\mathbb{Z}_p}$ and hence a topological generating set for *Y* by Theorem 9.8 of [5]. By Proposition 3.7 of [5], *Y* is equal to the product of the procyclic subgroups $pu\mathbb{Z}_p$ as *u* ranges over \mathcal{B} . Hence $N \subseteq G$.

Now, let $r, s \in X, t \in \mathbb{Z}_p$ and $u \in p\mathbb{Z}_p$. By the Steinberg relations, we have

$$x_r(t)x_s(u)x_r(t)^{-1} = x_s(u). \prod_{i,j>0} x_{ir+js} (C_{ijrs}t^i u^j) \in N$$

and

$$x_r(t)h_s(\exp(u))x_r(t)^{-1} = h_s(\exp(u))x_r(\exp(-A_{sr}u)t)x_r(-t) \in \mathbb{N}$$

since $C_{ijrs}t^i u^j \in p\mathbb{Z}_p$ and $\exp(-A_{sr}u) - 1 \in p\mathbb{Z}_p$, whenever $u \in p\mathbb{Z}_p$. Hence $N \lhd G$, as required. \Box

Theorem 3.14. Let G, N be as in Lemma 3.13. There exists a commutative diagram of group homomorphisms:

Proof. We begin by defining all the relevant maps. Any automorphism f of $X_{\mathbb{Z}_p}$ must fix $pX_{\mathbb{Z}_p}$ and hence induces an automorphism $\alpha(f)$ of $X_{\mathbb{F}_p} \cong X_{\mathbb{Z}_p}/pX_{\mathbb{Z}_p}$. It is clear from the definition of the Chevalley groups that $\alpha(x_r(t)) = x_r(\bar{t})$ where $\bar{\cdot}:\mathbb{Z}_p \to \mathbb{F}_p$ is reduction mod p and that α is a surjection.

Since Ad is an isomorphism of *Y* onto *N*, *N* is a uniform pro-*p* group, and we have an \mathbb{F}_p -linear bijection $\varphi: X_{\mathbb{F}_p} \to N/N_2$ given by $\varphi(\bar{x}) = \operatorname{Ad}(px)N_2$, where $\bar{:} X_{\mathbb{Z}_p} \to X_{\mathbb{F}_p}$ is the natural map. This induces an isomorphism $\varphi^* : \operatorname{Aut}(X_{\mathbb{F}_p}) \to \operatorname{Aut}(N/N_2)$ given by $\varphi^*(f) = \varphi f \varphi^{-1}$.

We have observed in the remarks preceding Lemma 3.11 that Out(N) acts naturally on N/N_2 ; we denote this action by γ . By Lemma 3.13, N is normal in G, and we denote the conjugation action of G on N by β .

Finally, ι is the natural injection of $X(\mathbb{F}_p)$ into $\operatorname{Aut}(X_{\mathbb{F}_p})$ and π is the natural projection of $\operatorname{Aut}(N)$ onto $\operatorname{Out}(N)$.

It remains to check that $\varphi^* \iota \alpha = \gamma \pi \beta$. It is sufficient to show $\varphi^* \iota \alpha(x_r(t)) = \gamma \pi \beta(x_r(t))$ for any $r \in X$ and $t \in \mathbb{Z}_p$. We check these maps agree on the basis {Ad(pu). N_2 : $u \in B$ } of N/N_2 . On the one hand, we have

$$\varphi^* \iota \alpha (x_r(t)) (\operatorname{Ad}(pe_s)N_2) = \varphi^* (x_r(\overline{t})) (\operatorname{Ad}(pe_s)N_2) = \varphi (x_r(\overline{t})(\overline{e_s}))$$

$$= \varphi \left(\sum_{i=0}^b M_{r,s,i} \overline{t}^i \overline{e_{ir+s}} \right) = \prod_{i=0}^b \operatorname{Ad}(pM_{r,s,i} t^i e_{ir+s}) N_2$$

$$= \prod_{i=0}^b x_{ir+s} (pM_{r,s,i} t^i) N_2, \qquad (\ddagger)$$

using the definition of the action of $x_r(\bar{t})$ on $X_{\mathbb{F}_p}$. On the other hand,

$$\gamma \pi \beta (x_r(t)) (\operatorname{Ad}(pe_s)N_2) = x_r(t)x_s(p)x_r(-t)N_2$$
$$= x_s(p) \prod_{i,j>0} x_{ir+js} (C_{ijrs}t^i p^j)N_2,$$

using the Steinberg relations.

Since $x_{\alpha}(p^2) \in N_2$ for any $\alpha \in X$, we see that the all the terms in the above product with j > 1 vanish, and the remaining expression is equal to the result of (†), since $C_{i1rs} = M_{r,s,i}$. A similar computation shows that $\varphi^* \iota \alpha(x_r(t))$ also agrees with $\gamma \pi \beta(x_r(t))$ on

Ad $(ph_s)N_2$ for any $s \in \Pi$, and the result follows. The above theorem shows that the action of Out(N) on N/N_2 which was of interest in the preceding section is linked to the natural action of $X(\mathbb{F}_n)$ on $X_{\mathbb{F}}$. Since α is surjective.

the preceding section is linked to the natural action of $X(\mathbb{F}_p)$ on $X_{\mathbb{F}_p}$. Since α is surjective, we see that if \bar{e}_r generates $X_{\mathbb{F}_p}$ as an $\mathbb{F}_p[X(\mathbb{F}_p)]$ -module, then $\operatorname{Ad}(pe_r)N_2$ generates N/N_2 as an $\mathbb{F}_p[\operatorname{Out}(N)]$ -module. We drop the bars in the following proposition.

Proposition 3.15. Suppose $p \ge 5$ and let $R = \mathbb{F}_p[X(\mathbb{F}_p)]$. Then $X_{\mathbb{F}_p} = R.e_r$ for any $r \in X$.

Proof. This is probably well known and is purely a matter of computation. Let *W* denote the Weyl group of *X*.

Note that $(x_{-r}(1) + \eta_{r,r}n_r - 1).e_r = h_{-r} \in R.e_r$, whence $h_r = -h_{-r} \in R.e_r$ also.

By Proposition 2.1.8 of [3], we can choose $w \in W$ such that $w(r) \in \Pi$. Hence $n_w . h_r = h_{w(r)} \in R.e_r$.

Let α , β be adjacent fundamental roots. Then $n_{\alpha} \cdot h_{\beta} = h_{w_{\alpha}(\beta)} = h_{\beta} - A_{\beta\alpha}h_{\alpha}$ where $A_{\beta\alpha} = -1, -2$ or -3. The condition on p implies that if $h_{\beta} \in R.e_r$ then $h_{\alpha} \in R.e_r$ also.

Since X is indecomposable, $h_{\alpha} \subseteq R.e_r$ for any $\alpha \in \Pi$. Since the fundamental coroots span the Cartan subalgebra, $h_s \in R.e_r$ for any $s \in X$.

Finally, $x_s(1).h_s = h_s - 2e_s$, whence $e_s \in R.e_r$ for any $s \in X$, since $p \neq 2$. Since $\{e_s, h_r: s \in X, r \in \Pi\}$ is a basis for $X_{\mathbb{F}_p}$, the result follows. \Box

The condition on p in the above proposition can be relaxed somewhat—it might even be the case that it can be dropped altogether. Since this is a small detail of no interest to us, we restrict ourselves to the case $p \ge 5$.

We can finally provide a proof of our main result.

Proof of Theorem B. In view of Theorem C and Lemma 2.1, it is sufficient to prove that

$$\dim \mathfrak{b} + \dim \mathfrak{t} \leq \mathcal{K}(\Omega_G) \leq \dim \mathfrak{g} - 1.$$

Note that the lower bound on $\mathcal{K}(\Omega_G)$ follows from Proposition 3.4 and Theorem A.

Let *X* be the root system of \mathfrak{g} ; thus $\mathfrak{g} = X_{\mathbb{Q}_p}$. Since *X* is not of type A_1 by assumption on \mathfrak{g} , we can find two roots $r, s \in X$ such that $r + s \in X$ but $r + 2s, 2r + s \notin X$; it is then easy to see that the root spaces of *r* and *s* generate a subalgebra of \mathfrak{g} isomorphic to \mathfrak{h}_3 with centre $\mathbb{Q}_p e_{r+s}$.

Let *N* be the uniform pro-*p* group appearing in the statement of Theorem 3.14. By construction, \mathfrak{g} is the Lie algebra of *N*. By Proposition 3.15 and the remarks preceding it, we see that $\operatorname{Ad}(pe_{r+s})N_2 \in N/N_2$ generates the $\mathbb{F}_p[\operatorname{Out}(N)]$ -module N/N_2 . Hence $\mathcal{K}(\Omega_N) \leq \dim \mathfrak{g} - 1$ by Theorem 3.12.

Since the Lie algebra of G is $\mathfrak{g} = \mathbb{Q}_p L_G = \mathbb{Q}_p L_N$, we see that $N \cap G$ is an open subgroup of both N and G, whence $\mathcal{K}(\Omega_G) = \mathcal{K}(\Omega_N) \leq \dim \mathfrak{g} - 1$, as required. \Box

Proof of Corollary B. It is readily seen that *G* is a uniform pro-*p* group with \mathbb{Q}_p -Lie algebra $\mathfrak{sl}_3(\mathbb{Q}_p)$ which is split simple over \mathbb{Q}_p . We have observed in Lemma 2.1 that Λ_G is a local right Noetherian ring whose Jacobson radical satisfies the right Artin–Rees property, and that $\operatorname{gld}(\Lambda_G) = \dim \mathfrak{g} + 1 = 9$.

If b and t denote the Borel and Cartan subalgebras of \mathfrak{g} , then dim $\mathfrak{b} = 5$ and dim $\mathfrak{t} = 2$. The result follows from Theorems B and C. \Box

Acknowledgments

The author thanks his supervisor, C.J.B. Brookes for many helpful conversations. Financial assistance from the EPSRC is also gratefully acknowledged.

References

- K.A. Brown, C.R. Hajarnavis, A.B. MacEacharn, Noetherian rings of finite global dimension, Proc. London Math. Soc. (3) 44 (2) (1982) 349–371.
- [2] A. Brumer, Pseudocompact algebras, profinite groups and class formations, Bull. Amer. Math. Soc. 72 (1966) 321–324.
- [3] R. Carter, Simple Groups of Lie Type, Wiley, London, 1989.
- [4] J. Coates, P. Schneider, R. Sujatha, Modules over Iwasawa algebras, J. Inst. Math. Jussieu 2 (1) (2003) 73–108.
- [5] J.D. Dixon, M.P.F. Du Sautoy, A. Mann, D. Segal, Analytic Pro-p Groups, 2nd ed., Cambridge University Press, 1999.
- [6] L. Huishi, F. van Oystaeyen, Zariskian Filtrations, K-Monographs in Math., vol. 2, Kluwer Academic, 1996.

K. Ardakov / Journal of Algebra 280 (2004) 190-206

- [7] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, Grad. Stud. in Math., vol. 30, Amer. Math. Soc..
- [8] S.P. Smith, Krull dimension of factor rings of the enveloping algebra of a semi-simple Lie algebra, Math. Proc. Cambridge Philos. Soc. 93 (1983) 459-466.
- [9] S.J. Wadsley, Finite presentation of Abelian-by-(finite rank) pro-p groups, preprint.
 [10] R. Walker, Local rings and normalizing sets of elements, Proc. London Math. Soc. 24 (1972) 27–45.