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Abstract

Phase-field theory is a thermodynamically consistent approach for modeling and simulating phenomena that exhibit complex

structures such as those encountered in fluid flows and materials science. In this work, the main features of the theory will be

reviewed, i.e. mathematical models which arise from the minimization of a thermodynamic potential such as the Helmholtz free

energy describing the phenomenology of bulk phases and their interactions. An order parameter is also introduced which plays the

role of a phase index avoiding to track explicitly the interface between liquid/liquid and liquid/solid phases. Next, various examples

will be given on the basis of phenomena observed in nuclear glasses. Simulations are divided into two classes: for a non-conserved

order parameter, simulations will be presented on crystal growth of a pure substance with and without hydrodynamic effect. For a

conserved order parameter, an example will be given on phase separation by spinodal decomposition. Finally, the discussion will

focus on the parameters needed for the phase-field models and their relationships with the sharp interface approach.
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1. Introduction

In the vitrification process of radioactive waste with the cold crucible technique (Lemonnier et al., 2012), the

gradient of temperature imposed to the system (Sauvage et al., 2010), associated with a complex composition of

glass, leads at local scale to several phenomena involving interfaces. In this work, we focus on the simulation of two

chemico-physical phenomena observed in glasses: the crystal growth and the spinodal decomposition. The first one

is liquid/solid phase transition, where interface is located between a liquid phase and a solid phase. A good review

about instabilities and pattern formation in crystal growth can be found in Langer (1980). The second one is fluid

mechanics involving two immiscible liquids which spontaneously separate. An illustration of crystal growth is given

by a borosilicate glass heated between 600°C and 900°C. This range of temperature is favorable for observing crystals

of calcium molybdate and apatites with the scanning electron microscopy (Delattre et al., 2013). The solidification

process can be summarized as follows: when the temperature is lowered below the melting temperature, nuclei are

∗ Corresponding author. Tel.: +33(0)-169-084-067 ; fax: +33(0)-169-088-229.

E-mail address: alain.cartalade@cea.fr (Alain Cartalade).

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the scientifi c committee of SumGLASS 2013 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82110896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mspro.2014.10.010&domain=pdf


73 Alain Cartalade et al.  /  Procedia Materials Science   7  ( 2014 )  72 – 78 

likely to appear and grow, releasing latent heat at the solid/glass interface. First, the growing speed of crystal increases

when the temperature is decreased. Then, as the glass becomes more and more viscous, the speed decreases (Scholze,

1980). The second example is the phase separation phenomenon. Depending on the temperature and composition of

glass system, a spinodal regime or a nucleation and growth regime can be observed (Hodroj et al., 2013). Typically,

when the phase separation mechanism occurs by nucleation and growth, disconnected and spherical (or globular)

phases are dispersed in a residual matrix, separated by a sharp interface (Schuller et al., 2011). Conversely, phase

separation by spinodal decomposition, results in strongly interconnected phases (Bouttes et al., 2013) separated by

diffuse interfaces with varying compositions over time.

Concerning crystal growth and phase separation, modeling of both can be thought in a same theoretical framework.

Simulations require calculating the interface position in space and time as well as temperature or/and fluid velocity. In

order to follow the interface position, several modeling methods exist in the literature, mainly divided into two classes:

the separation between each phase can be considered as a sharp interface or a diffuse one. In this work, we present an

introduction of phase-field theory, a diffuse interface method that is consistent with the thermodynamics of the system.

Several topical reviews exist on phase-field models for materials science (Boettinger et al., 2002; Singer-Loginova and

Singer, 2008; Provatas and Elder, 2010) and fluid mechanics (Anderson et al., 1998). In this paper, we focus on the

main features of the theory (section 2) that will be illustrated on the simulation of one particular problem from each

domain (section 3). For crystal growth, simulations will present sensitivity of undercooling and hydrodynamic effect

on the crystal shape. For phase separation, one simulation will be carried out on spinodal decomposition. Finally, the

section 4 will be dedicated to a discussion about difficulties of applying phase-field models in complex systems such

as glasses.

2. Phase-field theory

2.1. Order parameter, free energy and equations of motion

One of the main feature of the phase-field theory is the introduction of a new function, the phase-field φ(x, t) ≡ φ

depending on position x and time t. The phase-field is also called index function or order parameter. This function

describes the bulk phases and the diffuse interface separating them. For instance, in solidification problems, φ = +1

describes the solid phase and φ = −1 describes the liquid phase. Between both values, the phase-field is continuous

and varies smoothly: −1 < φ < +1. The interface position between both phases is described by the variation of φ in

space.

The second most important feature of the theory is relative to the model derivation which is thermodynamically

consistent. In such models, partial derivative equations derive from a free energy (or entropy) functional F which

must be minimized (resp. maximized). The free energy functional describes the bulk phases and their interaction. The

gradient of order parameter ∇φ explicitly appears in its definition. Thermodynamic relationships are next used in the

variational procedure as well as the conservation equations (e.g., Wang et al., 1993).

In solidification problem, the order parameter is not a conserved quantity and obeys to the dynamics of Allen-Cahn

equation also called model A (see classification in Hohenberg and Halperin, 1977). For phase separation, the order

parameter is related to the conserved quantities such as the number of molecules (see subsection 2.3). In that case,

φ follows the dynamics of Cahn-Hilliard equation (model B). Two specific examples of free energy functional and

equations of motion for φ are given below. For sake of simplicity, all parameters are assumed to be constant and equal

in each phase. In crystal growth simulations, only a pure substance is considered.

2.2. Crystal growth of a pure substance: Karma and Rappel model

For the solidification process of binary mixtures, phase-field models can be found in Echebarria et al. (2004)

for directional solidification, and Ramirez et al. (2004) and Kim et al. (1999) for binary solidification coupled with

temperature. However, in this section, we assume for simplicity the solidification process of a pure (or congruent)
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substance, and we assume that the specific heat Cp and thermal diffusivity κ are identical in each phase. In this case,

the free energy functional writes:

FKR =

ˆ
V

[
W2(n)

2

∣∣∣∇φ∣∣∣2 + fdw(φ) + λug(φ)

]
dV, (1)

where W(n) is the interface width depending on the normal vector of interface n = −∇φ/
∣∣∣∇φ∣∣∣, pointing from solid to

liquid. The function fdw(φ) is the standard double-well potential, fdw(φ) = −φ2/2 + φ4/4, defined in this model such

as the two minima are φ = +1 and φ = −1. The coupling with the temperature is given by the last term λug(φ), where

λ is the coupling coefficient and u ≡ u(x, t) is the dimensionless temperature defined as: u(x, t) = Cp(T (x, t)−Tm)/L.

The latent heat is noted L and Tm is the melting temperature. g(φ) = (15/8)(φ − 2φ3/3 + φ5/5) is a monotonous

interpolation function of internal energy inside the diffuse zone. The specific form of the coupling term is obtained by

performing the difference between the free energy densities of solid and liquid. This term represents the driving force

of the solidification process. The phase-field model is derived from Eq. (1) by calculating the time derivative. The

phase-field equation and heat equation are respectively given by (Karma and Rappel, 1998):

τ(n)
∂φ

∂t
= W2

0∇ · (a
2
s(n)∇φ) +W2

0

∑
α=x,y,z

∂

∂α

(∣∣∣∇φ∣∣∣2as(n)
∂as(n)

∂(∂αφ)

)
+ (φ − φ3) − λu(1 − φ2)2, (2a)

∂u

∂t
= κ∇2u +

1

2

∂φ

∂t
. (2b)

Eq. (2a) is the equation of motion of interface. The first term of the right-hand side is a diffusive term, the second

one is responsible of anisotropic growth where ∂α ≡ ∂/∂α with α = x, y, z, the third one is the derivative of the

double-well potential with respect to φ. The last one is the derivative with respect to φ of the coupling term with the

temperature. Eq. (2b) is the standard equation of diffusion for dimensionless temperature with an additional source

term (1/2)∂tφ. The physical meaning of this term is the release of latent heat at interface. Anisotropy in the surface

energy and in the kinetics is incorporated as in Kobayashi (1993) and Wheeler et al. (1993) via the dependence of

W(n) and τ(n). This dependence is taken into account by a unique anisotropy function as(n) with τ(n) = τ0as(n) and

W(n) = W0as(n) where τ0 and W0 are two constants. The function as(n) is defined as:

as(n) = 1 − 3εs + 4εs

(∂xφ)
4 + (∂yφ)

4 + (∂zφ)
4

∣∣∣∇φ∣∣∣4 , (2c)

where εs is the strength of anisotropy.

2.3. Spinodal decomposition: Navier-Stokes/Cahn-Hilliard model

In this second example, the order parameter describes the composition of two immiscible fluids A and B (binary

mixture). To be consistent with the previous subsection, the composition is defined as: φ = (nA − nB)/(nA + nB) where

nA and nB are the number of molecules of A and B respectively. With this definition, the A-fluid is locally indicated

by φ = +1 (for nB = 0) and the B-fluid is indicated by φ = −1 (for nA = 0). A mixture of both fluids A and B is

characterized by −1 < φ < +1. The order parameter is now a conserved quantity. The equation of motion is derived

from the free energy functional defined as (Cahn and Hilliard, 1958):

FCH =

ˆ
V

[
σ

2

∣∣∣∇φ∣∣∣2 + H fdw(φ)
]

dV, (3)

where σ is the coefficient of gradient energy and H is the height of double-well potential. The Cahn-Hilliard (CH)

equation with an advective term writes (Jasnow and Viñals, 1996; Jacqmin, 1999):

∂φ

∂t
= ∇ · (Mφ∇μφ − Vφ), (4a)
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which involves two fluxes: the first one is given by the product of the interfacial mobility Mφ > 0, times the opposite

gradient of chemical potential −∇μφ. The second one is the advective flux Vφ where V is the velocity. The chemical

potential measures the change of free energy for a small local change of composition: μφ = δF /δφ. By using the

definition of CH free energy (Eq. (3)), the chemical potential is:

μφ = H(φ3
− φ) − σ∇2φ. (4b)

The velocity V is given by the Navier-Stokes (NS) equations:

∇ · V = 0, (4c)

ρ

[
∂V

∂t
+ (V · ∇)V

]
= −∇p + η∇2V − φ∇μφ, (4d)

where ρ = (nA+nB)/2 is the mean density of mixture, η is the dynamical viscosity and p is the pressure. Eq. (4c) is the

mass conservation equation for an incompressible fluid. The second one expresses the momentum conservation with

a body force (last term in the right-hand side) for modeling the capillary effects in the diffuse-interface framework.

3. Simulations

Eqs. (2a)–(2c) for crystal growth and Eqs. (4a)–(4d) for spinodal decomposition are simulated by using a numerical

method based on the Lattice Boltzmann (LB) equation (Chen and Doolen, 1998; Guo and Shu, 2013). For spinodal

decomposition, the LB method has already been applied in several works (e.g. Kendon et al., 2001). In this paper, the

numerical method is inspired from Zheng et al. (2006). For crystal growth problems, the LB method was applied for

hydrodynamic equations in Medvedev and Kassner (2005) and Chatterjee and Chakraborty (2006). For Karma-Rappel

model, numerical implementations of LB method are detailed in Cartalade (2013) and Younsi (2013).

3.1. Crystal growth of a pure substance

Undercooling sensitivity. The undercooling is defined as the initial temperature T0 ≡ T (x, 0) taken below the melting

temperature Tm: u0 = Cp(T0 − Tm)/L < 0, which is equivalent to a negative dimensionless temperature u0. When the

deviation of temperature is important between T0 and Tm, the latent heat released at interface during the solidification

process can be evacuated more quickly into the liquid. A faster growth of crystal is experimentally observed (Scholze,

1980). For all simulations, the mesh is composed of 3013 nodes. The initial condition is set as a nucleus of radius

Rs = 8 lattice unit in the center of computational domain. All boundary conditions are zero fluxes for phase-field and

temperature equations. Parameters are λ = 10, κ = 0.7, τ0 = 10−4 and W0 = 10−2. The parameter εs is responsible

of the crystal shape: if this parameter is zero, the function as(n) (Eq. (2c)) is a constant and the second term of the

right-hand side of Eq. (2a) cancels. The evolution of that case leads to a spherical shape. In the following simulations,

we choose εs = 0.05. The time-step is δt = 1.5 × 10−5 and the space step is δx = 10−2. Crystal shapes (iso-values

φ = 0) are compared in Fig. 1 for u0 = −0.2 (Fig. 1a), u0 = −0.25 (Fig. 1b) and u0 = −0.3 (Fig. 1c). As expected, we

remark that a larger value of undercooling (resp. a lower value of initial temperature u0) involves a crystal growth that

is faster. Notice that for a binary mixture, the crystal growth is also influenced by the solute diffusion mechanisms. In

that case, the competition between the heat and mass transfer is quantified by the Lewis number defined as the ratio

between the thermal diffusivity and the diffusion coefficient (Younsi et al., 2014).

Hydrodynamic effect on crystal shape. The crystal growth is also influenced by the fluid flows of the liquid phase. In

order to study the hydrodynamics effect on crystal growth, Eqs. (2a)–(2b) have to be coupled with the Navier-Stokes

equations. The hydrodynamic model and the specific form of coupling terms are inspired from Beckermann et al.

(1999). In this model, the phase-field equation is unchanged, an advective term is added in the heat equation and a

force term is also added in the momentum equation. The phase-field φ is not used directly in the heat equation and

Navier-Stokes equations: the advective terms inside the solid part are canceled by using a new function ψ = (1− φ)/2

which is equal to 0 in the solid and +1 in the liquid. For simulations, the values of parameters are identical as those
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a b c

Figure 1. Undercooling effect on crystal shape. Iso-values φ = 0 at t = 5000δt for (a) u0 = −0.20, (b) u0 = −0.25 and (c) u0 = −0.30.

a b

Figure 2. Hydrodynamic effect on crystal growth for a flow directed from left to right (a) Initial velocity V1; (b) Initial velocity V2 = 4V1.

used for undercooling sensitivity. An initial velocity is applied directed from left to right. Results are presented in

Fig. 2 for two values of initial velocity V1 and V2 with V2 = 4V1 > V1. We remark that the crystal is not any more

symmetric: one side of the crystal grows faster than the other ones, and the growth is faster with a greater initial

velocity. Results are consistent with those presented in Chen et al. (2009). The explanation is given by temperature

gradients that are higher upstream rather than downstream. The latent heat can be evacuated more quickly upstream

and the side branch can grow faster.

3.2. Spinodal decomposition

In glasses, hydrodynamic parameters such as viscosity and density are very dependent on temperature (Jacoutot,

2006). In this work, the spinodal decomposition is illustrated for a fixed temperature in the glass melt and hydrody-

namic parameters that are constant. Boundary conditions are periodic for all faces. The mesh is composed of 2513

nodes, δt = 3 × 10−3 and δx = 0.01. As initial condition, the order parameter is randomly distributed between −1

and +1 in whole domain and the initial velocity is zero. Parameters relative to CH equation are σ = 3 × 10−7 and

H = 0.01 corresponding to an interface width equal to W = 2 × 10−2, the kinematic viscosity is ν = 5 × 10−3 and

the density is ρ = 3. The time evolution of phase-field φ is illustrated in Fig. 3. The initial mixture is homogeneous

(Fig. 3a) and spontaneously separates into two phases by minimizing the free energy of the system. After an early

period of interdiffusion (Fig. 3b and 3c), two main regions appear (Fig. 3d). The A-fluid (red) and the B-fluid (blue)

are separated by a diffuse interface (green) where both phases coexist. Finally, each phase can grows by coalescence

(Fig. 3e–h).
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a b c d

e f g h

Figure 3. Phase separation by spinodal decomposition of two immiscible liquids A (φ = +1; red) and B (φ = −1; blue).

4. Conclusion

Phase-field models are powerful tools for simulating physical problems involving interfaces. They introduce an

order parameter defined over the whole computational domain and they are consistent with the thermodynamic of the

system. For instance, models can be solved effectively in 3D, without tracking the interfacial surface between phases,

in order to simulate the spinodal decomposition and the crystal growth with or without hydrodynamics. Nevertheless

some theoretical issues still remain to be solved in phase-field models (Plapp, 2011). Moreover, they require a lot of

experimental data and some of them are difficult to measure, in particular the interfacial energy between glass and

crystals (Fokin et al., 2000). Notice that in the case of pure substances, these quantities may be derived from molecular

dynamic simulations (Bragard et al., 2002; Nestler et al., 2005).

For glasses that are multi-species systems, a further problem arises. In phase-field approach, the interfacial bound-

ary conditions such as the energy balance equation and the temperature correction, are replaced by the phase-field

equation. The connection between this approach with the sharp interface model is carried out by performing a math-

ematical analysis called “matched asymptotic expansions”. This analysis yields relationships between the parameters

of the phase-field equation (W(n), τ(n), and λ) and the physical parameters such as the capillary length and the kinetic

coefficient (Karma and Rappel, 1998; Almgren, 1999). For a binary mixture with different values of diffusion in solid

and liquid, this analysis leads to a phenomenological anti-trapping current that has to be added in the supersaturation

equation (Karma, 2001). This mathematical procedure was applied for binary mixtures in solidification problems

(Ohno, 2012) and fluid mechanics (Sibley et al., 2013), but still remains to be done for multi-species systems.
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