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Abstract

We provide a new denotational semantic model, based on “footstep traces”, for parallel programs
which share mutable state. The structure of this model embodies a classic principle proposed
by Dijkstra: processes should be treated independently, with interference occurring only at syn-
chronization points. As a consequence the model makes fewer distinctions between programs than
traditional trace models, which may help to mitigate the combinatorial explosion triggered by inter-
leaving. For a sequential or synchronization-free program the footstep trace semantics is equivalent
to a non-deterministic state transformation, so the new model supports “sequential” reasoning
about synchronization-free code fragments. We show that footstep trace semantics is strictly more
abstract than action trace semantics and suitable for compositional reasoning about race-freedom
and partial correctness. The new model can be used to establish the soundness of concurrent sepa-
ration logic. We include some example programs to facilitate comparison with earlier models, and
we discuss briefly the relationship with a recent model by John Reynolds in which actions have
discernible starts and finishes.

Keywords: concurrency, shared memory, granularity, partial correctness, race condition,
denotational semantics, logic

1 Outline

It is notoriously difficult to reason about parallel programs, because of the
potential for interference or race conditions between concurrent threads. In
traditional semantic models a process or thread denotes a set of traces, a trace
is a sequence of atomic actions, and parallel composition is interpreted as fair
interleaving. As is well known, this can lead to a combinatorial explosion
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when attempting to prove correctness of a parallel program, because of the
number of possible interleavings to be considered.

If concurrent threads write to the same variable, without any guarantee
of atomicity or exclusivity, the result may be unpredictable or dependent on
implementation details beyond the control of the programmer. Traditional
semantic models usually make a granularity assumption about the atomicity
of certain primitives at the hardware level. The assumption that reads and
writes to integer-valued variables are atomic leads to a trace semantics with
larger atomic steps and fewer interleavings, but this assumption is not realistic
in practice because an integer value may not fit inside a single machine word.
On the other hand, the slightly more realistic assumption that word-level reads
and writes are atomic will yield more interleavings, tending to exacerbate the
combinatorial problem, and the results may depend on word size. Instead of
relying on possibly unfounded expectations about hardware implementation
we would prefer to be able safely to abstract away from granularity and word
size while simultaneously reducing or avoiding the interleaving problem.

To an extent this approach is possible for simple shared-memory programs
(i.e. shared-memory programs without pointers) designed in a sufficiently
disciplined manner. For such programs the “critical” variables can be detected
by a static, syntax-directed analysis; as usual, a variable is “critical” if it
has a free write occurrence in one parallel component of the program and
a free read or write occurrence in another. In the resource-based approach
proposed by Hoare [13], Brinch Hansen [2,5] and others, the programmer must
partition the critical variables among named resources, and access to these
variables is only allowed inside a critical region for the relevant resource. Since
resources are assumed to be implemented as semaphores, these design rules
ensure mutually exclusive access to critical variables and disallow programs
with “racy” behavior whose execution results might depend on granularity.
Owicki and Gries introduced a Hoare-style logic that reflects this discipline,
with rules for parallel composition, regions and resources [16]. This provides a
methodology for safe reasoning about partial correctness without dependence
on granularity.

Unfortunately this methodology is unsuitable for parallel programs that
use pointers, because the possibility of aliasing renders purely static detection
of race conditions impossible, and the Owicki-Gries proof system is unsound in
the presence of aliasing. Recently, O’Hearn [14] has proposed an adaptation of
the Owicki-Gries logic to handle pointers, incorporating ideas from separation
logic [18]. The author has developed a semantic model (using action traces)
and used it to prove soundness of this concurrent separation logic [7]. The
action traces semantic model interprets parallel composition as a resource-
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sensitive form of fair interleaving, and treats a potential race condition as a
catastrophe, as suggested by John Reynolds. The soundness proof shows that
a provable program is race-free.

The above logics [16,14] and semantics [7] were designed with an eye to a
classic principle of concurrent program design, articulated by Dijkstra [11]:

. . . processes should be loosely connected; . . . apart from the (rare) moments
of explicit intercommunication, . . . processes are to be regarded as com-
pletely independent of each other.

The action traces model supports the definition of a “local enabling” rela-
tion that embodies this principle, allowing a characterization of process be-
havior in an environment that interferes only via synchronization. However,
this model is unnecessarily fine-grained, and contains traces that correspond
to process executions in less well-behaved environments, allowing arbitrary
interference. As a result the model distinguishes between some pairs of com-
mands which satisfy exactly the same concurrent separation logic formulas.
Indeed the action traces model supports compositional analysis of safety and
liveness properties, in addition to partial and total correctness, because it re-
tains information about the sequences of atomic state changes that occur in a
computation. This level of detail is irrelevant for partial and total correctness.

In this paper we develop a more abstract semantics, tailored specifically for
reasoning about race-free partial and total correctness. Instead of action traces
built from resource actions and atomic state actions such as reads and writes
to individual variables, we work with footstep traces built from resource actions
and (compressed sequences of) state actions, representing the cumulative effect
of a sequence of state changes executed without interference. We restrict
the structure of traces to reflect the assumption that interference can only
occur within a critical region. The typical trace will therefore consist of an
alternating sequence of state actions and resource actions, with “external”
state changes only occurring on synchronization, when a resource is acquired,
so that the new semantic model truly embodies Dijkstra’s principle.

This new semantics can be used instead of the action traces semantics of
[7] to establish the soundness of concurrent separation logic, providing a more
streamlined soundness proof based on a more succinct semantics. Moreover,
the footstep trace set of a command is independent of any assumption about
the granularity of atomic actions. For a well designed concurrent program
whose synchronization points are few and far between, our model requires
fewer interleavings, helping to mitigate the combinatorial explosion.

To facilitate comparison with action trace semantics [7], and to retain
as much common ground with that model as is still relevant, our technical
development of the footstep trace semantics will echo the main concepts and
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definitions from the action trace setting, reformulating them as needed in
terms of footsteps. (We also re-examine some of the program examples from [7]
to highlight the advantages of the new semantics.)

Our footstep trace semantics has been influenced by ideas of John Reynolds,
who recently developed a model with similar aims [19]. Reynolds’ model also
incorporates some ideas from action trace semantics, but there are signifi-
cant differences in structure and design. In Reynolds’ approach state actions
such as reads and writes have a separate start and finish, leading to a trace
model which makes more distinctions between processes than the footstep
traces model. Reynolds then introduces an abstraction function on trace sets
that ignores unnecessary details, such as the relative order of independent
steps. In contrast, duration plays no rôle in our approach, and we coalesce
adjacent footsteps to avoid order-based distinctions, so that we obtain a more
abstract semantics by construction. For a command with no free resource
names, such as a sequential program, or a concurrent program with no criti-
cal variables and therefore only “disjoint” parallelism and no need for critical
regions, the footstep trace semantics degenerates into a form equivalent to a
(non-deterministic) state transformation. Thus our semantics achieves one of
the desirable properties mentioned by Reynolds [19].

2 Syntax

Our programming language combines shared-memory parallelism with pointer
operations.

Definition 2.1 The syntax for commands (ranged over by c) is given by the
following abstract grammar, in which r ranges over resource names, i over
identifiers, e over integer expressions, b over boolean expressions, and E over
list expressions:

c ::= skip | i:=e | i:=[e] | [e]:=e′ | i:=cons (E) | dispose e |

c1; c2 | c1‖c2 | if b then c1 else c2 | while b do c |

local i = e in c | resource r in c | with r when b do c

We omit the syntax of expressions, which includes the usual arithmetic
operations and boolean connectives. We assume that expressions are “pure”,
i.e. the value of an expression does not depend on the heap. A list expression
E is a list e0, . . . , en of integer expressions.

An allocation i:=cons(E) allocates a series of fresh heap cells; a lookup

i:=[e] reads a heap cell and assigns its contents to i; an update [e]:=e′ changes
the contents of a heap cell; and a disposal dispose(e) de-allocates a heap cell.
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A command of form local i = e in c introduces a local variable named i,
initialized to the value of e, with scope c.

A resource block resource r in c introduces a local resource name r, with
scope c. A command of form with r when b do c is a conditional critical

region for resource r. A process attempting to enter a region must wait until
the resource is available, acquire the resource and evaluate b: if b is true the
process executes c then releases the resource; if b is false the process releases
the resource and waits to try again. A resource can only be held by one process
at a time. We use the abbreviation with r do c when b is true.

Let free(c) be the set of identifiers occurring free in c, with similar no-
tation for expressions. Let reads(c) be the set of identifiers having a free
read occurrence in c, writes(c) be the set of identifiers having a free write
occurrence in c. These sets may be defined by structural induction as usual.

Definition 2.2 Let res(c) be the set of resource names occurring free in c,
defined by the obvious structural induction. In particular,

res(c1‖c2) = res(c1) ∪ res(c2)

res(with r when b do c) = res(c) ∪ {r}

res(resource r in c) = res(c) − {r}.

A command c is resource-free if res(c) = {}.

3 States

A state is a partial function σ : Var ⇀ Vint , where Var is the disjoint union of
Ide and Vint . We use Vint for the set of locations (or heap cells), and we make
no distinction between locations and integers. Ide is the set of identifiers.

Let St be the set of states. We use σ as a meta-variable ranging over St.
The state σ is finite if dom(σ) is a finite set. Note that dom(σ) is a subset of
Var, possibly including both identifiers and values. 2

We use conventional notation for states, such as [v1 : v′
1, . . . , vk : v′

k], where
each vi ∈ Var and each v′

i ∈ Vint . In particular [ ] denotes the empty state. We
write [σ | v : v′] for the state that agrees with σ except at v, which it maps to v′.
For X ⊆ Var let σ�X = {(v, v′) ∈ σ | v ∈ X} and σ\X = {(v, v′) ∈ σ | v �∈ X}.
We write σ � σ′ when σ�dom(σ′) = σ′�dom(σ), i.e. when the union σ ∪ σ′ is a
valid state. Let σ ⊥ σ′ when dom(σ)∩ dom(σ′) = {}. Obviously if σ ⊥ σ′ then
also σ � σ′.

2 It would be equally reasonable to present the state as a pair (s, h) where s : Ide ⇀ Vint

is the “store” and h : Vint ⇀ Vint is the “heap”.
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4 Actions

Actions are the building blocks of our semantic model. An action is either a
“footstep”, representing a piece of state change, or a resource action represent-
ing an attempt to acquire a resource, or the releasing of a resource. We include
both “normal” footsteps and “abnormal” footsteps representing a runtime er-
ror or a non-terminating computation. We use the term “footstep” by analogy
with the usage of “footprint” in related work such as [15,14]. Footsteps may
involve reading and writing to variables, and allocation and disposal of heap
cells.

Definition 4.1 Let λ range over actions, as described by the following ab-
stract grammar, in which σ, σ′ range over states, X ranges over P(Var), and
r ranges over resource names:

λ ::= (σ, σ′)X | (σ,⊥)X | (σ, abort) | try(r) | acq(r) | rel(r)

The actions dealing with resources are interpreted as in the earlier seman-
tic models: try(r) represents an unsuccessful attempt to acquire r, acq(r)
represents a successful acquisition, and rel(r) releases the resource.

A (normal) footstep has the form (σ, σ′)X where σ and σ′ are finite states
and X is a subset of {v ∈ dom(σ)∩dom(σ′) | σ(v) = σ′(v)}. This side-condition
on X can be rephrased equivalently as σ′	X = σ	X. The set X contains the
variables deemed to be “read-only” in the step, and σ′ is to be regarded as
all that is left of σ after the step, together with any new state introduced by
allocations performed in the step. (Note that X ⊆ Var, so X may include heap
cells as well as identifiers.) Such a step represents the footprint of a command
that “reads” σ and “writes” σ′\X. The state portion σ	X is read-only, and
survives the step unchanged.

A footstep of the form (σ, abort), where σ is a (finite) state, represents a
runtime error such as a race condition, or an attempt to dispose a location
that is not in use. Such steps will be treated as catastrophic, so there is no
need to record a read-only set here.

Finally a footstep of the form (σ,⊥)X , where σ is a state, represents a
non-terminating computation in which the variables in X are read-only and
the variables in dom(σ) are read/written or written. We include a read-only
set in order to be able to predict race conditions accurately.

Definition 4.2 For a footstep λ = (σ, σ′)X let dom(λ) = dom(σ) ∪ dom(σ′),
and mod(λ) = dom(λ) − X; this is the set of variables which are modified by
λ. We also define allocates(λ) = dom(σ′) − dom(σ) and disposals(λ) =
dom(σ) − dom(σ′).

For a non-terminating footstep λ = (σ,⊥)X we let mod(λ) = dom(σ) − X.
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Again this represents the set of identifiers assigned to or heap cells updated by
the step. We need this set in order to keep a proper account of race conditions.
There is no need, however, to define mod(λ) when λ is an abort step.

Example 4.3 Let v ∈ Var and v′, v′′ ∈ Vint .

• The footstep ([v : v′], [v : v′′]){v} is only well-formed if v′ = v′′, in which case
it represents a “read” of v with result v′.

• The footstep ([v : v′], [v : v′′]){} is always well-formed, and represents a
“read-write” of v; even if v′ = v′′ we distinguish this from a pure read.

• A footstep of form ([v′ : v′′], [ ]){} represents a disposal of v′.

• A footstep of form ([ ], [v′ : v′′]){} represents an allocation of v′.

Example 4.4 The footstep ([x : 0, y : 1, z : 2, 1 : 42], [x : 1, y : 1, z : 99, 99 :
0]){y} represents a state change that updates the value of x, disposes the heap
cell denoted by y, and sets z to a fresh heap cell initialized to contain 0.
Notice that the variable y is not itself updated, as indicated by the read-only
set annotation.

5 Traces

We build traces by concatenating finite or infinite sequences of actions. We
will use α, β to range over traces, and let Tr be the set of traces.

We need to take care when determining which sequences of actions make
sense, bearing in mind our assumptions about the interactions between a com-
mand and its environment. Each resource is held by at most one process at
all times, so the acquire and release actions for each resource name along a
trace will alternate (as in the action traces model [7]). Storage management
is assumed to be handled globally: each call to the storage allocator yields a
heap cell not in use by any process. Finally, in line with the Dijkstra principle,
we will build traces in which adjacent footsteps are always combined into a
single step. This is a radical departure from the action traces model and we
make this design choice so that we ignore intermediate states irrelevant for
reasoning about race-freedom and partial correctness. 3

Catenable actions

We characterize the conditions under which one footstep can be executed after
another: λ1 can follow λ0 if the state needed for λ1 is consistent with the effect

3 This coalescing of adjacent steps is reminiscent of mumbling [6], but we work exclusively
with “maximally mumbled” traces rather than including all possible mumblings of a given
sequence, since this results in a more succinct model.
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of λ0, and λ1 does not allocate any location that was allocated by λ0. When
this holds we also say that the sequence λ0λ1 is catenable. Accordingly, we will
build traces by concatenating sequences of actions which obey this constraint.

Definition 5.1 Let λ0 = (σ0, σ
′
0)X0 and λ1 = (σ1, σ

′
1)X1 be footsteps. We say

that λ1 follows λ0, written λ0 
 λ1, if

• σ′
0 � σ1, i.e. σ′

0�dom(σ1) = σ1�dom(σ
′
0)

• σ0 � (σ1 − σ′
0)

• allocates(λ1) ∩ dom(σ′
0) = {}, i.e. dom(σ′

0) ∩ (dom(σ′
1) − dom(σ1)) = {}.

The first two conditions guarantee that the state resulting from λ0 is con-
sistent with the state needed for λ1. The third requirement reflects the as-
sumption that a call to the storage allocator yields truly fresh storage.

Obviously this is not a symmetric relationship: λ0 
 λ1 does not generally
imply that λ1 
 λ0.

The read-only sets play no rôle in determining the follows relation. They
do contribute, however, in defining the combined effect of catenable actions.
When λ1 follows λ0 we can construct a single footstep, denoted λ0; λ1, that
represents the combined effects of the successive steps.

Definition 5.2 Let λ0 = (σ0, σ
′
0)X0 and λ1 = (σ1, σ

′
1)X1 be footsteps such

that λ0 
 λ1. We define λ0; λ1 to be the following footstep:

• if disposals(λ0) ∩ dom(σ1) = {} we let

(σ0, σ
′
0)X0 ; (σ1, σ

′
1)X1 = (σ0 ∪ (σ1 − σ′

0), σ′
1 ∪ (σ′

0 − σ1))X

where X = (X0 − mod(λ1)) ∪ (X1 − mod(λ0)).

• if disposals(λ0) ∩ dom(σ1) �= {} then λ0 disposes some cell needed by λ1,
so we let

(σ0, σ
′
0)X0 ; (σ1, σ

′
1)X1 = (σ0 ∪ (σ1 − σ′

0), abort).

We extend the catenability relation 
 and the sequencing operator λ0; λ1

to more general pairs of actions in the obvious way. For abort steps we make
the following definitions:

• (σ0, σ
′
0)X0 
 (σ1, abort) if σ′

0 � σ1 and (σ1 − σ′
0) � σ0

(σ0, σ
′
0)X0; (σ1, abort) = (σ0 ∪ (σ1 − σ′

0), abort)

• (σ0, abort) 
 λ for all actions λ

(σ0, abort); λ = (σ0, abort)

The corresponding definitions involving a non-terminating step are similar:

• Let λ0 = (σ0, σ
′
0)X0 and λ1 = (σ1,⊥)X1 .

(σ0, σ
′
0)X0 
 (σ1,⊥)X1 if σ′

0 � σ1 and (σ1 − σ′
0) � σ0
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(σ0, σ
′
0)X0; (σ1,⊥)X1 = (σ0 ∪ (σ1 − σ′

0),⊥)X ,
where X = (X0 − mod(λ1)) ∪ (X1 − mod(λ0)).

• (σ0,⊥)X0 
 λ for all actions λ

(σ0,⊥)X0 ; λ = (σ0,⊥)X0 .

We allow any action λ to be followed by (or to follow) any resource action,
so that for all resource names r, λ 
 try(r), λ 
 acq(r), λ 
 rel(r), try(r) 
 λ,
and so on.

Remark 5.3 Let δ be the footstep ([ ], [ ]){}. It is easy to check that, for all
footsteps λ0 and λ1, we have λ0 
 δ, δ 
 λ1, and λ0; δ = λ0, δ; λ1 = λ1.

The following examples illustrate the above definitions, showing how the
read-only information of successive steps gets combined, and motivating the
carefully chosen side conditions in the previous development.

Example 5.4 Consecutive reads of the same variable are catenable provided
they yield the same value; the result is again a read. More formally:
([x : v], [x : v]){x} 
 ([x : v′], [x : v′]){x} if and only if v = v′

([x : v], [x : v]){x}; ([x : v], [x : v]){x} = ([x : v], [x : v]){x}

Example 5.5 A read followed by a write to the same variable is sensible
when the read yields the same value as is used to start the write; the result is
a write.
([x : v], [x : v]){x} 
 ([x : v′], [x : v′′]){} if and only if v = v′

([x : v], [x : v]){x}; ([x : v], [x : v′]){} = ([x : v], [x : v′]){}

Example 5.6 Reads of distinct variables can be concatenated; their effects
commute, and the result is a single read-only step.
([x : v], [x : v]){x} 
 ([y : v′], [y : v′]){y} when x �= y

([x : v], [x : v]){x}; ([y : v′], [y : v′]){y} = ([x : v, y : v′], [x : v, y : v′]){x,y}

Example 5.7 Writes to distinct variables can be concatenated; their effects
commute; the result is a single action representing the combined writes.
([x : v0], [x : v′

0]){} 
 ([y : v1], [y : v′
1]){} when x �= y

([x : v0], [x : v′
0]){}; ([y : v1], [y : v′

1]){} = ([x : v0, y : v1], [x : v′
0, y : v′

1]){}
([y : v1], [y : v′

1]){}; ([x : v0], [x : v′
0]){} = ([x : v0, y : v1], [x : v′

0, y : v′
1]){}

Example 5.8 A disposal of one heap cell can always be followed by a disposal
of another cell. An attempt to dispose the same cell twice in succession causes
an error.
([v0 : v′

0], [ ]){} 
 ([v1 : v′
1], [ ]){} if v0 �= v1 or (v0 = v1 & v′

0 = v′
1).

([v0 : v′
0], [ ]){}; ([v1, v

′
1]){} = ([v0 : v′

0, v1 : v′
1], [ ])){} if v0 �= v1

([v : v′], [ ]){}; ([v : v′], [ ]){} = ([v : v′], abort)
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Note that in the erroneous case we have ([v : v′], [ ]){} 
 ([v : v′], [ ]){}, so that
the actions are catenable but their concatenation represents a runtime error.

Example 5.9 Storage allocation is assumed to be managed globally, so suc-
cessive calls to the allocator always return distinct heap cells; therefore we
do not need to allow consecutive allocations of the same heap cell. Indeed,
according to the above definitions we have ([ ], [v : v′]){} �
 ([ ], [v : v′′]){}.

Example 5.10 A step that allocates a heap cell v can follow any step in
which v was not read, written, or allocated, again because the storage manager
always allocates “fresh” cells. We have (σ, σ′)X 
 ([ ], [v : v′]){} if v �∈ dom(σ′),
in which case (σ, σ′)X ; ([ ], [v : v′]){} = (σ, σ′ ∪ [v : v′])X\v.

Catenable sequences

If λ0 
 λ1 and λ1 
 λ2, it does not necessarily follow that (λ0; λ1) 
 λ2. For
example, consider the following footsteps:

λ0 = ([v : 0], [ ]){} λ1 = ([y : 0], [y : 0]){} λ2 = ([v : 1], [ ]){}.

We have λ0 
 λ1 and λ1 
 λ2, but λ0; λ1 = ([v : 0, y : 0], [y : 0]){}, so that
(λ0; λ1) �
 λ2. Indeed, the sequence of footsteps λ0λ1λ2 clearly cannot be
executed without the help of interference, because of the discrepancy in the
value of v between the first and third steps. We should not, therefore, regard
this sequence of actions as catenable.

In contrast, in all cases where a sequence of footsteps λ0λ1λ2 is executable
without interference we will have λ0 
 λ1 and (λ0; λ1) 
 λ2, λ1 
 λ2 and
λ0 
 (λ1; λ2), and (λ0; λ1); λ2 = λ0; (λ1; λ2).

We want to streamline our semantics so that we only include traces that
reflect our underlying assumptions about interference, only allowing external
interference through synchronization. We therefore extend the catenability
relation to finite traces and actions as follows, using the notation β 
 λ

when action λ can follow trace β. We extend the concatenation operation
analogously, so that for a finite trace β and an action λ such that β 
 λ we
obtain a definition of the trace β; λ. The definition uses case analysis on the
final action of the trace. For sequences of footsteps the definitions reflect the
above remarks concerning catenability.
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Definition 5.11 For all finite traces α, resource names r, and footsteps λ, λ′

αλ 
 λ′ iff λ 
 λ′

α try(r) 
 λ′ iff α 
 λ′

α acq(r) 
 λ′ always

α rel(r) 
 λ′ iff α 
 λ′

Note that the step following a resource acquisition is not constrained here,
allowing for the possibility of interference at synchronization.

Definition 5.12 For all finite traces α, resource names r, and footsteps λ, λ′

(αλ); λ′ = α(λ; λ′) when λ 
 λ′

(α try(r)); λ = α try(r) λ′ when α 
 λ′

(α acq(r)); λ′ = α acq(r) λ′ always

(α rel(r)); λ′ = α rel(r) λ′ when α 
 λ′

We can now give a formal characterization of the catenable finite sequences
of actions, and for each such sequence α we can specify the trace cat(α)
obtained by concatenating its steps.

Definition 5.13 A single footstep λ is catenable, and cat(λ) = λ. A sequence
of form βλ is catenable if and only if β is catenable and cat(β) 
 λ, in which
case we let cat(βλ) = cat(β); λ.

When α is the sequence λ0 . . . λn and is catenable, we may use the notation
λ0; . . . ; λn for cat(α). The notion of catenability extends to an infinite sequence
of actions in the obvious way: an infinite sequence is catenable if and only if
each of its finite prefixes is catenable. However, the result of concatenating
an infinite sequence of footsteps λn = (σn, σ′

n)Xn
needs to be defined carefully.

There are two cases:

• if for each n we have λ0; . . . ; λn = (τn, τ ′
n)Yn

then the infinite sequence
represents a non-terminating computation that will be enabled by the state⋃∞

n=0 τn. The read-only variables for this entire computation can be taken
to be Y = {v ∈

⋃∞
n=0 Xn | ∀n. (v ∈ Xn ∨ v �∈ dom(λn))}. We therefore define

λ0; . . . ; λn; . . . = (
⋃∞

n=0 τn,⊥)Y .

• if for some n we have λ0; . . . ; λn = (τn, abort) then this will also be the case
for all larger n, and we define λ0; . . . ; λn; . . . to be (τn, abort) also.

The state appearing in a footstep constructed by concatenating an infinite
sequence of steps may well be infinite, even if all of the individual steps λn
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involve finite pieces of state. This has a natural computational interpretation:
the process needs to access an infinite portion of the heap during its execution.
Of course this can only happen in an infinite computation, since each finite
prefix of the computation trace affects only a finite portion of the state. The
following example exhibits this behavior.

Example 5.14 Consider the sequence of steps λn = ([x : n, n : 0], [x : n +
1]){}, for n ≥ 0; we have, using the above definition,

λ0; λ1; . . . ; λn; . . . = ([x : 0, 0 : 0, 1 : 0, . . . , n : 0, . . .],⊥){}.

This footstep represents a possible behavior of the command

while true do (dispose(x); x:=x + 1).

It is easy to extend the notion of catenability, and the concatenation op-
erator, to pairs of traces. When α and β are traces we write α 
 β to mean
that β follows α, and we write α; β for the trace obtained by concatenating
them. 4 We then define concatenation and iteration for sets of traces in the
usual way, with adjustments so as to include only catenable cases. For trace
sets T0, T1 and T , we define:

• T0; T1 = {α0; α1 | α0 ∈ T0 & α1 ∈ T1 & α0 
 α1}.

• T ∗ =
⋃∞

n=0 T n, where T 0 = {δ} and T n+1 = T n; T for n ≥ 0.

• T ω = {α0; α1; . . . αn; . . . | ∀n ≥ 0. αn ∈ T & α0; . . . ; αn 
 αn+1}.

Parallel composition

The behavior of a process running in parallel with other threads depends on
the resources held by the process and is constrained by the resources being
held by its environment. These sets of resources start empty and will always
stay disjoint, given our assumptions about the implementation of resources
via semaphores. Accordingly we define for each action λ a resource enabling

relation (A1, A2)
λ−→ (A′

1, A2) on disjoint pairs of resource sets, to specify when
a process holding resources A1, in an environment that holds A2, can perform
this action, and the action’s effect on resources. Although the special case
where A1 and A2 are empty deserves special attention, since it corresponds
to the typical initial assumptions, the general case has a simpler inductive
formulation.

Definition 5.15 Let A1 and A2 be disjoint sets of resource names. The

4 Note that if α is catenable, so is cat(α), and cat(cat(α)) = cat(α). If α 
 β and α and
β are catenable, so is αβ, and cat(αβ) = cat(α); cat(β).
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resource enabling relations λ−→ are given by:

(A1, A2)
try(r)
−−−−−→ (A1, A2) always

(A1, A2)
acq(r)
−−−−−→ (A1 ∪ {r}, A2) iff r �∈ A1 ∪ A2

(A1, A2)
rel(r)
−−−−→ (A1 − {r}, A2) iff r ∈ A1

(A1, A2)
λ−→ (A1, A2) always, if λ is not a resource action

This generalizes in the obvious way to a sequence of actions, and we write
(A1, A2)

α−−→ · to indicate that a process holding resources A1 in an environment
holding A2 can perform the trace α.

Definition 5.16 Let λ0 = (σ0, σ
′
0)X0 and λ1 = (σ1, σ

′
1)X1. We say that λ0

and λ1 interfere, written λ0 
� λ1, if

• σ0 � σ1, i.e. σ0�dom(σ1) = σ1�dom(σ0)

• dom(σ0) ∩ dom(σ1) �⊆ X0 ∩ X1

When λ0 
� λ1 define λ0 • λ1 = (σ0 ∪ σ1, abort).

If the overlap is on variables which are read-only for both footsteps, there
is no race so we do not count this as an interfering case.

For abnormal footsteps we characterize the interfering cases as follows:

Definition 5.17 When λ0 is (σ0, abort) and/or λ1 is (σ1, abort) we specify
that λ0 
� λ1 holds if σ0 � σ1. And if λ0 is (σ0,⊥)X0 and λ1 is (σ1, σ

′
1)X1

we specify that λ0 
� λ1 holds if σ0 � σ1 and dom(σ0) ∩ dom(σ1) �⊆ X0 ∩ X1.
The cases for (σ0,⊥)X0 and (σ1,⊥)X1 , and for (σ0,⊥)X0 and (σ1, abort), are
analogous.

We now define, for each pair (A0, A1) of disjoint resource sets and each
pair (α0, α1) of action sequences, the set α0A0‖A1α1 of all mutex fairmerges

of α0 using A0 with α1 using A1. This is the set of all fair interleavings of
α0 with α1 in which each step respects the resource constraints and a race
condition causes an error. The definition for finite traces is inductive in the
product of the lengths of the traces, and we include the empty sequence ε, to
allow a simpler formulation: the base case is when one of the traces is empty.
Note that the set α0A0‖A1α1 may be empty: for instance when α0 is the empty
sequence but α1 is not permitted because it needs a resource belonging to A0.
Again, although the case where both resource sets is empty plays a special role
in the sequel, the more general case has a naturally inductive formulation.

Definition 5.18 For finite traces α and β, and disjoint resource sets A0, A1,
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the set of traces αA0‖A1β is given inductively by:

αA0‖A1ε = {α | (A0, A1)
α−−→ ·}

εA0‖A1β = {β | (A1, A0)
β−→ ·}

(λ0α0)A0‖A1(λ1α1)

= {λ0 • λ1} if λ0 
� λ1

= {λ0; β | (A0, A1)
λ0−−→ (A′

0, A1) & β ∈ α0A′
0
‖A1(λ1α1) & λ0 
 β}

∪ {λ1; β | (A1, A0)
λ1−−→ (A′

1, A0) & β ∈ (λ0α0)A0‖A′
1
α1 & λ1 
 β}

if ¬(λ0 
� λ1)

Again we remark that the definition of parallel composition builds in the
resource constraints, only includes catenable cases, and combines adjacent
footsteps. The definition of the set of mutex fairmerges extends to infinite
traces in the usual way [17,7,6].

The fairmerge definition for pairs of traces extends in the obvious pointwise
way to sets of traces: when T0 and T1 are sets of traces we let T0A0‖A1T1 be
the union of the sets α0A0‖A1α1 as α0 ranges over T0 and α1 ranges over T1.
We will be mainly concerned with the case where A0 = A1 = {}, representing
what happens when two processes start up with no initial resources. Indeed,
we may abbreviate T0{}‖{}T1 as T0‖T1, omitting the empty subscripts.

6 Semantics of expressions

Let Tag = P(Var) be the set of read-only sets used to annotate footsteps.
Recall that Var is the union of Ide and Vint . For integer expressions e we
will define a footstep trace set [[e]] ⊆ (St × Vint)Tag . Similarly for boolean
expressions we will define a footstep trace set [[b]] ⊆ (St × Vbool )Tag . The
footstep trace set [[e]] of an integer expression will contain entries of the form
(σ, v)X where σ is a finite piece of state in which e evaluates to the integer value
v, and X is the set of variables whose values are read during the evaluation.

We can also give a semantics for list expressions E along similar lines, so
that the value of a list expression is a list of integer values: [[E]] ⊆ (St×V ∗

int)Tag .
We omit the details, which are straightforward. 5

Our semantic clauses for expressions can be obtained from the correspond-
ing clauses in the Reynolds semantics [19] by inserting and propagating the
relevant information about read-only variables.

5 It would also be easy to incorporate into this semantic model “impure” expressions such
as [e], whose value depends on the heap.
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Definition 6.1 The semantic functions

[[−]] : Expint → P((St × Vint)Tag)

[[−]] : Expbool → P((St × Vbool )Tag)

are defined inductively by the following clauses:

[[n]] = {([ ], n){}}

[[i]] = {([i : v], v){i} | v ∈ Vint}

[[e1 + e2]] = {(σ1 ∪ σ2, v1 + v2)X1∪X2
|

(σ1, v1)X1
∈ [[e1]] & (σ2, v2)X2

∈ [[e2]] & σ1 � σ2}

[[true]] = {([ ], true){}}

[[e1 = e2]] = {(σ1 ∪ σ2, v1 = v2)X1∪X2
|

(σ1, v1)X1
∈ [[e1]] & (σ2, v2)X2

∈ [[e2]] & σ1 � σ2}

[[b1 and b2]] =

{(σ1, false)X1
| (σ1, false)X1

∈ [[b1]]}

∪ {(σ1 ∪ σ2, t)X1∪X2
| (σ1, true)X1

∈ [[b1]] & (σ2, t)X2
∈ [[b2]] & σ1 � σ2}

[[if b then e1 else e2]] =

{(σ0 ∪ σ1, v1)X0∪X1
| (σ0, true)X0

∈ [[b]] & (σ1, v1)X1
∈ [[e1]] & σ0 � σ1}

∪ {(σ0 ∪ σ2, v2)X0∪X2
| (σ0, false)X0

∈ [[b]] & (σ2, v2)X2
∈ [[e2]] & σ0 � σ2}

Here we have specified that a conjunction b1 and b2 is evaluated using the
usual short-circuit; this detail is not crucial in what follows, and the ensuing
development can be modified as needed if we use another interpretation such
as strict, left-to-right evaluation.

There is no need to use a more elaborate semantic structure allowing for
the possibility of interference during expression evaluation, since the model
is intended only to describe executions in an environment that obeys the
Dijkstra principle: interference is assumed to occur only on synchronization.
It is therefore safe to ignore intermediate states. We have also assumed in the
above definitions that expression evaluation always terminates, so that we did
not need to include footsteps of the form (σ,⊥)X to express non-terminating
cases. It is straightforward to extend the semantic definitions in this manner
to include non-terminating expressions.

Example 6.2 To evaluate x + y we need a value for x and a value for y:

[[x + y]] = {([x : v, y : v′], v + v′){x,y} | v, v′
∈ Vint}

Similarly, to evaluate x + x we need (only) a value for x:

[[x + x]] = {([x : v], 2v){x} | v ∈ Vint}.

Note that [[x + y]] = [[y + x]], so that this expression semantics abstracts away
from evaluation order.
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A boolean expression gives rise to a pair of sets of single-footstep traces,
in the obvious way: we distinguish the traces describing “true” cases from the
traces describing “false” cases.

Definition 6.3 For a boolean expression b, let [[b]]true , [[b]]false ⊆ Tr be given
by

[[b]]true = {(σ, σ)X | (σ, true)X ∈ [[b]]}

[[b]]false = {(σ, σ)X | (σ, false)X ∈ [[b]]}

Example 6.4
[[true]]true = {([ ], [ ]){}} = {δ}

[[true]]false = {}

Example 6.5 Let b be the expression (x = y) and (y = z).

[[b]]false = {[x : v, y : v′], [x : v, y : v′]){x,y} | v �= v′}

∪ {([x : v, y : v, z : v′′], [x : v, y : v, z : v′′]){x,y,z} | v �= v′′}

[[b]]true = {([x : v, y : v, z : v], [x : v, y : v, z : v]){x,y,z} | v ∈ Vint}

7 Semantics of commands

For each command c we define the footstep trace set [[c]] ⊆ Tr, by structural
induction. The definition ensures that for each c, every trace in [[c]] is obtained
from a catenable sequence of actions, so the trace set specifies the program’s
behavior in a loosely connected environment.

Definition 7.1 The semantic function [[−]] : Com → P(Tr) is defined induc-
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tively by the following clauses:

[[skip]] = {([ ], [ ]){}}

[[i:=e]] = {(σ ∪ [i : v], [σ | i : v′])X\i | (σ, v′)X ∈ [[e]] & σ � [i : v]}

[[[e]:=e′]] = {(σ ∪ σ′ ∪ [v : v0], [σ ∪ σ′ | v : v′])(X∪X′)\v |

(σ, v)X ∈ [[e]] & (σ′, v′)X′ ∈ [[e′]] & σ � σ′ & (σ ∪ σ′) � [v; v0]}

[[i:=[e]]] = {(σ ∪ [i : v0, v : v′], [σ | i : v′, v : v′])(X∪{v})\i |

(σ, v)X ∈ [[e]] & σ � [i : v0, v : v′]}

[[i:=cons(E)]] = {(σ ∪ [i : v], σ ∪ [i : l, l : v0, . . . , l + n : vn])X\i |

(σ, [v0, . . . , vn])X ∈ [[E]] & σ � [i : v] & l, l + 1, . . . , l + n �∈ dom(σ)}

[[dispose e]] = {(σ ∪ [v : v′], σ\v)X\v | (σ, v)X ∈ [[e]] & σ � [v : v′]}

[[c1; c2]] = {α1; α2 | α1 ∈ [[c1]] & α2 ∈ [[c2]] & α1 � α2} = [[c1]]; [[c2]]

[[if b then c1 else c2]] = [[b]]
true

; [[c1]] ∪ [[b]]
false

; [[c2]]

[[while b do c]] = ([[b]]
true

; [[c]])∗; [[b]]
false

∪ ([[b]]
true

; [[c]])ω

[[c1‖c2]] =
S
{α1{}‖{}α2 | α1 ∈ [[c1]] & α2 ∈ [[c2]]}

[[with r when b do c]] = wait∗; enter ∪ waitω

where wait = acq(r)[[b]]
false

rel(r) ∪ {try(r)}

enter = acq(r)[[b]]
true

; [[c]]rel(r)

[[resource r in c]] = {cat(α\r) | α ∈ [[c]]
r
}

[[local i = e in c]] = {(σ, σ)X ; (α\i) |

(σ, v)X ∈ [[e]] & α ∈ [[c]]
i=v

& (σ, σ)X � (α\i)}

Note that primitive commands such as skip, assignment, update, lookup,
allocation, and disposal have traces consisting of a single footstep. The traces
of a conditional critical region contain resource actions. Note the restriction,
when building traces of c1; c2, to catenable combinations; similarly for condi-
tional commands, loops, conditional critical regions, and parallel composition.

The semantic clause for resource r in c involves traces of c which assume
that r is local, so that no concurrent process can access r, and that r is initially
available. This reflects the scoping rules: the scope of the local resource name
is c and excludes any processes running in parallel.

For a trace set T we let Tr be the set of traces in T which are sequential

for r and consistent with r being initially available; more precisely, these are

the traces α in T such that α\r is catenable and {}
α�r

====⇒ ·. We write α\r
for the sequence obtained by deleting all actions in α that involve r. The
catenability requirement on α\r means that for each subsequence of α of the
form βacq(r)λ we have β 
 λ. This constraint reflects the fact that r is a local
resource, so there can be no interference from outside: no concurrent process
can synchronize using the local resource. For a set A of resource names we

S. Brookes / Electronic Notes in Theoretical Computer Science 155 (2006) 277–307 293



define

A
try(r)

=====⇒ A if r ∈ A

A
acq(r)

======⇒ A ∪ {r} if r �∈ A

A
rel(r)

=====⇒ A − {r} if r ∈ A

Thus we have {}
α�r

====⇒ · if and only if α	r is executable assuming that r is a
local resource which is initially available. Equivalently, this holds if and only
if α	r is a prefix of a trace in the set (acq(r) try(r)∞ rel(r))∞.

The semantic clause for local i = e in c involves a related notion of
sequentiality: [[c]]i=v is the set of traces of c which are sequential for i and
consistent with the initial value v for i. A trace with these properties represents
an execution in which no concurrent process can affect the value of i, and this
corresponds to the fact that i is a local variable. For a trace α we define α\i to
be the trace obtained by deleting i from all states and read-only tags. When
α is catenable and sequential for i, the trace α\i will also be catenable.

There is considerable overlap with the corresponding Reynolds semantic
clauses [19], and with action trace semantics [7]. The main differences involve
the collapsing of consecutive state changes, book-keeping for read-only tags,
and the restriction to catenable traces.

8 Examples

(i) [[x:=x + 1]] = {([x : v], [x : v + 1]){} | v ∈ Vint}

(ii) [[x:=x + 1; x:=x + 1]] = {([x : v], [x : v + 2]){} | v ∈ Vint} = [[x:=x + 2]]

(iii) [[x:=x + 1‖x:=x + 1]] = {([x : v], abort) | v ∈ Vint}

(iv) [[with r do x:=x + 1]] = try(r)∗ acq(r) [[x:=x + 1]] rel(r) ∪ {try(r)ω}

(v) [[with r do x:=x + 1‖with r do x:=x + 1]] contains traces of the forms
acq(r) α rel(r) acq(r) β rel(r), acq(r) α rel(r) try(r)ω, and try(r)ω, where
α, β ∈ [[x:=x + 1]], as well as traces of similar form containing additional
try(r) steps. Only traces of the first kind in which α 
 β are sequential
for r. It follows that

[[resource r in (with r do x:=x + 1‖with r do x:=x + 1)]]

= {α; β | α, β ∈ [[x:=x + 1]] & α 
 β}

= [[x:=x + 1; x:=x + 1]] = [[x:=x + 2]].

(vi) The command [x]:=x + 1‖[y]:=y + 1 has traces of the form
([x : v, y : v′, v : n, v′ : n′], [x : v, y : v′, v : v + 1, v′ : v′ + 1]){x,y}
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where v �= v′, and traces of the form ([x : v, y : v, v : n], abort), for all
v, n, v′, n′ ∈ Vint .
The command local x = 0 in ([x]:=x + 1‖[y]:=y + 1) has traces of the
form ([y : v′, 0 : n, v′ : n′], [y : v′, 0 : 1, v′ : v′ + 1]){y} for all v′, n, n′ ∈ Vint

such that v′ �= 0, and traces of the form ([y : 0, 0 : n], abort) for all
n ∈ Vint . This command is semantically equivalent to [0]:=1‖[y]:=y + 1.

(vii) [[x:=1; y:=2]] = {([x:v, y:v′], [x:1, y:2]){} | v, v′ ∈ Vint} = [[y:=2; x:=1]].

(viii) Let c1 and c2 be the commands

with r1 do with r2 do x:=1

with r2 do with r1 do y:=2

The command resource r1, r2 in (c1‖c2) has the trace set

{([ ],⊥){}} ∪ {([x : v, y : v′], [x : 1, y : 2]){} | v, v′
∈ Vint}.

The first case represents the potential for deadlock, which occurs if the
first thread acquires r1 and the second acquires r2.

(ix) It is easy to see that

[[x:=cons(1)]] = {([x : v0], [x : v, v : 1]){} | v0, v ∈ Vint}

[[y:=cons(2)]] = {([y : v1], [y : v′, v′ : 2]){} | v1, v
′ ∈ Vint}

It then follows that

[[x:=cons(1)‖y:=cons(2)]]

= [[x:=cons(1)]]‖[[y:=cons(2)]]

= {([x : v0, y : v1], [x : v, y : v′, v : 1, v′ : 2]){} | v0, v1, v, v′ ∈ Vint}

= [[x:=cons(1); y:=cons(2)]]

(x) dispose(x);dispose(y) has trace set

{([x : v, y : v′, v : v0, v
′ : v′

0], [x : v, y : v′]){x,y} | v, v′, v0, v
′
0 ∈ Vint & v �= v′}

∪ {([x : v, y : v, v : v′], abort) | v, v′ ∈ Vint}

(xi) while true do ([x]:=0; x:=x + 1) has the trace set

{(σ,⊥){} | (x, v) ∈ σ & dom(σ) = {x} ∪ {n ∈ Vint | v ≤ n}}.

(xii) Let PUT and GET be the following commands:

PUT :: with buf when full = 0 do (z:=x; full :=1)

GET :: with buf when full = 1 do (y:=z; full :=0)
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The trace set of PUT is:

[[PUT ]] = wait∗0 enter 0 ∪ waitω
0

wait0 = {try(buf )} ∪ acq(buf ) [[full = 0]]false rel(buf )

enter 0 = acq(buf ) [[full = 0]]true ; [[z:=x; full :=1]] rel(buf )

Similarly, the trace set of GET is given by:

[[GET ]] = wait∗1 enter 1 ∪ waitω
1

wait1 = {try(buf )} ∪ acq(buf ) [[full = 1]]false rel(buf )

enter1 = acq(buf ) [[full = 1]]true ; [[y:=z; full :=0]] rel(buf )

Let prog be the program

full :=0; resource buf in (x:=cons(−); PUT )‖(GET ;dispose(y)).

The trace set of this program is

[[prog]] = {([full : v0, x : v1, y : v2, z : v3], [full : 0, x : v, y : v, z : v]){}

| v, v0, v1, v2, v3 ∈ Vint}.

Note that this trace set consists of single footsteps, one for each possible
initial state and heap cell chosen for x. In fact this is the same as the trace
set of the sequential program full :=0; x:=cons(−); z:=x; y:=z;dispose(y).

9 Semantic properties

As these examples suggest, the trace set of a resource-free command has a
degenerate form, containing only single-step traces. (The program of example
(xii) has no free resource names.) We can establish a more general property
from which this result follows. We already introduced res(c), the set of re-
source names occurring free in c. Similarly, for a trace α, let res(α) be the set
of resource names appearing in actions along α. The following result is easy
to establish by structural induction.

Lemma 9.1 For all commands c, and all traces α ∈ [[c]], res(α) ⊆ res(c).

Given the structural constraints obeyed by all traces in [[c]], i.e. that suc-
cessive footsteps get combined between resource actions, it follows that a com-
mand c with no free resource names will have only singleton traces.

Theorem 9.2 For all commands c such that res(c) = {}, every trace of c is

a footstep, one of the three forms (σ0, σ
′
0)X , (σ0, abort), or (σ0,⊥)X , where σ0

and σ′
0 range over states.
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The trace set of such a command corresponds to a (non-deterministic)
state transformation, represented as a subset of St × (St ∪ {abort ,⊥}). We
can make this correspondence explicit as follows.

A footstep specifies a “footprint”: just the pieces of state needed to enable
the step and describe its result [15,14]. Intuitively, a step of the form (σ0, σ

′
0)X

is executable (without error) from a “global” state σ if σ0 is a subset of σ and
the part of σ not needed for the step, which is assumed to remain unchanged,
can be properly combined with σ′

0 to produce the resulting state. On the
other hand, if σ is consistent with σ0 but missing part of σ0 the step is still
executable but leads to a runtime error because of an uninitialized variable.
With this rationale, and similar considerations for the other forms of footsteps,

we therefore define the enabling relations
λ

==⇒⊆ St×(St∪{abort ,⊥}) as follows.

Definition 9.3 For a footstep λ the enabling relation
λ

==⇒ is the least relation
satisfying the following conditions:

• For a normal footstep λ = (σ0, σ
′
0)X

· if σ0 ⊆ σ and (σ − σ0) ⊥ σ′
0 then σ

(σ0,σ′
0)X

========⇒ (σ − σ0) ∪ σ′
0

· if σ�dom(σ0) ⊂ σ0 then σ
(σ0,σ′

0)X

========⇒ abort

• For an error step λ = (σ0, abort),

· if either σ0 ⊆ σ or σ�dom(σ0) ⊂ σ0 then σ
(σ0,abort)

========⇒ abort

• For a non-terminating step λ = (σ0,⊥)X ,

· if σ0 ⊆ σ then σ
(σ0,⊥)X

=======⇒ ⊥

· if σ�dom(σ0) ⊂ σ0 then σ
(σ0,⊥)X

=======⇒ abort .

We interpret a resource action as having a trivial effect on the state, since
such actions only affect and depend upon the availability of resources. Thus

we will let σ
λ

==⇒ σ, for all states σ, when λ is a resource action. Since an error

is terminal, we define abort
λ

==⇒ abort for all actions λ; similarly we define

⊥
λ

==⇒⊥ for all λ.

We can then generalize further to obtain the effect of an arbitrary footstep
trace α, by composing the effects of its actions in the appropriate order. For a
finite sequence α = λ0 . . . λn we let σ

α
==⇒ σ′ if and only if there is a sequence

σ0, . . . , σn−1 such that σ
λ0===⇒ σ0

λ1===⇒ · · ·
λn−1

=====⇒ σn−1
λn===⇒ σ′. For an infinite

sequence α = λ0 . . . λn . . . we let σ
α

==⇒ ⊥ if there is an infinite sequence

σ0, . . . , σn, . . . such that σ
λ0===⇒ σ0

λ1===⇒ · · ·
λn−1

=====⇒ σn−1
λn===⇒ σn · · ·

We then obtain, for a command c, a non-deterministic state transformation
|c| ⊆ St × (St ∪ {abort ,⊥}) in the obvious way.

Definition 9.4 For a program c, the state transformation denoted by c is
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given by:

|c| =
⋃

{(σ, σ′) | ∃α ∈ [[c]]. σ
α

==⇒ σ′}.

This definition describes not just the minimal pieces of state change caused
by a program but specifies, for an arbitrary initial state, the possible results
of executing the program without interference.

Note that for resource-free programs we can reason compositionally in the
usual way about state transformations; for example, with the obvious notion of
relational composition we have |c1; c2| = |c2|◦|c1|, when c1 and c2 are resource-
free. This simple formula echoes the familiar denotational semantic clause for
sequential composition of non-deterministic guarded commands. Our seman-
tics thus generalizes the standard relational semantics of non-deterministic
sequential programs to the parallel setting in a natural manner.

With these definitions in hand we can now formulate precisely what it
means for a command to be error-free from a given initial state.

Definition 9.5 The command c is error-free from state σ if no trace of c

executable from σ leads to abort:

∀α ∈ [[c]]. ¬(σ
α

==⇒ abort).

Equivalently, c is error-free from σ if and only if (σ, abort) �∈ |c|.

Error-freedom implies the absence of race conditions and dangling pointers,
as well as the avoidance of uninitialized variables. For instance, example (xii)
above shows that the program

full :=0; resource buf in

(x:=cons(−); PUT )||(GET ;dispose(y))

is error-free from any state σ with dom(σ) ⊇ {full , x, y, z}. Even though the
first process allocates a heap cell and the second disposes it, there is no danger
here. This is an example of ownership transfer [14].

In contrast, the program

full :=0; resource buf in

(x:=cons(−); PUT ;dispose(x))||(GET ;dispose(y))

is not error-free from any state, because even if the program is executed from
a state in which full , x, y, z all have initial values both processes will attempt
to dispose the same cell. If the program is started from a state in which one
of the free identifiers is uninitialized there will also be a runtime error because
the program will try to read or write this identifier. The footstep trace set for
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this program is

{([full : v0, x : v1, y : v2, z : v3], abort) | v0, v1, v2, v3 ∈ Vint}.

Note that for each state σ there is a way to choose v0, v1, v2, v3 such that

σ
([full :v0,x:v1,y:v2,z:v3], abort)

=======================⇒ abort .

10 Footstep traces and action traces

In previous work we introduced a semantics based on action traces [7] and
used it to formulate a suitable notion of validity for a class of resource-sensitive
partial correctness formulas and to establish soundness for a form of concurrent
separation logic. The footstep trace model can be obtained by abstraction
from the action traces model, retaining only the details relevant for reasoning
about partial correctness and race-freedom. In fact, footstep trace semantics
is strictly more abstract than action trace semantics; whenever two commands
have the same action traces they will also have the same footstep traces, but
the converse does not hold. Since action trace equivalence implies footstep
trace equivalence, the footstep trace semantics satisfies all laws of program
equivalence that hold for action trace semantics. In addition, footstep trace
semantics satisfies “sequential” laws such as [[x:=x+1; x:=x+1]] = [[x:=x+2]],
which fails in action trace semantics.

We refer the reader to [7] for the action trace semantic definitions, but we
will briefly summarize some of the main concepts in enough detail to justify
our claim. Intuitively, the footstep trace set of a program can be constructed
by identifying a subset of the program’s action traces – the “loosely coupled”
action traces of the program – and collapsing adjacent actions affecting the
state in such traces, to avoid making intensional distinctions based on the
relative order of such actions. An action trace is said to be loosely coupled
if it represents an interactive computation of the program in which processes
running concurrently are assumed to cause state changes only through syn-
chronization, so that we need only allow for external state change when the
program acquires a resource.

Let μ range over the action alphabet used in action trace semantics, as
described by the following abstract grammar, in which i ranges over identifiers,
v, v′, v0, . . . , vn over integers, and r over resource names:

μ ::= δ | i=v | i:=v | [v]=v′ | [v]:=v′ |

alloc(v, [v0, . . . , vn]) | disp(v) |

try(r) | acq(r) | rel(r) | abort
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An action trace is a finite or infinite sequence of actions drawn from this
alphabet.

Each action μ has an effect
μ

==⇒ represented as a partial function from St to
St∪{abort}. The effect of an action specifies the states in which the action is
enabled, and what happens to the state when the action occurs. For example,
the read action i=v is only enabled in σ if σ(i) = v, and causes no state
change.

We then obtain for a finite action trace α an effect
α

==⇒⊆ St×(St∪{abort}),
by composing the actions sequentially. Similarly for an infinite action trace α

we have
α

==⇒⊆ St × {⊥}. As in [7] we can define an interference relation on
actions: two actions interfere, written μ 
� μ′, if one action involves a write to
an identifier or heap cell used by the other action.

For each action μ we define a set F(μ) of footstep actions:

F(δ) = {([ ], [ ]){}}

F(i=v) = {([i : v], [i : v]){i}}

F(i:=v) = {([i : v0], [i : v]){} | v0 ∈ Vint}

F([v]=v′) = {([v : v′], [v : v′]){v}}

F([v]:=v′) = {([v : v0], [v : v′]){} | v0 ∈ Vint}

F(alloc(v, [v0, . . . , vn])) = {([ ], [v : v0, v + 1 : v1, . . . , v + n : vn]){}}

F(disp(v)) = {([v : v0], [ ]){} | v0 ∈ Vint}

F(μ) = {μ} if μ is a resource action

F(rel(r)) = {rel(r)}

F(try(r)) = {try(r)}

F(abort) = {abort}

Note that a write action i:=v determines a set of footsteps, each of which
writes the value v to i; the set F(i:=v) contains a footstep for each possible
initial value of i. For similar reasons update actions [v]:=v′, allocations, and
disposals all generate non-trivial sets of footsteps. In all other cases the action
μ determines a single footstep action.

The key relationships between the notions of effect and interference used
in the two models can be summarized as follows:

• For all states σ and σ′,

σ
μ

==⇒ σ′ iff ∃λ ∈ F(μ). σ
λ

==⇒ σ′.
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• For all actions μ, and all states σ, σ′′:

(∃σ′. σ
μ

==⇒ σ′ μ′

===⇒ σ′′) iff ∃λ ∈ F(μ), λ′
∈ F(μ′). λ 
 λ′ & σ

λ;λ′

====⇒ σ′′.

• For all actions μ, μ′:

μ 
� μ′ ⇔ ∃λ ∈ F(μ), λ′
∈ F(μ′). λ 
� λ′.

With these results at hand we can now state and prove the key technical
result relating the two models.

Theorem 10.1 (i) If two expressions denote the same action trace set, they

also denote the same footstep trace set.

(ii) If two commands denote the same action trace set, they also denote the

same footstep trace set.

Proof (Sketch) The details for expressions are simpler, so we focus on com-
mands. Let us say that an action trace is loosely coupled if it can be executed
from some initial state, allowing interference only at synchronizations. We can
formalize this property as follows. Define a loosely coupled enabling relation
μ
↪→ for actions μ, so that:

• σ
μ

↪→σ′ iff σ
μ

==⇒ σ′, when μ is not an acquire action

• σ
μ

↪→σ′ for all σ and σ′, if μ is acq(r) for some resource name r.

As before, this generalizes to action traces in the obvious way by composition,

so that for a finite sequence α = μ1 . . . μn we let σ
α
↪→ σ′ iff there is a sequence

of states σ1, . . . , σn−1 such that σ
μ1
↪→ σ1

μ2
↪→ · · ·

μn−1

↪→ σn−1

μn

↪→ σ′. We say that the

action trace α is loosely coupled if there is a state σ such that σ
α
↪→·.

For a loosely coupled action trace α the set F(α) represents the set of
catenable footstep traces generated by α. Let [[c]]fs be the footstep trace set of
c, let [[c]]act be the action trace set of c as defined in [7], and let [[c]]lc ⊆ [[c]]act
be the set of loosely coupled action traces of c. The following property can be
proven by structural induction on c, based on the semantic clauses:

[[c]]fs = {cat(β) | β ∈ F(α) & α ∈ [[c]]lc}.

Hence action trace equivalence implies footstep trace equivalence. �

We have shown that, for all pairs of commands c1 and c2, if [[c1]]act = [[c2]]act
then [[c1]]fs = [[c2]]fs . This property makes precise our claim that footstep trace
semantics is more abstract than action trace semantics. The fact that the con-
verse is false is easily demonstrated by considering some example programs.
Action trace sets contain traces in which the ordering of individual read and
write actions is recorded; these intermediate details are ignored in the con-
struction of the new model, because of the “mumbling” effect built into our def-

S. Brookes / Electronic Notes in Theoretical Computer Science 155 (2006) 277–307 301



inition of concatenation. For example, the commands x:=1; x:=x+1 and x:=2
have the same footstep traces, but different action traces, since x:=1; x:=x+1
has action traces of the form x:=1 x=v x:=v + 1, for v ∈ Vint . Similarly the
commands x:=1; y:=2 and y:=2; x:=1 have the same footstep traces but not
the same action traces. In addition, the action trace model distinguishes be-
tween the commands while true do x:=x + 1 and while true do x:=x + 2,
whereas they have the same footstep traces, namely {([x : v],⊥){} | v ∈ Vint}.

A more compelling illustration of the advantages of footstep traces over
action traces is provided by some programs involving the one-place buffer
resource and the code fragments PUT and GET. The footstep trace semantics
of the programs

full :=0; resource buf in

(x:=cons(−); PUT )‖(GET ;dispose(y))

and

full :=0; resource buf in

(x:=cons(−); PUT ;dispose(x))‖GET

are identical, both equal to the set

{([full : v0, x : v1, y : v2, z : v3], [full : 0, x : v, y : v, z : v]){}

| v, v0, v1, v2, v3 ∈ Vint}.

Their action trace sets differ, because the action traces retain information
about the relative ordering of steps: in the second program the disposal action
may occur concurrently with GET but in the first program it follows the GET.

Furthermore, consider what happens when we iterate the buffer processes,
running a sequence of puts concurrently with a sequence of gets. For all non-
negative integers N , the program

full :=0; resource buf in

(x:=cons(−); PUT )N‖(GET ;dispose(y))N

has exactly the same footstep traces as the above programs: again the trace
set degenerates to a set of single footsteps, and the effect is still to (re)set full

to 0 and to make x, y, and z all equal; in contrast, the action trace set of this
program (using the semantics of [7]) suffers from a combinatorial explosion,
and contains many traces that yield the same effect.
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Similarly all programs of the form

full :=0; resource buf in

(x:=cons(−); PUT ;dispose(x))N‖GET N

have the same trace set again.

Although these two families of programs (parameterized by N) are rather
contrived, they demonstrate the potential of our new semantics for greatly
reducing the need to consider interleavings. It is also worth remarking that
the fact that each of these programs has the same set of footstep traces implies
that they all satisfy exactly the same formulas of concurrent separation logic.
This is by no means obvious; each family of programs requires a different
proof strategy in the logic [14] because one needs to choose an appropriate
resource invariant that expresses the ownership transfer policy implicit in the
program structure. For programs in the first family ownership of the heap cell
is deemed to transfer after a put operation, whereas this is not the case for
programs in the second family.

11 Concurrent separation logic

Concurrent separation logic [7,14] is a Hoare-style formalism for specifying and
proving resource-sensitive partial correctness formulas for parallel programs
that share mutable state, modifying the inference rules of the Owicki-Gries
logic to make judicious use of separating conjunction [18] in a manner proposed
by Peter O’Hearn. A resource-sensitive partial correctness formula has the
form Γ � {p}c{q}, where Γ is a resource context specifying a partition of the
shared variables of c among resources, together with a resource invariant for
each resource. The pre- and post-conditions p and q, as well as the resource
invariants, are separation logic formulas [18] subject to certain restrictions.
O’Hearn [14] has shown that this logic allows correctness proofs for a number
of interesting examples, involving a novel form of “ownership transfer” in
which permission to manipulate a pointer may be deemed to transfer from one
process to another. The soundness of this logic is far from obvious: the original
Owicki-Gries rules are unsound in the presence of pointers, and John Reynolds
has shown that O’Hearn’s rules are not sound unless certain constraints are
imposed on the class of formulas allowed as resource invariants.

Our earlier paper [7] introduced a notion of validity for concurrent separa-
tion logic formulas, phrased in terms of a resource-sensitive “local enabling”
relation ==⇒

Γ
based on action trace semantics, and proved soundness of the

logic with respect to this notion of validity, assuming that resource invariants
are precise separation logic formulas [18]. This semantics involved actions for
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reading and writing to identifiers, lookup and update of heap locations, and
allocation and disposal of heap locations, in addition to resource actions, an
idle action, and an error action. The idea is that when σ

α
==⇒

Γ
σ′ the action

trace α describes an execution in which a process performs the steps of α in a
parallel context which obeys the Dijkstra principle by respecting the resource
invariants and only accessing shared state when holding the relevant resources.

Using footstep traces instead of action traces leads to an analogous notion
of local enabling, again describing executions in an environment that respects
resources. We can then formulate the analogous notion of validity for concur-
rent separation logic formulas, based on footsteps. We say that Γ � {p}c{q}
is footstep-valid if for all σ satisfying p, all footstep traces α ∈ [[c]], and all
σ′ �= ⊥ such that σ

α
==⇒

Γ
σ′, σ′ satisfies q. (As in [7] but using footstep traces

rather than action traces to underpin the definition.) Although the difference
in underlying model suggests that the notion of footstep-validity might differ
from the notion of validity used in [7], in fact the two notions coincide. We
will discuss some of the ramifications of this result after a brief summary of
the main ideas behind the proof.

Theorem 11.1 Γ � {p}c{q} is action-trace valid iff it is footstep-trace valid.

Proof (Sketch) The resource context Γ specifies, for each resource occurring
in c, a set of identifiers protected by that resource, and a resource invariant.

By analogy with [7], we can define a “local enabling” relation
λ

==⇒
Γ

for footstep

actions λ, modifying the definition of
λ

==⇒ to take account of the resource invari-
ants and protection lists, and treating any violation of the resource discipline
as an error. We show that for all μ and μ′:

σ
μ

==⇒
Γ

σ′ iff ∃λ ∈ F(μ). σ
λ

==⇒
Γ

σ′.

In addition, for all actions μ and μ′, and all states σ, σ′′,

(∃σ′. σ
μ

==⇒
Γ

σ′ μ′

===⇒
Γ

σ′′) iff ∃λ ∈ F(μ), λ′
∈ F(μ′). λ 
 λ′ & σ

λ;λ′

====⇒
Γ

σ′′.

With the obvious extension of F to sequences of actions, it then follows that
for all action traces α, and all σ and σ′′, σ

α
==⇒

Γ
σ′′ if and only if there is a

footstep trace β ∈ F(α) such that σ
β

==⇒
Γ

σ′′. Hence the two notions of validity

coincide. �

The following theorem can then be proven directly, using footstep trace
semantics instead of action traces and following the proof strategy of [7]. It
can also be deduced from the soundness result of [7] and the previous theorem.

Theorem 11.2 (Soundness of concurrent separation logic) Concurrent

separation logic is sound with respect to footstep-trace validity: every resource-
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sensitive partial correctness formula provable from the inference rules is footstep-

trace valid.

As a consequence one can use footstep traces in preference to action traces
to formalize a correctness proof of a parallel program, an advantage because of
the larger step size, which may reduce the number of interleavings. Indeed, we
have already shown earlier that footstep trace semantics supports sequential

reasoning about synchronization-free code fragments: one can replace any
synchronization-free code fragment by another which denotes the same state
transformation, without affecting the footstep trace semantics of the overall
program. One can use more elementary reasoning techniques to deal with
synchronization-free code, such as the familiar Hoare-style inference rules for
sequential programs.

12 Granularity

We have worked so far with states whose structure assumes that an integer-
valued variable is stored as a single integer: we abstracted away from machine-
level details such as word size. If instead we assume that programs are exe-
cuted on a machine with a fixed, finite word size, it would be natural to intro-
duce a more concrete model of state in which we represent an integer-valued
variable as a list of word-valued component variables. For purely sequential
programs it is well known that the more concrete model is unnecessary if we
care only about high-level properties: a state transformation semantics based
on integers is consistent with the more concrete semantics based on words. The
same is true for the footstep trace semantics. It is straightforward to define a
low-level word-based version of footstep traces, with variables represented as
lists of components, each holding an integer small enough to fit inside a single
word. Since the semantic definitions ensure that consecutive (and catenable)
footsteps get collapsed into a single step, a sequence of word-level operations
that implements an integer-level operation (like writing an integer to a vari-
able) will give rise to a single word-level footstep. It can then be shown that
the high-level footstep semantics is equipollent to the low-level, in that two
programs have the same high-level semantics if and only if they have the same
low-level semantics. This result is analogous to a similar result presented by
the author at MFPS 2004 [8], which discussed high- and low-level versions of
action trace semantics [7] and the relationship between the two versions. The
result can be seen as a justification for adopting a more abstract model with
no loss of generality.
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13 Future work

If c1 and c2 have the same footstep traces, then for all program contexts P [−],
P [c1] and P [c2] satisfy the same concurrent separation logic formulas. 6 The
converse fails: for example the commands (x:=1; y:=2)‖x:=2 and x:=1‖x:=2
have different footstep traces, since the first command has traces of the form
(σ, abort) where x, y ∈ dom(σ) whereas the second command does not need a
value for y; nevertheless these commands satisfy the same concurrent sepa-
ration logic formulas (none!), because they both cause a race. It would be
interesting to see if we can further fine-tune the structure of footstep traces
to avoid making distinctions like this.

We have indicated the greater succinctness of the new semantic model by
applying it to some examples, and by proving a theorem to the effect that
for synchronization-free programs the semantics takes a simple degenerate
form equivalent to a (non-deterministic) state transformation. The semantic
definitions may be used directly to calculate footstep trace sets and analyze
program behavior, and this kind of manual analysis is made less tedious by the
streamlined structure of the semantic model. The semantics also validates a
number of laws of program equivalence which can be used to simplify program
analysis: in particular, all laws of equivalence valid for action trace semantics
are also valid for footstep traces, as was shown above. Nevertheless, the
manual approach is still error-prone and for large-scale programs with many
synchronization points we still face severe combinatorial problems, so that
mechanical assistance would be an advantage. We believe that our approach
may suggest a way to improve the efficiency of model checking [12,9], since our
semantics is designed to avoid unnecessary interleaving and hence may help
to tame the combinatorial explosion.

Recent papers [1,3] have proposed methods for reasoning about parallel
programs based on permissions, building on earlier work of Boyland [4] and
extending concurrent separation logic to deal with classic but logically tricky
examples such as readers/writers [10]. Initial investigations suggest that the
semantics presented in this paper offers a highly promising way to analyze such
programs: the model’s succinctness and its careful design to embody Dijkstra’s
principle facilitate compositional reasoning. We plan to use footstep trace
semantics to prove the soundness of Bornat’s permission-based logic [1], as it
seems likely that the proof method used in [7] may be adjustable in a natural
manner to incorporate permission accounting, by analogy with the way the
original soundness proof formalizes and justifies reasoning about ownership
transfer.

6 A similar implication holds for action trace semantics, by the previous remarks.
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