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The inflammatory response to Mycobacterium tuberculosis (M.tb) at the site of disease is Th1 driven.
Whether the Th17 cytokines, IL-17 and IL-22, contribute to this response in humans is unknown. We
hypothesized that IL-17 and IL-22 contribute to the inflammatory response in pleural and pericardial
disease sites of human tuberculosis (TB).

We studied pleural and pericardial effusions, established TB disease sites, from HIV-uninfected TB
patients. Levels of soluble cytokines were measured by ELISA and MMP-9 by luminex. Bronchoalveolar
lavage or pericardial mycobacteria-specific T cell cytokine expression was analyzed by intracellular
cytokine staining.

IL-17 was not abundant in pleural or pericardial fluid. IL-17 expression by mycobacteria-specific
disease site T cells was not detected in healthy, M.tb-infected persons, or patients with TB peri-
carditis. These data do not support a major role for IL-17 at established TB disease sites in
humans.

IL-22 was readily detected in fluid from both disease sites. These IL-22 levels exceeded matching
peripheral blood levels. Further, IL-22 levels in pericardial fluid correlated positively with MMP-9, an
enzyme known to degrade the pulmonary extracellular matrix. We propose that our findings support
a role for IL-22 in TB-induced pathology or the resulting repair process.

� 2011 Elsevier Ltd. Open access under CC BY license.
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1. Introduction

Human infection with Mycobacterium tuberculosis (M.tb) is
asymptomatic in most people and controlled, at least in part, by a T
cell response comprising CD4 and CD8 cells, and expression of the
Th1 cytokines, IFN-g and TNF-a.1 However, this control fails in
approximately 9.3 million people worldwide who develop clinical
tuberculosis (TB) each year.2 Sites of established disease in humans
represent compartments of failed immune control, offering the
opportunity to study immune mediators and understand mecha-
nisms of immune control in humans.

The inflammatory response is compartmentalized to the TB
disease site, and is strongly Th1 driven. Significantly higher levels of
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IFN-g, TNF-a and IL-12 are found in pleural fluid of TB pleuritis
patients, compared with peripheral blood, or non-tuberculous
effusions3 and antigen-specific Th1 cells are recruited to the
pleural fluid.4 IFN-g and TNF-a levels are also increased in another
disease site, tuberculous pericardial fluid, compared with malig-
nant and other infectious causes of pericarditis.5 Similarly,
recruitment of IFN-g expressing Th1 cells to the lungs of M.tb-
infected individuals was observed after bronchoscopic instillation
of M.tb purified protein derivative (PPD).6

Th17 cells, characterized by the expression of IL-17A, IL-17F and
IL-22, are distinct from Th1 and Th2 cells. IL-17Awas first described
as a mediator of inflammatory diseases.7 This cytokine has since
then been implicated in protective immunity against extracellular
bacterial and fungal pathogens.7 IL-17 also plays a role in the
control of murine M.tb infection as Th17 memory cells, induced by
TB vaccination, mediated recruitment of protective Th1 cells to the
lung by up-regulating chemokines.8 Upon infection, IL-17 may also
trigger recruitment of neutrophils to the inflamed lung and facili-
tate granuloma formation.9 Notably, a recent study in cattle showed
that induction of IL-17 responses after novel TB vaccination corre-
lated with protection against Mycobacterium bovis TB.10

IL-22 is primarily expressed by CD4 T cells,11 although a variety
of other immune cell subsets have also been shown to express this
cytokine.12,13 IL-22 acts on epithelial cells and fibroblasts and may
mediate deleterious or protective pro-inflammatory effects. While
IL-22 has been shown to be a critical pro-inflammatory mediator of
psoriasis,14 it also plays a role in host defense against extracellular
bacteria, at mucosal surfaces of the lung and gut, as well as the
skin.15,16 The role of IL-22 in immunity to mycobacteria is not well
understood. A recent study in mice showed that IL-22 knock-out
animals controlled Mycobacterium avium infection as well as wild
type mice. Similarly, treatment of M.tb infected mice with
neutralizing anti-IL-22 antibodies did not affect pathology, granu-
loma formation or bacterial burdens in the lung.17

However, recent studies in rhesus macaques reported upregu-
lation of IL-22-expressing T cells in BAL and lungs upon M.tb
infection18 and markedly increased IL-22 transcript expression in
severe TB, compared with uninfected macaques.19 Further, IL-22-
producing T cells were detected in lung tissue sections and gran-
ulomas of M.tb infected macaques.18 We recently reported that
peripheral blood IL-17 or IL-22-expressing mycobacteria-specific
CD4 T cells are induced in humans with M.tb infection or TB
disease.20 We also observed increased IL-22 levels in BAL fluid from
pulmonary TB patients, compared with healthy, M.tb infected
controls. By contrast, IL-17 was undetectable by ELISA in BAL fluid
from TB patients. Since BAL involves instillation of considerable
volumes of saline, we reasoned that cytokines present at low levels
may have been diluted to undetectable levels.20

We hypothesized therefore that IL-17 and IL-22 contribute to
the inflammatory response at the disease site of human TB. We
sampled undiluted fluid from two sites of TB disease, the pleura and
the pericardium, in effusions from patients with pleural and peri-
cardial TB, respectively. We also measured expression of these
cytokines by BAL and pericardial cells.

2. Methods

2.1. Study participants and specimen collection

Patients were enrolled at 3 clinical sites in Cape Town, South
Africa. The study was approved by the University of Cape Town
Research Ethics Committee (References 402/2005 & 289/2007), the
University of Stellenbosch Research Ethics Committee, and Lübeck.
Written informed consent was provided by participants, all were
HIV-1 seronegative.
Patients with pleural TB (n ¼ 19, 11 M/8 F, mean age 39.4, range
20e59 years) were enrolled at the Division of Pulmonology of
Tygerberg Academic Hospital, Cape Town. Pleural fluid, obtained
via thoracentesis, and peripheral blood for separation of plasma
were collected from all patients. TB was diagosed by a combination
of clinical features and investigations including pleural fluid anal-
ysis (differential white cell count; ADA, LDH and protein content;
cytological examination and culture), pleural biopsy with staining
for acid-fast bacilli, culture and histopathological examination.
Patients without a positive mycobacterial culture or without
suggestive histopathology responded to TB treatment with
a complete cure, strongly supporting the diagnosis.

Patients with pericardial TB (n ¼ 22, 15 M/7 F, mean age 44.7,
range 19e80 years) were recruited at the Cardiac Clinic in Groote
Schuur Hospital, Cape Town. Pericardial TB was diagnosed by
pericardial culture or PCR (positive for M.tb, n ¼ 7) and/or clinical
features, with symptoms and response to TB treatment (n ¼ 15).21

These patients underwent pericardiocentesis with echocardio-
graphic guidance for clinically indicated removal of their effusion.
Pericardial fluid samples from additional patients without TB, who
underwent open-heart surgery (n ¼ 26, 7 M/19 F, mean age 51.8,
range 23e80 years) were included as controls. Peripheral blood
was collected from both groups for serum analysis.

Healthy adults (n ¼ 8, 4 M/4 F, mean age 31.8, range, 21e42
years) recruited at the Khayelitsha Site B Clinic, Cape Town,
underwent bronchoscopy to obtain bronchoalveolar lavage (BAL)
samples as described previously.22 All subjects had evidence of
latent M.tb infection, as measured by a positive peripheral blood
mononuclear cell response to ESAT-6 and/or CFP-10 by IFN-g ELI-
Spot assay.22 Participants with any symptoms suggestive of TB,
a history of TB or isoniazid preventive therapy, regular smoking,
pregnancy, chronic cardiovascular or metabolic illnesses, immu-
nosuppressive medication, and age below 21 years were excluded.
All participants had negative cultures forM. tuberculosis in BAL and
no radiological evidence of lung disease.

2.2. Analysis of soluble cytokines and MMP-9

Cells from pericardial or pleural fluids were removed by
centrifugation and cell free fluids, plasma and serum samples
stored at �80 �C. Soluble IL-17A (eBioscience), IL-22 (R&D Systems)
and IFN-g (BD Biosciences) were quantified by sandwich ELISA
according to the manufacturers’ protocols. The lower detection
limit for IL-17 was 7 pg/mL, for IL-22 was 15.6 pg/mL and for IFN-g
was 14 pg/mL. MMP-9 was quantified in cell-free pericardial fluid
and serum by luminex analysis on the Bio-Plex platform (Bio-Rad
Laboratories), using customized Fluorokine MultiAnalyte Profiling
kits (R&D Systems), according to the manufacturer’s instructions.

2.3. BAL and pericardial cell analysis by intracellular cytokine
staining

Processing and stimulation of fresh BAL mononuclear cells for
intracellular cytokine staining was performed as previously
described.22 M.tb PPD (SSI, Denmark), staphylococcal enterotoxin B
(SEB, positive control, SigmaeAldrich), and no antigen (negative
control) were used. Pericardial cells were isolated from pericardial
fluid by centrifugation, washed and resuspended in RPMI con-
taining 10% fetal calf serum. These cells (2 � 106 per condition)
were stimulated for 18 hwith the same antigens as described above
for BAL cells. Brefeldin-A was added after 2 h. Cells were stained
with fluorescent antibodies to CD3-Pacific Blue (clone UCTH1), CD4
PerCP-Cy5.5 (SK3) or CD4 Qdot 605 (SK3, Invitrogen), CD8 PerCP-
Cy5.5 (SK1), IFN-g-AlexaFluor700 (K3), IL-22 PE (142928, R&D
Systems), all from BD Biosciences unless stated otherwise, and IL-
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17-AlexaFluor647 (eBio64CAP17, eBiosciences) at 4 �C for 60 min.
Acquisition on a LSR II flow cytometer (BD Biosciences) and data
analysis were performed as previously described.22

2.4. Data analysis

Statistical analyses were performed using Graphpad Prism
software (version 5). Intergroup comparisons were performed
using the ManneWhitney U test, and paired data were analyzed
using the Wilcoxon Signed Rank test. Associations were tested
using the Spearman correlation test.

3. Results

3.1. IL-17 levels at the TB disease site

We quantified soluble IL-17 levels at established TB disease sites.
IL-17 was undetectable in pleural effusions and in matching plasma
samples from the majority of patients with pleural TB disease
(Figure 1A). Only 2 patients had pleural fluid levels of IL-17 above
the assay threshold (249 and 237 pg/mL, both M.tb culture nega-
tive). Notably, these 2 patients also had very similar levels of IL-17
in plasma (Figure 1A). The median IL-17 concentration in pericar-
dial fluid from TB pericarditis patients was also 0 pg/mL (IQR 0-13.1,
Figure 1A). However, 10 patients did have detectable pericardial IL-
17 levels. IL-17 levels in matching serum samples were low, with
Figure 1. IL-17 at TB disease sites. (A) Levels of soluble IL-17 in pleural or pericardial
fluid and matching plasma or serum levels from TB pleuritis patients or TB pericarditis
patients, respectively. Differences were calculated using the Wilcoxon matched pairs
test. Serum and pericardial fluid IL-17 levels from open heart surgery controls without
TB are shown on the right (Controls). Differences between TB pericarditis and open
heart surgery controls were calculated using the ManneWhitney U test. (B and C)
Associations between pericardial fluid and serum levels (B), or pleural fluid and plasma
levels (C), of IL-17 from these patients. The Spearman test was used to test for
correlations.
a median of 2.5 pg/mL (IQR 0-17.3). Five of the patients with
detectable pericardial IL-17 were M.tb culture positive, while the
other 2 M.tb culture positive patients had no IL-17 in either serum
or pericardial fluid. There was no significant association between
M.tb culture positivity and detectable IL-17 at the site of disease
(p ¼ 0.172).

We also sampled pericardial fluid from patients without TB, as
controls. IL-17 was undetectable in the pericardial fluid from 25
pericarditis controls, and their matching serum samples.

3.2. Lack of IL-17 compartmentalization to the disease site

No difference was found in IL-17 levels between disease site
fluids and their matching plasma/serum samples, suggesting a lack
of compartmentalization to the disease compartments (Figure 1A).
Pericardial fluid and serum IL-17 levels correlated (Spearman
r ¼ 0.843, p < 0.001, Figure 1B). A positive correlation was also
observed between pleural fluid and plasma levels (Spearman
r ¼ 0.996, p < 0.001), although this analysis was weakened by the
undetectable levels of IL-17 in many patients. However, the latter
analysis was not significant when the only 2 patients with detect-
able pleural fluid IL-17 were excluded (Figure 1C).

3.3. Elevated IL-22 levels at the TB disease site

We previously reported significantly higher IL-22 levels in BAL
fluid from patients with pulmonary TB, compared with healthy
controls.20 To investigate the role of IL-22 at other TB disease sites,
we quantified soluble IL-22 in pleural and pericardial fluids from TB
patients. Levels of IL-22 in pleural effusion and pericardial effusions
from TB patients were readily detectable in most patients
(Figure 2A). Only 1 pleural TB patient and 2 pericardial TB patients
had undetectable effusion levels of IL-22. These fluid cytokine
levels were higher than those in matched plasma and serum
samples (Figure 2A). IL-22 levels were higher in pericardial effu-
sions compared with pleural effusions (p ¼ 0.04). We found no
associations between IL-22 levels in pericardial fluid or serum and
M.tb culture positivity (data not shown).

IL-22 was undetectable in the pericardial fluid from 24 of 25
control pericarditis patients without TB; 1 control patient had
84 pg/mL of IL-22 (Figure 2A).

IL-22 levels in pleural and pericardial fluids from TB patients
correlated strongly with matching serum or plasma levels,
respectively (Figure 2B and C).

Notably, we observed a positive correlation between pericardial
fluid IL-22 and IL-17 levels (Table 1). Levels of these cytokines in
pleural fluid did not correlate.

3.4. Elevated IFN-g levels at the TB disease site

It is well established that the anti-mycobacterial response at the
TB disease site is strongly Th1 driven.3e6 We detected high IFN-g
levels in pleural fluid samples from TB patients (median 5050 pg/
mL, IQR 465-10,875) and in pericardial fluid from TB pericarditis
patients (median 1450 pg/mL, IQR 0-3326) (Figure 3A). By contrast,
no IFN-g was detected in pericardial fluid from control pericarditis
patients without TB. IFN-g was not detected in plasma or serum
from TB pleuritis and pericarditis patients, highlighting the
compartmentalization of this Th1 cytokine to the inflammatory
response at the TB disease site (Figure 3A). IFN-g levels between
disease site fluids and matching plasma or serum samples did not
correlate (Figure 3B and C).

IFN-g levels at either disease sitewere not associated with IL-22,
or with IL-17 levels (Table 1).



Figure 3. IFN-g levels at TB disease sites. (A) IFN-g levels in pleural or pericardial fluid
and matching plasma or serum levels from TB pleuritis patients or TB pericarditis
patients, respectively. Serum and pericardial fluid IFN-g levels from open heart surgery
controls without TB are shown on the right (Controls). (B and C) Associations between
pericardial fluid and serum levels (B), or pleural fluid and plasma levels (C), of IFN-g
from these patients.

Figure 2. IL-22 at TB disease sites. (A) Levels of soluble IL-22 in pleural or pericardial
fluid and matching plasma or serum levels from TB pleuritis patients or TB pericarditis
patients, respectively. Serum and pericardial fluid IL-22 levels from open heart surgery
controls without TB are shown on the right (Controls). (B and C) Associations between
pericardial fluid and serum levels (B), or pleural fluid and plasma levels (C), of IL-22
from these patients.
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3.5. IL-22 is associated with matrix metalloproteinase-9 levels

Matrix metalloproteinase (MMP)-9 is a gelatinase, which was
shown to degrade components of the extracellular matrix, resulting
in tissue remodeling, destruction and/or pathology.23 Levels of
MMP-9 in blood are associated with severity of TB disease; patients
with extensive disease had the highest MMP-9 levels.24 To inves-
tigate whether IL-22 levels may be associated with mediators of
lung pathology, we quantifiedMMP-9 levels in pericardial fluid and
matching serum samples from 12 of the 22 TB pericarditis patients.
Pericardial MMP-9 levels correlated positively with serum and
pericardial levels of IL-22 from TB pericarditis patients (Figure 4).
3.6. IL-17-expressing CD4 T cells at disease sites

Next, we used intracellular cytokine staining to detect
mycobacteria-specific T cell responses at the disease site. IL-17 and
Table 1
Associations between cytokine levels at each TB disease site. Significant correlations
are in boldface.

Pleural fluid Pericardial fluid

IL-22 IFN-g IL-22 IFN-g

IL-17 *r ¼ �0.231
(p ¼ 0.342)

r ¼ �0.172
(p ¼ 0.495)

r [ 0.559
(p [ 0.020)

r ¼ 0.117
(p ¼ 0.613)

IL-22 e r ¼ 0.324
(p ¼ 0.190)

e r ¼ 0.130
(p ¼ 0.632)

*Spearman correlation analysis.
IFN-g expression were measured in BAL and pericardial cells after
stimulation with PPD, SEB or no antigen (Figure 5A). Measurement
of IL-22 expression was not reliable as no IL-22-expressing T cells
were detected upon SEB stimulation (data not shown). These data
were thus not included in the analysis. We detected no significant
upregulation of IL-17 expression in PPD stimulated CD4 T cells
relative to unstimulated cells from 8 healthy subjects with latent
M.tb infection (Figure 5B). By contrast, frequencies of BAL CD4 T
cells expressing IFN-g upon PPD stimulation exceeded those in
unstimulated cells. Similarly, frequencies of PPD stimulated IL-17-
expressing pericardial CD4 T cells from 10 TB pericarditis patients
were not different to unstimulated cells (Figure 5C). Frequencies of
PPD-specific IFN-g-expressing pericardial CD4 T cells again excee-
ded unstimulated frequencies.
4. Discussion

To investigate the role of the Th17 cytokines IL-17 and IL-22 in
human TB, we quantified these cytokines in specimens from
established sites of TB disease. Three major points emerged: (1) IL-
17 was not abundant at sites of TB disease, and expression of IL-17
by PPD-specific CD4 T cells from disease sites was not detected, (2)
IL-22 was readily detected in pleural and pericardial effusions at
levels exceeding those detected in matching peripheral blood, and
(3) levels of pericardial IL-22 correlated with MMP-9 levels in
pericardial fluid and peripheral blood, suggesting a role for IL-22 in
TB induced pathology.



Figure 4. IL-22 levels correlate with MMP-9. (A) Serum IL-22 levels plotted against pericardial fluid MMP-9 levels from a subset of 12 TB pericarditis patients. (B) Pericardial fluid IL-
22 levels plotted against pericardial fluid MMP-9 levels from these 12 TB pericarditis patients. The Spearman test was used to test for correlations.

Figure 5. Flow cytometric detection of intracellular IL-17 or IFN-g expression by BAL
or pericardial CD4 T cells. BAL or pericardial cells were stimulated with medium, M.tb
PPD or SEB and intracellular cytokine expression measured by flow cytometry. (A) Flow
cytometry plots of BAL CD4 T cell expression of IL-17 and IFN-g from a representative
adult withM. tuberculosis infection. (B) Frequencies of IL-17 or IFN-g expression by BAL
CD4 T cells from 8 adults with M. tuberculosis infection. (C) Frequencies of IL-17 or IFN-
g expression by percardial CD4 T cells from 10 patients with TB pericarditis. Differences
were calculated using the Wilcoxon matched pairs test.
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Our data do not support a major role for IL-17 at established TB
disease sites in humans. Firstly, we report that IL-17 is undetectable
in pleural or pericardial effusions frommost TB patients. These data
corroborate our previous observation of undetectable IL-17 levels in
BAL fluid from TB patients.20 Secondly, we found that IL-17-
expressing BAL or pericardial CD4 T cell frequencies do not
change upon PPD stimulation. By contrast, a significant increase in
IFN-g expression was detected in both BAL and pericardial CD4 T
cells. These data suggest that mycobacteria-specific Th17 cells are
infrequent or absent from disease sites. Thirdly, the lack of
compartmentalization of IL-17 to disease sites argues against Th17
cell recruitment to the site of disease. Our results accord with the
recent observation that IL-17 mRNA levels in alveolar lavage cells
from TB patients and healthy controls are similar.25

These human data contrast with murine studies, which clearly
report the presence of IL-17-expressing CD4 cells in lungs of
M. tuberculosis infected mice.8,9 Upregulation of IL-17-expressing T
cells in lung tissue was also reported upon M.tb infection in non-
human primates.18 An important difference between our results
and these animal studies may be the site of sampling. Fluid and
cells from tuberculous pleural and pericardial effusions are not
synonymous to granulomas. We also cannot exclude a possible role
for IL-17 in immunological events that may occur early after M.tb
infection as human studies invariably address established TB
disease. Since murine studies are often based on short follow-up
periods, the time between infection and sampling may account
for some differences observed between mouse and human studies.
Similarly, expression of IL-17 was measured up to 2 months after
M.tb infection in the non-human primate study.18 A recent study in
cattle also showed that IL-17 responses, induced by novel TB
vaccination, correlated with protection against M. bovis TB.10 These
authors measured IL-17 expression before and at 13 weeks after
M. bovis infection. Longer follow-up in animal studies would shed
more light onto whether IL-17 expressing T cells are maintained in
established TB disease.

The low abundance of IL-17 in pleural or pericardial effusions
may also result from IFN-g-mediated suppression of IL-17 expres-
sion by Th17 cells.20 High levels of the Th1 cytokine, IFN-g, are
characteristic of the TB-associated inflammatory response.4e6 Our
findings of high IFN-g levels in fluids from disease sites reinforce
this. However, we did not observe an inverse correlation between
IFN-g and IL-17 in those who had detectable IL-17 levels. Moreover,
the correlation between pericardial fluid and serum IL-17 levels
indicates an absence of disease site compartmentalization for this
cytokine, unlike IFN-g. Finally, it should be noted that immune
responses observed in pericardial and pleural TB may be
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representative of more severe and/or different pathology than
pulmonary TB.

Our finding of abundant IL-22 in pericardial and pleural fluids
from TB disease sites raise the possibility that this cytokine may
play an important role at the disease site of human TB. These data
support our previous report of higher IL-22 levels in BAL fluid from
TB patients, compared with low or undetectable levels in healthy
controls.20 We observed higher IL-22 levels at disease sites
compared with matching peripheral blood. These data are indica-
tive of disease site compartmentalization, suggesting that IL-22-
producing cells are either recruited to the disease site, or that IL-
22 expression by resident cells is increased. In agreement with
our finding, a recent study reported greater upregulation of IL-22-
expressing T cells in BAL and lungs than in blood and lymphoid
tissues upon M.tb infection of macaques.18 IL-22-producing T cells
were also detected in lung tissue sections and granulomas of these
M.tb-infected macaques. The lack of data on intracellular expres-
sion of IL-22 by disease site cells is a limitation of our study, as such
data would have indicated whether CD4 T cells or other cell types
are the source of IL-22 in humans.

Despite the reported increase of IL-22 protein and transcripts or
IL-22-expressing cells in M.tb infection of macaques18,19 or in
disease sites of humans with TB, it remains unknown what role IL-
22 plays in host defense against M.tb. One possibility may be the
well-described function of IL-22 as a regulator of keratinocyte
mobility, epidermal differentiation and wound healing.26e29 The
success of M.tb as pathogen is dependent on its destruction of the
extracellular matrix. This process which is, at least partly, driven by
MMPs brings about cavitation and thereby creates an immunopri-
vileged niche.23 We speculate that increased IL-22 at the TB disease
site may be involved in the healing/regeneration response, rather
than an anti-microbial immune mechanism, as was described for
the extracellular bacterium, Klebsiella pneumoniae.15 Alternatively,
the pro-inflammatory functions of IL-22 may mediate pathology;
incubation of human colonic subepithelial myofibroblasts with IL-
22 induced increased mRNA expression of several MMPs.30

The correlations of IL-22 in pericardial fluid with MMP-9 levels
in pericardial fluid and blood support either hypothesis. Notably,
peripheral blood MMP-9 levels were previously associated with
severity of TB disease24 and higher levels of MMP-9 were detected
in pleural fluid from patients with TB pleural effusions, compared
with patients with congestive heart failure.31 Furthermore, MMP-9
was critical for granuloma formation in all stages ofMycobacterium
marinum infection in zebrafish, and ESAT-6 interacted directly with
epithelial cells to induce MMP-932. Granulomas, originally thought
to curtail infection by encasingmycobacteria, have also been shown
to be a site for bacterial expansion.33,34

Additional investigation is required to understand the exact role
of IL-22 in TB-associated lung pathology. Given that caseous
necrosis and cavitation are not observed in M.tb-infected mouse
lungs,35 such studies may best be done in animal models with TB
pathology more similar to that seen in humans.

In summary, we present data that may not support a major role
for IL-17 at established TB disease sites in humans, and propose that
IL-22 may be involved in the TB-associated pathological or repair
response.
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