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This paper is concernedwith the state constrained optimal control problems of a fractional
diffusion equation in a bounded domain. The fractional time derivative is considered in the
Riemann–Liouville sense. Under a Slater type condition we prove the existence a Lagrange
multiplier and a decoupled optimality system.
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1. Introduction

LetN ∈ N∗ andΩ be a bounded open subset ofRN with boundary ∂Ω of classC2. For a time T > 0,we setQ = Ω×(0, T )
and Σ = ∂Ω × (0, T ) and we consider the fractional diffusion equation:Dα

RLy − 1y = h + v in Q ,
y = 0 on Σ,

I1−αy(0+) = 0 in Ω

(1)

where 0 < α < 1, the control v and the function h belong to L2(Q ), the fractional integral I1−α and derivative Dα
RL are

understood here in the Riemann–Liouville sense, I1−αy(0+) = limt→0+ I1−αy(t).
Fractional-order models seem to be more adequate than integer-order models because fractional derivatives provide

an excellent tool for the description of memory and heredity effects of various materials and processes, including gas
diffusion and heat conduction, in fractal porous media [1,2]. Sokolov et al. [3], proved that fractional diffusion equations
generalize Fick’s second law and the Fokker–Planck equation by taking into account memory effects such as the stretching
of polymers under external fields and the occupation of deep traps by charge carriers in amorphous semiconductors. Oldham
and Spanier [4] discuss the relation between a regular diffusion equation and a fractional diffusion equation that contains
a first order derivative in space and half order derivative in time. Mainardi [5] and Mainardi et al. [6,7] generalized the
diffusion equation by replacing the first time derivative with a fractional derivative of order α. These authors proved that
the process changes from slow diffusion to classical diffusion, then to diffusion-wave and finally to classical wave when α
increases from 0 to 2.

Optimal control problems with integer order have been widely studied and many techniques have been developed
for solving such problems [8–11]. Also, state constrained optimal control problems have attracted several authors in the
last three decades, mostly for their importance in various applications in optimal control partial differential equations
with an integer time derivative. For such problems, it is well-known that one can derive optimality conditions if one
can prove the existence of a Lagrange multiplier associated with the constraint in the state (see for instance [12,13]). For
instance, considering a quadratic control for elliptic equations with pointwise constraints, Casas [14] proved the existence
of a Lagrange multiplier and derived an optimality condition using results of convex analysis. Barbu and Precupanu [9]
and Lasiecka [15] derived the existence of a Lagrange multiplier for some optimal control with integral state constraints.
Considering a parabolic system controlled by Neumann conditions and subject to pointwise state constraints on the final
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state, Mackenroth [16] prove the existence of a multiplier as a solution of a dual problem. By a penalization method,
Bergounioux [10] and Bergounioux and Tiba [17] proved the existence of a multiplier and derived optimal conditions for
elliptic and parabolic equations with state constraints respectively.

In the area of calculus of variations and optimal control of fractional differential equations, little has been done since
that problem has only been recently considered. The first record of the formulation of the fractional optimal control
problemwas given by Agrawal in [18] where he presented a general formulation and proposed a numerical method to solve
such problems. In that paper, the fractional derivative was defined in the Riemann–Liouville sense and the formulation
was obtained by means of fractional variation principle [19] and the Lagrange multiplier technique. Following the same
technique, Frederico et al. [20] obtained a Noether-like theorem for the fractional optimal control problem in the sense of
Caputo. Recently, Agrawal [21] presented an eigenfunction expansion approach for a class of distributed system whose
dynamics are defined in the Caputo sense. Following the same approach as Agrawal, in [22] Özdemir investigated the
fractional optimal control problem of a distributed system in cylindrical coordinates whose dynamics are defined in the
Riemann–Liouville sense. In [23], Jelicic et al. formulated necessary conditions for optimal control problems with dynamics
described by differential equations of fractional order. Using an expansion formula for the fractional derivative, they
proposed optimality conditions and a new solution scheme, using an expansion formula for the fractional derivative.
In [24], Baleanu et al. described a formulation for fractional optimal control problems defined inmulti-dimensions when the
dimensions of the state and control variables are unlike each other. The problem is formulated with the Riemann–Liouville
fractional derivatives and the fractional differential equations involving the state and control variables are solved using
Grünwald–Letnikov approximation. Zhou [25] considered the following Lagrange problem:

Find (x0, u0) ∈ C([0, T ], X) × Uad solution of

min
u∈Uad

∫ T

0
L(t, xu(t), u(t))dt

where X is a Banach space, T > 0, C([0, T ], X) denotes the space of all X-value functions defined and continue on [0, T ]

and xu denotes the solution of system Dαx(t) = −Ax(t) + f (t, x(t)) + C(t)u(t), t ∈ [0, T ]; x(0) = x0. Under a suitable
condition onL, he proved that the Lagrange problem has at least one optimal pair. In [26] Mophou considered the following
fractional optimal control problem: find the control u = u(x, t) ∈ L2(Q ) that minimizes the cost function

J(v) = ‖y(v) − zd‖2
L2(Q )

+ N‖v‖
2
L2(Q )

, zd ∈ L2(Q ) and N > 0

subject to the system (1) with h ≡ 0. The author proved that the optimal control problem has a unique solution and derived
an optimality system. We also refer to [27] where boundary fractional optimal control with finite observation expressed in
terms of a Riemann–Liouville integral of order α is studied.

In this paper, we are concerned with a fractional optimal control with constraints on the state. More precisely, we
first prove that under the above assumptions on the data, Problem (1) has a unique solution in L2(0, T ;H2

∩ H1
0 (Ω)) (see

Theorem 2.10). Then we define the affine application T, from L2(Q ) to L2((0, T );H2(Ω) ∩H1
0 (Ω)) such that y = T(v) is the

unique solution of (1). We also define the functional J : L2((0, T );H2(Ω) ∩ H1
0 (Ω)) × L2(Q ) → R+ by

J(y, v) =
1
2
‖y − zd‖2

L2(Q )
+

N
2

‖v‖
2
L2(Q )

(2)

where zd ∈ L2(Q ) and N > 0.
Finally, we consider the following optimal control problem with constraint on the state:min J(y, v),

y = T(v),
y ∈ K and v ∈ Uad

(3)

where K and Uad are two nonempty closed convex subsets of L2((0, T );H2(Ω) ∩ H1
0 (Ω)) and L2(Q ) respectively. Using a

penalizationmethod,we prove the existence of a Lagrangemultiplier and a decoupled optimality condition for the fractional
diffusion (1). To the best of our knowledge, the fractional optimal control problem (3) is new since most fractional optimal
control problems in the literature are considered for a performance index subject to the system dynamic constraints and
the initial condition.

The rest of the paper is organized as follows. Section 2 is devoted to some definitions and preliminary results. In Section 3
we show that our optimal control problem holds and under a Slater type condition we prove the existence of a Lagrange
multiplier and a decoupled optimality system. Concluding remarks are presented in Section 4.

2. Preliminaries

Definition 2.1. Let f : R+ → R be a continuous function on R+ and α > 0. Then the expression

Iα f (t) =
1

Γ (α)

∫ t

0
(t − s)α−1f (s) ds, t > 0

is called the Riemann–Liouville integral of the function f order α.
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Definition 2.2 ([28]). Let f : R+ → R. The Riemann–Liouville fractional derivative of order α of f is defined by

Dα
RLf (t) =

1
Γ (n − α)

dn

dtn

∫ t

0
(t − s)n−α−1f (s) ds, t > 0,

where α ∈ (n − 1, n), n ∈ N.

Definition 2.3 ([28]). Let f : R+ → R. The Caputo fractional derivative of order α of f is defined by

Dα
C f (t) =

1
Γ (n − α)

∫ t

0
(t − s)n−α−1f (n)(s) ds, t > 0,

where α ∈ (n − 1, n), n ∈ N.

Lemma 2.4 ([29,28]). Let T > 0, u ∈ Cm([0; T ]), p ∈ (m − 1;m),m ∈ N and v ∈ C1([0; T ]). Then for t ∈ [0; T ], the
following properties hold:

DRL
pv(t) =

d
dt

I1−pv(t), m = 1, (4)

Dp
RLI

pv(t) = v(t); Dp
C I

pv(t) = v(t) (5)

IpDp
RLu(t) = u(t) −

m−
k=1

tp−k

Γ (p − k + 1)
(Ik−pu)(m−k)(0); (6)

IpDp
Cu(t) = u(t) −

m−1−
k=0

tk

k!
u(k)(0); (7)

IpDp
RLu(t) = u(t) −

tp−1

Γ (p)
(I1−pu)(0) if m = 1; (8)

IpDp
Cu(t) = u(t) − u(0) if m = 1. (9)

From now on we set:

Dα f (t) =
1

Γ (1 − α)

∫ T

t
(s − t)−α f ′(s) ds. (10)

Remark 2.5. −Dα f (t) is the so-called right fractional Caputo derivative. It represents the future state of f (t). For more
details on this derivative we refer to [28,29]. Note also that when T = +∞, Dα f (t) is the Weyl fractional integral of order
α of f ′(t) [30].

Lemma 2.6 ([29,31]). Let 0 < α < 1. Let g ∈ Lp(0, T ), 1 ≤ p ≤ ∞ and φ :]0, T ] → R+ be the function defined by:

φ(t) =
t−α

Γ (1 − α)
.

Then for almost every t ∈ [0, T ], the function s → φ(t − s)g(s) is integrable on [0, T ]. Set

(φ ⋆ g)(t) =

∫ t

0
φ(t − s)g(s) ds.

Then φ ⋆ g ∈ Lp(0, T ) and

‖φ ⋆ g‖Lp(0,T ) ≤ ‖φ‖L1(0,T )‖g‖Lp(0,T ). (11)

We need the following lemmas which assure the integration by parts for a fractional diffusion equation with a
Riemann–Liouville derivative for the resolution of the optimal control problem associated with (1).

Lemma 2.7 ([26]). Let 0 < α < 1. Then for any ϕ ∈ C∞(Q ), we have∫ T

0

∫
Ω


Dα
RLy(x, t) − 1y(x, t)


ϕ(x, t) dx dt =

∫
Ω

ϕ(x, T )I1−αy(x, T ) dx −

∫
Ω

ϕ(x, 0)I1−αy(x, 0+) dx

+

∫ T

0

∫
∂Ω

y
∂ϕ

∂ν
dσ dt −

∫ T

0

∫
∂Ω

∂y
∂ν

ϕ dσ dt +

∫ T

0

∫
Ω

y(x, t)(−Dαϕ(x, t) − 1ϕ(x, t)) dx dt.
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From Lemma 2.7, we deduce the following result.

Lemma 2.8. Let 0 < α < 1. Then for any ϕ ∈ C∞(Q ) such that ϕ(x, T ) = 0 in Ω and ϕ = 0 on Σ , we have∫ T

0

∫
Ω


Dα
RLy(x, t) − 1y(x, t)


ϕ(x, t) dx dt = −

∫
Ω

ϕ(x, 0)I1−αy(x, 0+) dx +

∫ T

0

∫
∂Ω

y
∂ϕ

∂ν
dσ dt

+

∫ T

0

∫
Ω

y(x, t) (−Dαϕ(x, t) − 1ϕ(x, t)) dx dt.

The following results will be useful to prove that problem (1) aswell as the adjoint system of our optimal control problem
has a unique solution.

Theorem 2.9 (Theorem 4.2 [32]). Let f ∈ L2(Q ). Then the following fractional diffusion equation with Caputo derivative:Dα
Cy = 1y + f in Q ,

y = 0 on Σ,
y(0) = 0 in Ω

(12)

has a unique solution y ∈ L2((0, T );H2(Ω) ∩ H1
0 (Ω)). Moreover, there exists a constant C > 0 such that

‖y‖L2((0,T );H2(Ω)) + ‖Dα
Cy‖L2(Q ) ≤ C‖f ‖L2(Q ). (13)

Theorem 2.10. Let 0 < α < 1 and h, v ∈ L2(Q ). Then problem (1) has a unique solution y ∈ L2((0, T );H2(Ω) ∩ H1
0 (Ω)).

Moreover, there exists a constant C > 0 such that

‖y‖L2((0,T );H2(Ω)) + ‖Dα
RLy‖L2(Q ) ≤ C‖f ‖L2(Q ). (14)

Proof. Let y be the solution of (1). As

Dα
Cy(t) = Dα

RLy(t) +
t−α

Γ (1 − α)
y(0), (15)

we have IαDα
Cy(t) = IαDα

RLy(t) + y(0) since Iα(t−α) = 1. Therefore, using relation (8) and (9), it follows that y(t) − y(0) =

y(t)− tα−1

Γ (α)
I1−αy(0+)+y(0). Thus I1−αy(0+) = 0 implies y(0) = 0 and from (15), we getDα

Cy(t) = Dα
RLy(t) for a.e. t ∈ (0, T ].

We thus have proved that if y is solution of (1) then y satisfies (12).
Conversely, let y be the solution of (12). Then from (15), we obtain thatDα

Cy(t) = Dα
RLy(t) for a.e. t ∈ (0, T ] since y(0) = 0.

Applying Iα to each side of the relation (15), we get,

y(t) = y(t) −
tα−1

Γ (α)
I1−αy(0+).

This means that I1−αy(0+) = 0 since t ∈ (0, T ). Thus y is also a solution of (1). This means that system (1) is equivalent to
system (12). From Theorem 2.9, it follows on the one hand that (1) has a unique solution y ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω)), and
on the other hand that (14) holds. �

For more reading on fractional diffusion equations, we refer to [33,4,7,34–38] and the references therein.

3. Optimal control

In this section, we are concerned with the following optimal control problem.min J(y, v),
y = T(v),
y ∈ K and v ∈ Uad

(16)

where J is defined by (2), K and Uad are two nonempty closed convex subsets of L2((0, T );H2(Ω) ∩ H1
0 (Ω)) and L2(Q )

respectively.
We denote by A = {(y, v) ∈ K × Uad such that y = T(v)} the admissible domain of (16) and we assume now and in the

sequel that

A ≠ ∅. (17)

Assumption (17) means that there exists v0 ∈ Uad such that y0 = T(v0) ∈ K .
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Since K × Uad is a closed convex subset of L2((0, T );H2(Ω) ∩ H1
0 (Ω)) × L2(Q ) and the application T is affine, A is a

nonempty closed convex set. Moreover, J being strictly convex, one can prove as in [26] that problem (16) has a unique
solution (ȳ, v̄). Hence writing the Euler–Lagrange optimality which characterizes (ȳ, v̄), we obtain∫ T

0

∫
Ω

(ȳ − zd)(z − ȳ)dx dt + N
∫ T

0

∫
Ω

v̄(ϕ − v̄)dx dt ≥ 0, ∀(z, ϕ) ∈ A.

In this optimality condition the functions ϕ and z are linked by the relation z = T (ϕ). To obtain optimality system with ϕ
and z decoupled, we use the penalization method due to Lions [8].

So, let ε > 0. Let also K be defined by

K = {y ∈ L2((0, T );H2(Ω) ∩ H1
0 (Ω)), Dα

RLy − 1y ∈ L2(Q ), y|Σ = 0, I1−αy(x, 0+) = 0 in Ω, y ∈ K}. (18)

Since K is a nonempty closed subset of L2((0, T );H2(Ω) ∩H1
0 (Ω)), so is K . For any (y, v) ∈ K × Uad, define the functional

Jε by:

Jε(y, v) =
1
2
‖y − zd‖2

L2(Q )
+

N
2

‖v‖
2
L2(Q )

+
1
2ε

Dα
RLy − 1y − h + v

2
L2(Q )

. (19)

Consider the penalized problem

min
(y,v)∈K×Uad

Jε(y, v). (20)

Before going further we need the following results.

Lemma 3.1. Let f ∈ L2(Q ) and y ∈ L2(Q ) be such that Dα
RLy − 1y = f . Then (y|Σ , I1−αyε(x, 0)) exists and belongs to

H−1((0, T );H−1/2(∂Ω)),H−1(Ω)

.

Proof. Let y ∈ L2(Q ), then in view of Lemma 2.6, I1−αy(x, t) ∈ L2(Q ). Therefore, on the one hand we have Dα
RLy(x, t) =

d
dt I

1−αy(x, t) ∈ H−1((0, T ); L2(Ω)) and then, 1y ∈ H−1((0, T ); L2(Ω)) since Dα
RLy − 1y = f . Thus y ∈ L2(Q ) and

1y ∈ H−1((0, T ); L2(Ω)). Hence, we deduce that y|Σ exists and belongs to H−1((0, T );H−1/2(∂Ω)) (see [39]).
On the other hand, we have 1y ∈ L2((0, T );H−2(Ω)). And since Dα

RLy − 1y = f , we obtain that Dα
RLy(x, t) =

d
dt I

1−αy(x, t) ∈ L2((0, T );H−2(Ω)). Thus I1−αy(x, t) ∈ L2(Q ) and d
dt I

1−αy(x, t) ∈ L2((0, T );H−2(Ω)). Consequently I1−αy
belongs to C([0, T ],H−1(Ω)) (see [8]). This means that I1−αy(x, 0) exists and belongs to H−1(Ω).

Proposition 3.2. Assume that (17) holds. Let ε > 0. Then there exists a unique pair (yε, vε) ∈ K × Uad which is an optimal
solution to (20).

Proof. Since (ȳ, v̄) is the solution of (16) and Jε(y, v) ≥ 0, we can define the real dε such that

dε = min{Jε(y, v)|(y, v) ∈ K × Uad}.

Let (yn, vn) ∈ K × Uad be a minimizing sequence such that

0 < dε ≤ Jε(yn, vn) < dε +
1
n

< dε + 1.

In particular,

0 < dε ≤ Jε(ȳ, v̄) = ‖ȳ − zd‖2
L2(Q )

+ ‖v̄‖
2
L2(Q )

< ∞.

Therefore,

‖vn‖L2(Q ) ≤ C, (21a)

‖Dα
RLyn − 1yn − h + vn‖L2(Q ) ≤ C

√
ε, (21b)

‖yn‖L2((0,T );H2(Ω)) ≤ C, (21c)

where C represents now and in the sequel various positive constants independent of n and ε.
Since yn satisfies (18), we have

Dα
RLyn − 1yn ∈ L2(Q ), (22a)

yn = 0 on Σ, (22b)

I1−αyn(x, 0) = 0 in Ω, (22c)
yn ∈ K ; (22d)



1418 G.M. Mophou, G.M. N’Guérékata / Computers and Mathematics with Applications 62 (2011) 1413–1426

and it follows from (21a) and (21b) that

‖Dα
RLyn − ∆yn‖L2(Q ) ≤ C(1 +

√
ε). (23)

Hence there exist yε ∈ L2((0, T );H2(Ω)), vε and δε in L2(Q ) and subsequences extracted from (vn) and (yn) (still called
(vn) and (yn)) such that

vn ⇀ vε weakly in L2(Q ), (24a)

Dα
RLyn − 1yn ⇀ δε weakly in L2(Q ), (24b)

yn ⇀ yε weakly in L2((0, T );H2(Ω)). (24c)

Since K and Uad are closed convex sets and yn ∈ K , vn ∈ Uad using (24c) and (24a), we get

yε ∈ K and vε ∈ Uad. (25)

We set

D(Q ) = {ϕ ∈ C∞(Q ) such that ϕ|∂Ω = 0, ϕ(x, 0) = ϕ(x, T ) = 0 in Ω}

and we denote by D′(Q ) the dual of D(Q ).
In view of Lemma 2.8, we have∫ T

0

∫
Ω

(Dα
RLyn(x, t) − 1yn(x, t))ϕ(x, t) dx dt =

∫ T

0

∫
Ω

yn(x, t)(−Dαϕ(x, t) − 1ϕ(x, t)) dx dt, ∀ϕ ∈ D(Q ).

Therefore in view of (24c), we obtain for ϕ ∈ D(Q ),

lim
n→∞

∫ T

0

∫
Ω

(Dα
RLyn(x, t) − 1yn(x, t))ϕ(x, t) dx dt =

∫ T

0

∫
Ω

yε(x, t)(−Dαϕ(x, t) − 1ϕ(x, t)) dx dt

=

∫ T

0

∫
Ω

(Dα
RLyε(x, t) − 1yε(x, t))ϕ(x, t) dx dt.

This means that

Dα
RLyn − 1yn ⇀ Dα

RLyε − 1yε weakly in D′(Q ).

Then using (24b), we get

Dα
RLyε − 1yε = δε ∈ L2(Q ). (26)

And in view of (21b), (24b), (24a) and (26), we deduce that

Dα
RLyn − 1yn − h − vn ⇀ Dα

RLyε − 1yε − h − vε weakly in L2(Q ). (27)

Since yε ∈ L2(Q ) andDα
RLyε−1yε = δε ∈ L2(Q ), in viewof Lemma3.1, yε|Σ and I1−αyε(x, 0) exist and belong respectively

to H−1((0, T );H−1/2(∂Ω)) and H−1(Ω).
So, multiplying Dα

RLyn −1yn − h− vn by ϕ ∈ C∞(Q ) with ϕ|∂Ω = 0 and ϕ(T , x) = 0 on Ω , and integrating by parts over
Q , we obtain by using Lemma 2.8,∫ T

0

∫
Ω

(Dα
RLyn(x, t) − 1yn(x, t) − h(x, t) − vn(x, t))ϕ(x, t) dx dt

= −

∫ T

0

∫
Ω

(h(x, t) + vn(x, t)) ϕ(x, t) dx dt +

∫ T

0

∫
Ω

yn(x, t)(−Dαϕ(x, t) − 1ϕ(x, t)) dx dt.

Passing this latter identity to the limit when n → ∞ while using (27) and (24c),∫ T

0

∫
Ω


Dα
RLyε(x, t) − 1yε(x, t) − h(x, t) − vε(x, t)


ϕ(x, t) dx dt

=

∫ T

0

∫
Ω

yε(x, t) (−Dαϕ(x, t) − 1ϕ(x, t)) dx dt −

∫ T

0

∫
Ω

(h(x, t) + vε(x, t)) ϕ(x, t) dx dt. (28)
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Integrating by parts the right side of (28) while using Lemma 2.7, we obtain∫ T

0

∫
Ω


Dα
RLyε(x, t) − 1yε(x, t) − h(x, t) − vε(x, t)


ϕ(x, t) dx dt

= +⟨ϕ(x, 0), I1−αyε(x, 0+)⟩H1
0 (Ω),H−1(Ω) −


yε,

∂ϕ

∂ν


H−1(Σ),H1

0 (Σ)

+

∫ T

0

∫
Ω

(Dα
RLyε(x, t) − 1yε(x, t) − h(x, t) − vε(x, t))ϕ(x, t) dx dt,

for all ϕ ∈ C∞(Q ) with ϕ|∂Ω = 0 and ϕ(x, T ) = 0 on Ω, (29)

where ⟨·, ·⟩Y ,Y ′ represents the duality bracket between the spaces Y and Y ′.
Hence, (29) yields

0 = ⟨ϕ(x, 0), I1−αyε(x, 0+)⟩H1
0 (Ω),H−1(Ω) −

∫ T

0
⟨yε,

∂ϕ

∂ν
⟩H−1/2(Γ ),H1/2(Γ ) dt,

for all ϕ ∈ C∞(Q ) with ϕ|∂Ω = 0 and ϕ(x, T ) = 0 on Ω.

Therefore taking ϕ such that ∂ϕ

∂ν
= 0 on ∂Ω in this latter identity, we obtain

I1−αyε(x, 0+) = 0 in Ω (30)

and then,

yε = 0 on ∂Ω. (31)

In view of (25)–(27), (30) and (31), we deduce that (yε, vε) ∈ K ×Uad. Fromweak lower semi-continuity of the function
v → J(v) we deduce

lim inf
n→∞

Jε(yn, vn) ≥ Jε(yε, vε) = dε.

In otherwords, (yε, vε) is the optimal control. The uniqueness of (yε, vε) is the immediate consequence of the strict convexity
of Jε . �

Theorem 3.3. Assume that (17) holds. Let ε > 0 and (yε, vε) be the solution of (20). Then there exist pε ∈ L2(0, T ;H2(Ω) ∩

H1
0 (Ω)) and ρε ∈ L2(Q ) such that (yε, vε, ρε, pε) satisfies the following optimality system:

Dα
RLyε − 1yε = h + vε + ερε in Q ,

yε = 0, on Σ,

I1−αyε(x, 0+) = 0 in Ω,
(yε, vε) ∈ K × Uad.

(32)


−Dαpε − 1pε = yε − zd in Q ,
pε = 0 on Σ,
pε(T ) = 0 in Ω

(33)

∫
Q


Dα
RL(z − yε) − ∆(z − yε)


(pε + ρε) dx dt ≥ 0, ∀z ∈ K, (34)∫

Q
(Nvε − ρε)(ϕ − vε)dxdt ≥ 0 ∀ϕ ∈ Uad. (35)

Proof. We express the Euler–Lagrange optimality conditions which characterize the optimal control (yε, vε):

d
dµ

J(yε + µ (z − yε), vε)|µ=0 ≥ 0, ∀z ∈ K (36)

and

d
dµ

J(yεvε + µ (ϕ − vε))|µ=0 ≥ 0, ∀ϕ ∈ Uad. (37)

After calculations, (36) and (37) give respectively

1
ε

∫
Q
(Dα

RLyε − 1yε − h − vε)(Dα
RL(z − yε) − ∆(z − yε)) dx dt +

∫
Q
(yε − zd)(z − yε) dx dt ≥ 0, ∀z ∈ K (38)
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and

−1
ε

∫
Q
(Dα

RLyε − 1yε − h − vε)(ϕ − vε)dxdt +

∫
Q
Nvε(ϕ − vε)dxdt ≥ 0 ∀ϕ ∈ Uad. (39)

Set

ρε =
1
ε
(Dα

RLyε − 1yε − h − vε). (40)

Then on the one hand, we have ρε ∈ L2(Q ) according to (27), and on the other hand,

Dα
RLyε − 1yε = h + vε + ερε. (41)

Therefore (41), (30), (31) and (25) give (32).
Replacing 1

ε
(Dα

RLyε − 1yε − h − vε) by ρε in (38) and (39), we have respectively∫
Q

ρε


Dα
RL(z − yε) − ∆(z − yε)


dx dt +

∫
Q
(yε − zd)(z − yε) dx dt ≥ 0, ∀z ∈ K (42)

and ∫
Q
(Nvε − ρε)(ϕ − vε)dxdt ≥ 0 ∀ϕ ∈ Uad. (43)

Now, we consider the adjoint state equation:
−Dαpε − 1pε = yε − zd in Q ,
pε = 0 on Σ,
pε(T ) = 0 in Ω.

(44)

Let

TTpε(t) = pε(T − t), t ∈ [0, T ]. (45)

Then d
dt TTpε(t) = −p′

ε(T − t).
Next, making the change of variable t → T − t in

Dαpε(t) =
1

Γ (1 − α)

∫ T

t
(s − t)−αp′

ε(s) ds,

we obtain

Dαpε(T − t) =
1

Γ (1 − α)

∫ T

T−t
(s − (T − t))−αp′

ε(s) ds

=
1

Γ (1 − α)

∫ t

0
(t − u)−αp′

ε(T − u) du

which, according to the notations (45), can be rewritten as

DαTTpε(t) = −
1

Γ (1 − α)

∫ t

0
(t − u)−α(TTpε)

′(u) du.

This means that

DαTTpε(t) = −Dα
CTTpε(t).

Finally, making the change of variable t → T − t in (44), we obtainDα
CTTpε − 1TTpε = TTyε − TT zd in Q ,

TTpε = 0 on Σ,
TTpε(0) = 0 in Ω.

That isDα
Cqε − 1qε = gε in Q ,

qε = 0 on Σ,
qε(0) = 0 in Ω

(46)

where qε(t) = TTpε(t) = pε(T − t) and gε(t) = TTyε − TT zd. Observing that T − t ∈ [0, T ] for t ∈ [0, T ], we
deduce that gε ∈ L2(Q ) since yε and zd belong to L2(Q ). Therefore Theorem 2.9 allows us to say that there exists a
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unique qε ∈ L2(0, T ;H2(Ω) ∩ H1
0 (Ω)) which is a solution to (46). Moreover there exists a positive constant C such that

‖qε‖L2((0,T );H2(Ω)) ≤ C‖gε‖L2(Q ). This means that (44) has a unique solution, pε ∈ L2(0, T ;H2(Ω) ∩ H1
0 (Ω)). Moreover there

exists a positive constant C such that

‖pε‖L2((0,T );H2(Ω)) ≤ C‖yε − zd‖L2(Q ). (47)

Thus, multiplying (44) by z − yε and integrating by parts over Q , we obtain by using Lemma 2.8,∫ T

0

∫
Ω

(Dα
RL(z − yε) − ∆(z − yε))pε dx dt =

∫ T

0

∫
Ω

(−Dαpε − 1pε)(z − yε) dx dt

=

∫ T

0

∫
Ω

(yε − zd)(z − yε) dx dt, ∀z ∈ K.

Hence, in view of (42), we deduce that∫ T

0

∫
Ω

(Dα
RL(z − yε) − ∆(z − yε))(pε + ρε) dx dt ≥ 0, ∀z ∈ K.

Proposition 3.4. Let (vε), yε and pε be defined as in Theorem 3.3. Then

‖vε‖L2(Q ) ≤ C, (48a)

‖yε‖L2((0,T );H2(Ω)) ≤ C, (48b)Dα
RLyε − 1yε − h + vε


L2(Q )

≤ C
√

ε, (48c)

‖pε‖L2((0,T );H2(Ω)) ≤ C, (48d)

where C > 0 represents various constant independent of ε.

Proof. Estimates (48a)–(48c) result from (21) and the weak convergence (24). To obtain (48d), we use (47) and (48b). �

To pass to the limit in the optimality system (32)–(35) we need an estimate of the multiplier ρε . To this end we need a
stronger assumption than (17). So, we denote by B2(u0, γ ) = {u ∈ L2(Q ) such that ‖u − u0‖L2(Q ) ≤ γ } and we make the
following assumption

∃u0 ∈ Uad, ∃r > 0, ∃τ > 0 such that ∀k ∈ B2(0, 1), ∃vk ∈ B2(u0, τ ) ∩ Uad, yk
= T(h + vk − rk) ∈ K . (49)

Proposition 3.5. Assume that (49) holds. Then there exists C > 0 such that

‖ρε‖L2(Q ) ≤ C . (50)

Proof. Let k ∈ B2(0, 1). Then adding (34) to (35) with z = yk and ϕ = vk, we get∫
Q
(Dα

RL(yk − yε) − ∆(yk − yε))(pε + ρε) dx dt +

∫
Q
(Nvε − ρε)(vk − vε)dxdt, ≥ 0

which according to (49) gives∫
Q
pε(vk − vε − rk − ερε) dx dt +

∫
Q

ρε(−rk − ερε) dx dt +

∫
Q
Nvε(vk − vε)dxdt ≥ 0.

Hence we deduce that∫
Q

ρεrk dx dt ≤

∫
Q
pε(vk − vε − rk) dx dt −

∫
Q
pεερε dx dt −

∫
Q

ερ2
ε dx dt +

∫
Q
Nvε(vk − vε)dxdt.

Consequently,∫
Q

ρεrk dx dt ≤ ‖pε‖L2(Q )(‖vk‖L2(Q ) + ‖vε‖L2(Q ) + r‖k‖L2(Q ) + ε‖ρε‖L2(Q )) + N‖vε‖L2(Q )(‖vk‖L2(Q ) + ‖vε‖L2(Q )).

Observing that ‖ερε‖L2(Q ) ≤ C
√

ε since (48c) and (40) hold, using (48a) and (48d) and (49) we have

∀k ∈ B2(0, 1),
∫
Q

ρεk dx dt ≤
1
r
[C(‖u0‖L2(Q ) + τ + C + r + ε

√
ε) + NC(‖u0‖L2(Q ) + τ + C)].
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Because u0 does not depend on ε, we obtain ‖ρε‖L2(Q ) ≤ C where

C =
1
r
[C(‖u0‖L2(Q ) + τ + C + r + ε

√
ε) + NC(‖u0‖L2(Q ) + τ + C)] > 0. �

Proposition 3.6. Let (ȳ, v̄) be the solution of (16). Then

vε → v̄ strongly in L2(Q ), (51)

yε → ȳ strongly in L2((0, T );H2(Ω)). (52)

Proof. In view of (48a) and (48b), there exist v0 ∈ L2(Q ) and y0 ∈ L2((0, T );H2(Ω)) and subsequences extracted from (vε)
and (yε) (still called (vε) and (yε)) such that

vε ⇀ v0 weakly in L2(Q ), (53)

yε ⇀ y0 weakly in L2((0, T );H2(Ω)), (54)

Since K and Uad are closed convex sets and yε ∈ K , vε ∈ Uad using (54) and (53), we get

y0 ∈ K and v0 ∈ Uad. (55)

On the other hand, using Lemma 2.8, we have∫ T

0

∫
Ω

(Dα
RLyε(x, t) − 1yε(x, t) − h − vε)ϕ(x, t) dx dt =

∫ T

0

∫
Ω

yε(x, t) (−Dαϕ(x, t) − 1ϕ(x, t)) dx dt

−

∫ T

0

∫
Ω

(h + vε)ϕ(x, t) dx dt, ∀ϕ ∈ D(Q ).

Therefore passing this latter identity to the limit while using (54) and (53), we obtain

0 =

∫ T

0

∫
Ω

y0(x, t)(−Dαϕ(x, t) − 1ϕ(x, t)) dx dt −

∫ T

0

∫
Ω

(h + v0) ϕ(x, t) dx dt

=

∫ T

0

∫
Ω

(Dα
RLy0(x, t) − 1y0(x, t) − h − v0)ϕ(x, t) dx dt, ∀ϕ ∈ D(Q ).

This means that

Dα
RLyε − 1yε − h − vε ⇀ Dα

RLy0 − 1y0 − h − v0 weakly in D′(Q ).

As according to (48c)

Dα
RLyε − 1yε − h + vε ⇀ 0 weakly in L2(Q ), (56)

we deduce that

Dα
RLy0 − 1y0 = h + v0 in Q . (57)

Then proceeding as for yε on Pages 9 and 10, we prove on the one hand that y0|Σ and I1−αy0(x, 0+) exist and belong
respectively to H−1((0, T );H−/2(∂Ω)) and H−1(Ω), and on the other hand that

y0 = 0 on Σ,

I1−αy0(x, 0+) = 0 in Ω.
(58)

From (57), (58) and (55), we obtain that y0 = T(v0), y0 ∈ K and v0 ∈ Uad.
Since

Jε(yε, vε) ≤ Jε(ȳ, v̄) = J(ȳ, v̄),

we have

lim inf
ε→0

Jε(yε, vε) ≤ J(ȳ, v̄).

This means that

J(y0, v0) ≤ J(ȳ, v̄)
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because Jε(y0, v0) = J(y0, v0). Hence, the uniqueness of the optimal control of (16) allows us to say that J(y0, v0) = J(ȳ, v̄)
and

y0 = ȳ, v0 = v̄. (59)

Thus we have proved that

vε ⇀ v̄ weakly in L2(Q ), (60)

yε ⇀ ȳ weakly in L2(Q ). (61)

To prove the strong convergence, we first observe that according to the result above, we have limε→ Jε(yε, vε) = J(ȳ, v̄),
which implies that

lim
ε→

(‖yε − zd‖2
L2(Q )

+ ‖vε‖
2
L2(Q )

) = ‖ȳ − zd‖2
L2(Q )

+ ‖v̄‖
2
L2(Q )

. (62)

Using (60) and (61), we get

‖ȳ − zd‖2
L2(Q )

≤ lim inf
ε→0

‖yε − zd‖2
L2(Q )

,

‖v̄‖
2
L2(Q )

≤ lim inf
ε→0

‖vε‖
2
L2(Q )

,

which in view of (62) gives

‖ȳ − zd‖2
L2(Q )

= lim
ε→0

‖yε − zd‖2
L2(Q )

,

‖v̄‖
2
L2(Q )

= lim
ε→0

‖vε‖
2
L2(Q )

.
(63)

Therefore using the fact that

‖yε − ȳ‖2
L2(Q )

= ‖yε − zd‖2
L2(Q )

− 2
∫
Q
(yε − zd)(ȳ − zd)dxdt + ‖ȳ − zd‖2

L2(Q )
,

‖vε − v̄‖
2
L2(Q )

= ‖vε‖
2
L2(Q )

− 2
∫
Q

vε v̄dxdt + ‖v̄‖
2
L2(Q )

,

in view of (63), (60) and (61), we deduce that

lim
ε→0

‖yε − ȳ‖2
L2(Q )

= 0,

lim
ε→0

‖vε − v̄‖
2
L2(Q )

= 0.

Hence we obtain (51) and (52). �

Proposition 3.7. As ε tends to 0,

pε → p̄ weakly L2((0, T );H2(Ω)), (64)

where p̄ is a solution of
−Dα p̄ − 1p̄ = ȳ − zd in Q ,
p̄ = 0 on Σ,
p̄(T ) = 0 in Ω.

(65)

Proof. Let qε(t) = TTpε(t) = pε(T − t). Then according to results obtained in Page 13, we haveDα
Cqε − 1qε = TTyε − TT zd in Q ,

qε = 0 on Σ,
qε(0) = 0 in Ω.

Therefore in view of Theorem 2.9, there exists C > 0 such that

‖qε‖L2((0,T );H2(Ω)) ≤ C‖TTyε − TT zd‖L2(Q ).

Then, using the fact that T − t ∈ [0, T ] for t ∈ [0, T ] and (48b), we get

‖qε‖L2((0,T );H2(Ω)) ≤ C .
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Consequently, there exists q̄ in L2((0, T );H2(Ω)) and a subsequence extracted from (qε) (still called (qε)) such that

qε ⇀ q̄ weakly in L2((0, T );H2(Ω)). (66)

Because qε(0) = 0, we obtain that

Dα
Cqε = Dα

RLqε, (67a)

I1−αqε(0) = 0 (67b)

and that qε is also a solution ofDα
RLqε − 1qε = TTyε − TT zd in Q ,

qε = 0 on Σ,

I1−αqε(0) = 0 in Ω.

So, proceeding as for yε on Pages 9 and 10, one can prove on the one hand that q̄|Σ and I1−α q̄(x, 0+) exist and belong
respectively to H−1((0, T );H−/2(∂Ω)) and H−1(Ω), and on the other hand thatDα

RLq̄ − 1q̄ = TT (ȳ − zd) in Q ,
q̄ = 0 on Σ,

I1−α q̄(x, 0) = 0 in Ω.

(68)

Therefore using again (67), one can easily prove that Dα
RLq̄ = Dα

C q̄. This implies that I1−α q̄(x, 0+) = q̄(0) = 0.
Thus, we haveDα

c q̄ − 1q̄ = TT (ȳ − zd) in Q ,
q̄ = 0 on Σ,

q̄(x, 0+) = 0 in Ω.
(69)

Now, in view (48d), there exists p̄ in L2((0, T );H2(Ω)) and a subsequence extracted from (pε) (still called (pε)) such that

pε ⇀ p̄ weakly in L2((0, T );H2(Ω)), (70)

and since qε(t) = TTpε(t) = pε(T − t) we deduce that q̄(t) = TT p̄(t) = p̄(T − t). Hence make the change of variable
t → T − t in (69), we deduce that (65). �

Theorem 3.8. Assume that (49) hold. Let (ȳ, v̄) ∈ A and p̄ be defined by (65). Then (ȳ, v̄) is an optimal solution to (16) if, and
only if there exists ρ̄ ∈ L2(Q ) such that (ȳ, v̄, p̄, ρ̄) satisfies:∫

Q
(Dα

RL(z − ȳ) − ∆(z − ȳ))(p̄ + ρ̄) dx dt ≥ 0, ∀z ∈ K, (71)∫
Q
(N v̄ − ρ̄)(ϕ − v̄)dxdt ≥ 0 ∀ϕ ∈ Uad. (72)

Proof. In view of (50), there exist ρ̄ in L2(Q ) and a subsequence extracted from (ρε) (still called (ρε)) such that

ρε ⇀ ρ̄ weakly in L2(Q ). (73)

So, passing to the limit in (35) while using (73) and (51), we get∫
Q
(N v̄ − ρ̄)(ϕ − v̄)dxdt ≥ 0 ∀ϕ ∈ Uad.

On the other hand, observing that (34) can be rewritten as∫
Q
(Dα

RL(z − yε) − ∆(z − yε))pε dx dt +

∫
Q
(Dα

RLz − 1z)ρε dx dt −

∫
Q
(Dα

RLyε + 1yε)ρε dx dt ≥ 0, ∀z ∈ K,

which in view of (41) is equivalent to∫
Q
(Dα

RL(z − yε) − ∆(z − yε))pε dx dt +

∫
Q
(Dα

RLz − 1z)ρε dx dt −

∫
Q
(h + vε + ερε)ρε dx dt ≥ 0, ∀z ∈ K,
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using (73), (51), (52) and (64) while passing to the limit in this latter inequality, we deduce that∫
Q
(Dα

RL(z − ȳ) − ∆(z − ȳ))p̄ dx dt +

∫
Q
(Dα

RLz − 1z)ρ̄ dx dt −

∫
Q
(h + v̄)ρ̄ dx dt ≥ 0, ≥ 0, ∀z ∈ K.

Consequently, using the fact that ȳ = T(v̄), we obtain∫
Q
(Dα

RL(z − ȳ) − ∆(z − ȳ))p̄ dx dt +

∫
Q
(Dα

RL(z − ȳ) − ∆(z − ȳ))ρ̄ dx dt ≥ 0, ∀z ∈ K.

This means that∫
Q
(Dα

RL(z − ȳ) − ∆(z − ȳ))(p̄ + ρ̄) dx dt ≥ 0, ∀z ∈ K.

4. Concluding remarks

To obtain the estimate of the multiplier ρε in L2(Q ), we have taken k in a unit ball of L2(Q ) in (49). Note that the same
estimation holds if we choose k in any unit ball of a dense subset of L2(Q ), say D(Q ) for instance.
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