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Abstract

The objective of this work is to determine the relaxation spectrum of spherical particles reinforced viscoelastic and
isotropic composites from 3D Finite Elements (FE) simulations of the microstructure. The matrix and the reinforcements
are assumed to be incompressible and Maxwellian. The spectra obtained from the FE simulations are compared with those
obtained from analytical homogenization models. This paper presents the procedure used for generating the FE models as
well as the procedure used for obtaining relaxation spectra meeting the thermodynamics requirements imposed on linear
viscoelastic materials. It seems that the relaxation spectrum for the microstructure studied in this paper is composed of a
negligible continuous part and a discrete part of higher intensity. In any case, the resulting material does not have a Max-
wellian behavior.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Homogenization techniques can be used for predicting the effective behavior of composites based on infor-
mation related to the microstructure. There are two principal categories of homogenization methods: the ana-
lytical methods and the numerical methods. Researchers like Gusev (1997), Segurado and LLorca (2002) and
Mishnaevsky (2004) have worked on the effective elastic properties prediction by performing Finite Element
(FE) analyses of three-dimensional material microstructure unit cells. Brinson and Knauss (1992) and Nguyen
Viet et al. (1995) have performed 2D FE analyses of linear viscoelastic composites. Huet (1990) and Hazanov
and Huet (1994) proposed bounding relations for the effective properties using uniform and mixed boundary
conditions, respectively. They found that if smaller material specimens are selected and uniform boundary
conditions are applied, a bias is introduced on the effective properties calculation. Kanit et al. (2003) have pro-
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posed a statistical procedure for determining the Representative Volume Element (RVE) size. They verified
that using periodic boundary conditions leads to smaller RVE size than using displacement or traction uni-
form boundary conditions. Xia et al. (2006) have demonstrated that in displacement-based finite element
method, the application of periodical boundary conditions on the displacements guarantees the periodicity
of the tractions.

The first analytical homogenization models were developed for linear elastic materials. These results were
extended to non linear materials as well as to linear viscoelastic materials. The homogenization of linear vis-
coelastic materials is classically performed using the viscoelastic correspondence principle and the Laplace–
Carson Transforms (LCT). The procedure consists in applying the LCT to the linear viscoelastic constitutive
theories and insert these symbolic mechanical properties into a linear elastic homogenization model. The over-
all properties are obtained by the LCT inversion. Hashin (1965) has used such principle for unidirectional fiber
composites; Wang and Weng (1992) and Lévesque et al. (2004) with the Mori-Tanaka (MT) scheme and Laws
and McLaughlin (1978), Beurthey and Zaoui (2000) and Brenner et al. (2002) with the Self-Consistent (SC)
scheme, amongst others.

This work focuses on linear viscoelastic composite materials. The objective of this work is to compare the
relaxation spectrum of composite materials constituted of incompressible, isotropic, viscoelastic and Maxwell-
ian phases obtained by numerical homogenization and analytical models. The microstructure studied consists
in spherical reinforcements randomly distributed into a matrix. FE meshes of RVE of such microstructure are
built and their solutions are considered as the ‘‘exact solution’’. The analytical homogenization models tested
are MT, SC and Torquato (TOA) (Torquato, 1998). The FE models as well as the simulations are described at
Section 2. The numerical method used for obtaining the relaxation spectra from the FE simulations is
described at Section 3. Comparisons between the FE and the analytical approaches results are presented at
Section 4.
2. Finite element model

2.1. Obtaining the finite element models

The composite is modeled as a cube containing spherical reinforcements. The Random Sequential Adsorp-
tion algorithm (Segurado and LLorca, 2002) has been used for obtaining a spatially random sphere distribu-
tion. Conditions of minimum distance between each sphere and between each sphere and each cube face
(Segurado and LLorca, 2002) have been imposed. The coordinates of the centre of the first sphere are ran-
domly generated. If the distances between the sphere and each cube face are greater than an established value,
the sphere is accepted. Otherwise, the sphere is rejected and the coordinates of a new sphere are generated
again until the distance condition mentioned above is met. The following spheres are generated sequentially.
The centre coordinates of a new sphere are randomly generated and the distances between the sphere and the
cube faces are verified. Then, the distances between the new sphere and those previously created must be infe-
rior to a certain value. In this study, the spheres were randomly distributed into a cube of 10 · 10 · 10 mm.
The spheres radii were calculated for obtaining the desired reinforcement volume fraction. The distances
between the centers of two spheres had to be greater than 2.07r mm and the distances from the cube faces
greater than 0.1r mm (r stands for the sphere radius). Periodic boundary conditions were applied to the cube’s
surfaces since it leads to a smaller RVE than with homogeneous tractions or displacements (Kanit et al., 2003).
Periodic RVE were created for facilitating the application of this type of boundary conditions.

The mesh of the unit cell was created with the commercial software ANSYS 10.0. Fig. 1 shows the solid
model of a unit cell containing 50 spheres for a volume fraction f of 25%. Constraint equations were imposed
between nodes lying on opposite faces for applying the periodic boundary conditions. The three cube faces
intersecting the Cartesian coordinate system origin were meshed in a first time with surface elements (6-noded
triangles). Then, these meshes were copied to the opposite faces. Finally, the volumes were meshed with 10-
noded tetrahedra. Fig. 2 shows the mesh corresponding to the reinforcement. This mesh was then exported to
ABAQUS/Standard 6.5 for the calculations.

Periodic displacements fields can be expressed as (Michel et al., 1999):



Fig. 1. Solid model. Cube containing 50 spheres. Volume fraction f = 25%.

Fig. 2. Mesh of the reinforcements shown at Fig. 1.
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uðxÞ ¼ E � xþ u�ðxÞ ð2:1Þ
where u(x) is the displacement vector corresponding to the position vector x, E is the overall strain in the ele-
mentary cube and u*(x) is a periodic fluctuation. The spatial average of u*(x) is equal to zero. This periodic
field takes the same values in a pair of points that are on opposite faces (i.e. sharing two of their coordinates).

The fluctuation u*(x) can be eliminated with the following set of equations:
uð0; x2; x3Þ þ E � ðL; 0; 0Þ ¼ uðL; x2; x3Þ
uðx1; 0; x3Þ þ E � ð0; L; 0Þ ¼ uðx1; L; x3Þ
uðx1; x2; 0Þ þ E � ð0; 0; LÞ ¼ uðx1; x2; LÞ

ð2:2Þ
where L is the cube length. When setting u(0) = 0 to prevent rigid body motions, the components of E as a
function of the displacements of some nodes can be obtained and relations between the displacements of these
nodes are established due to the symmetry of E, namely:
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u1ðL; 0; 0Þ
L

¼ E11;
u2ðL; 0; 0Þ

L
¼ E12;

u3ðL; 0; 0Þ
L

¼ E13

u1ð0; L; 0Þ
L

¼ E21;
u2ð0; L; 0Þ

L
¼ E22;

u3ð0; L; 0Þ
L

¼ E23

u1ð0; 0; LÞ
L

¼ E31;
u2ð0; 0; LÞ

L
¼ E32;

u3ð0; 0; LÞ
L

¼ E33

ð2:3Þ
2.2. Simulation description

Relaxation tests were simulated. In a relaxation test, the strains are suddenly applied from 0 to a certain
value, et at t = 0. This strain is kept constant and the stresses are measured. In this study, we applied an overall
shear deformation E12 and computed the overall stress R12. The sudden strain jump was in fact applied over
5 · 10�5 s and the final simulation time was 5 s. It was observed that applying the strain jump over 1 · 10�7 s
produced a difference of less than 0.02% in R12 right after the assumed strain jump. Therefore, it was assumed
that R12(t = 5 · 10�5) ffi R12(t = 0). The composite phases were modeled as linear viscoelastic, isotropic,
incompressible and Maxwellian. It should be noted that these values were arbitrarily chosen and do not rep-
resent any real material. The objective here is to study the sensitivity of the homogenization models to the
contrasts between each phase. The shear relaxation modulus of each phase was defined as:
liðtÞ ¼ l0
i exp � t

si

� �
ð2:4Þ
where l0
i corresponds to the instantaneous modulus of the phase i and si corresponds to the relaxation time of

the phase i. Table 1 lists the material properties used in the FE simulations for two levels of contrast (g) be-
tween phase properties. Both the instantaneous shear modulus and the relaxation time were varied
simultaneously.

The effective response of the composite was obtained by calculating the volume average of the stresses and
strains. The FE code computes the local stresses and strains at each integration point. In addition, a volume is
associated to each integration point. The subroutine URDFIL built in ABAQUS/Standard 6.5 has been used
for computing these volume averages from the integration points results.

The RVE size has been studied by varying the number of spheres within the FE model. The evolution of the
stress–strain curves was studied as a function of the RVE size. FE models with 5, 10, 15, 20, 25, 30, 40 and 50
spheres were tested depending on the volume fraction and contrast between phases. For each RVE size, at
least 6 simulations were performed. If the mean effective shear relaxation modulus of the composite did
not vary significantly when the RVE size was increased, the RVE size was considered to have been attained.
Figs. 3–6 show the mean shear relaxation modulus for the first computation time of each RVE size studied, for
the case g = 10, for 10%, 15%, 20% and 25% volume fractions, respectively. The error bars on the figures rep-
resent a 95% confidence interval on the mean value (it is assumed that the mean effective response obeys a
normal distribution). This applies to all the error bars in this paper. For the case g = 100, only two volume
fractions were studied: 10% and 20%. Figs. 7 and 8 show the shear relaxation modulus for the first computa-
tion time of each RVE size studied for 10% and 20% volume fractions, respectively. For all the cases studied, a
statistically significant difference (in the sense of a 95% confidence interval) on the mean relaxation shear mod-
ulus has been observed between the smallest and the largest RVEs plotted in Figs. 3–6. However, for most
cases, no statistically significant difference has been observed between the mean shear relaxation modulus
1
al properties used for the FE simulations for g = 10 and g = 100

g = 10 g = 100

l0 (Pa) si (s) l0 (Pa) si (s)

8.67 · 107 5 · 10�1 8.67 · 106 5 · 10�1

rcement 8.67 · 108 5 · 10�2 8.67 · 108 5 · 10�3
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Fig. 3. Mean shear relaxation modulus for each RVE size (5, 10, 15 and 20 spheres) at t = 0. f = 10%. The error bars are a 95% confidence
interval on the mean value. g = 10.
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Fig. 4. Mean shear relaxation modulus for each RVE size (15, 20 and 25 spheres) at t = 0. f = 15%. The error bars are a 95% confidence
interval on the mean value. g = 10.
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for the intermediate RVE sizes studied. Considering the relatively narrow confidence intervals, it would seem
that the biases in the mechanical properties have been cleared and that the RVEs have been reached. The sim-
ulations used for obtaining the relaxation spectra were those obtained for the largest RVE size. It should be
noted that it was not possible to obtain larger RVEs than 50 spheres due to mesh limitations. So, for g = 10,
for f = 10% and RVE = 20, the instantaneous relaxation modulus was 11.1 · 107 ± 1.2%, for f = 15% and
RVE = 25, it was 12.76 · 107 ± 0.63%, for f = 20% and RVE = 30, it was 14.51 · 107 ± 1.7% and for
f = 25% and RVE = 50, it was 16.86 · 107 ± 1.35%; for g = 100, for f = 10% and RVE = 20, it was
1.28 · 107 ± 2.9% and for f = 20% and RVE = 50, it was 2.075 · 107 ± 2.6%.

The isotropy was verified by applying E12, E13 and E23 separately and observing that the average values for
the stresses obtained in each simulation were approximately equal. The effect of the mesh size was studied by
varying the number of finite elements in the FE model. Therefore the number of degree of freedom was chan-
ged from 665,700 to 5,180,850. It was observed that using from 3,000,000 to 5,180,850 degrees of freedom led
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Fig. 5. Mean shear relaxation modulus for each RVE size (20, 25 and 30 spheres) at t = 0. f = 20%. The error bars are a 95% confidence
interval on the mean value. g = 10.
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Fig. 6. Mean shear relaxation modulus for each RVE size (15, 30, 40 and 50 spheres) at t = 0. f = 25%. The error bars are a 95%
confidence interval on the mean value. g = 10.
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to variation in R12 of approximately 1.1%. Approximately 3,000,000 were then used for the computations.
Fig. 9 shows the effect of the mesh size for f = 10% with g = 10.
3. Relaxation spectra

For a linear viscoelastic and isotropic material, the shear relaxation modulus l(t) can be expressed in a gen-
eral way as (Bouleau, 1991):
lðtÞ ¼
Z 1

0

exp � t
s

h i
d�lðsÞ þ l00 ð3:1Þ
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Fig. 7. Mean shear relaxation modulus for each RVE size (10, 15 and 20 spheres) at t = 0. f = 10%. The error bars are a 95% confidence
interval on the mean value. g = 100.
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Fig. 8. Mean shear relaxation modulus for each RVE size (20, 25, 30, 40 and 50 spheres) at t = 0. f = 20%. The error bars are a 95%
confidence interval on the mean value. g = 100.
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where d�lðsÞ is a positive measure in R�þ 2�0;1½ and l00 represents the elastic response of the material (l00 > 0).
These restrictions are imposed by thermodynamics. d�lðsÞ is commonly called relaxation spectrum.

The relaxation spectrum may be continuous on an interval of time (even infinite) and/or constituted of
Dirac impulsions. The objective of this section is to obtain the relaxation spectrum from the FE simulations.
Many researchers worked on this subject considering experimental data. Some developed methods like the col-
location method of Schapery (1962) which requires matrix inversions and a solution violating the principles of
thermodynamics can be obtained (i.e. negative Dirac impulsions). Other methods (Emri and Tschoegl, 1993)
were developed for avoiding these kind of results. However in Emri and Tschoegl (1993) an iterative process is
necessary to avoid the apparition of negative Dirac impulses.

Lévesque et al. (2007) have developed a numerical algorithm for inverting the Laplace–Carson transforms
encountered in the homogenization of linear viscoelastic heterogeneous materials. One of the features of the
algorithm is that it leads to linear viscoelastic materials that meet the restrictions imposed by thermodynamics.
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The procedure used in this study for extracting the relaxation spectrum from the FE simulations is very similar
to that algorithm. The procedure attempts finding a relaxation spectrum which is composed of Dirac impul-
sions and a continuous section while meeting the thermodynamics restrictions.

Relaxation spectra obtained from the analytical homogenization models are described at Section 3.1. The
procedure used for obtaining the relaxation spectrum from the FE simulations is developed at Section 3.2 and
tested in a case where the analytical solution is known at Section 3.3.
3.1. Relaxation spectra obtained from analytical methods

Relaxation spectra obtained from analytical homogenization techniques were generated. The homogeniza-
tion models compared are: MT, SC and TOA. The viscoelastic correspondence principle was used for obtain-
ing the overall viscoelastic effective properties. The MT model was used following the methodology of Wang
and Weng (1992). For the SC model, the results of Beurthey and Zaoui (2000) and Brenner et al. (2002) were
applied. Finally, for the TOA model, we applied the incompressible phases solution presented in Torquato
(1998). For this model statistical parameters are needed. These parameters may be found in Torquato
(1991) for a three-dimensional random distribution of totally impenetrable spheres as a function of the rein-
forcement volume fraction.

The MT scheme leads to a discrete spectrum constituted of two discrete lines. The relaxation spectrum
obtained by the TOA model is constituted of three spectral lines. Finally, the SC scheme leads to relaxation
spectrum constituted of a continuous and discrete parts. Fig. 10 shows the spectrum obtained by each method
for f = 20% and g = 10. It is interesting to note here that these homogenization models, for the exact same
microstructure, lead to relaxation spectra of different natures. This is in fact the motivation of our study.
3.2. Relaxation spectra obtained from FE simulations

For a discrete spectrum, the shear relaxation modulus can be expressed as:
lðtÞ ¼ l00 þ
Xnd

i¼1

li exp � t
si

� �
ð3:2Þ
where nd is the number of discrete relaxation times, l00 is the elastic response, li is the spectral line intensity and
si is the relaxation time of the corresponding spectral line i. In our procedure, the relaxation times are defined a
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priori. The inverse of the relaxation times were distributed uniformly on a log scale according to Lévesque
et al. (2007):
1

si
¼ 10

log½ð1þhÞhmin �þi
log½ð1�hÞhmax ��log½ð1þhÞhmin �

nd�1 with i ¼ 0; 1; . . . ; nd � 1 ð3:3Þ
The parameter h defines the range over which the 1
si

are distributed between hmin and hmax.
In order to meet the thermodynamics restrictions, li and l00 must be positive. l00 can be calculated by mea-

suring the stress and the strain for a large time when the material is completely relaxed. In our case l00 is equal
to zero since both phases are Maxwellian. However, for the sake of generality, l00 is kept in the developments
since the procedure could be applied to non-Maxwellian materials. A change of variable was introduced for
obtaining a positive spectrum (li P 0). Therefore, li is defined as l2

appi
and the following function has been

introduced:
ld
appðtÞ ¼ l00 þ

Xnd

i¼1

l2
appi

exp � t
si

� �
ð3:4Þ
The lappi
can be determined by solving the following optimization problem:
inf
lappi

E2
d ¼ inf

lappi

XM

i¼1

½lrealðtiÞ � ld
appðtiÞ�2 with lð0Þ ¼ l00 þ

Xnd

i¼1

l2
appi

ð3:5Þ
where M is the number of points calculated on the relaxation curve obtained from the FE simulations, lreal(ti)
is the shear relaxation modulus obtained from the FE simulations and E2

d is the sum of the squared differences
lrealðtiÞ � ld

appðtiÞ. The constraint at Eq. (3.5) has been introduced for enforcing the real and the modeled elas-
tic responses to be the same. This minimization problem was solved with Mathematica and the Random
Search algorithm of the NMinimize function. This applies for all the minimization problems in this paper.
In the case where a material is modeled with only a continuous spectrum, we introduced the following numer-
ical representation:
H iðsÞ ¼
Xi�1

s¼1

DgðssÞ
 !

þ s� si�1

si � si�1

DgðsiÞ
� �

for si�1 < s < si ð3:6Þ
Therefore, the shear relaxation modulus is approximated by:
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lc
appðtÞ ¼ l00 þ

Xnc�1

i¼1

Z siþ1

si

exp � t
s

h i
H iðsÞds ð3:7Þ
The continuous spectrum is therefore a piecewise linear interpolation between the values H(si�1) and H(si).
Fig. 11 illustrates this function. At Eq. (3.7), nc represents the number of H(si) used in the interpolation.
For imposing that H(s) P 0 the following constraints were imposed:
CEi ¼
Xi

s¼1

DgðssÞP 0 for i ¼ 1 to nc ð3:8Þ
The relaxation spectrum was obtained by solving this optimization problem:
inf
DgðssÞ

E2
c ¼ inf

DgðssÞ

Xm

i¼1

½lrealðtiÞ � lc
appðtiÞ�2 ð3:9Þ
where E2
c is the sum of the squared differences lrealðtiÞ � lc

appðtiÞ.
Then, an approximate function composed of a discrete and a continuous spectra can be given by:
lcþd
app ðtÞ ¼ l00 þ

Xnd

i¼1

l2
appi

exp � t
si

� �
þ
Xnc�1

j¼1

Z sjþ1

sj

exp � t
s

h i
HjðsÞds ð3:10Þ
The spectrum is obtained by solving the following optimization problem:
inf
lappi

;DgðssÞ
E2

cþd ¼ inf
lappi

;DgðssÞ

Xm

i¼1

½lrealðtiÞ � lcþd
app ðtiÞ�2 with CEi ¼

Xi

s¼1

DgðssÞP 0 ð3:11Þ
where E2
cþd is the sum of the squared differences lrealðtiÞ � lcþd

app ðtiÞ.
It should be noted that the constraint lreal(0) = lapp(0) was not enforced at optimization problems (3.9) and

(3.11). It was found that the optimum results obtained without this constraint led to lreal(0) ffi lapp(0) and
therefore, this constraint is not required. In addition, relaxing this constraint decreases significantly the com-
putational burden for solving problems (3.9) and (3.11).

The relaxation spectrum determination from the FE simulations is obtained in several steps. At first an
optimum approximate discrete spectrum is obtained by solving problem (3.5). It has been observed that the
SC predictions fit relatively well the FE results. For this reason, a continuous spectrum with a discrete line
is optimized according to problem (3.11). Finally, the values of the si for the discrete lines and the bounds
of the continuous spectrum are combined and the problem (3.11) is solved anew. In all cases, the relaxation
times (i.e. si) and the bounds of the continuous spectrum are varied by trials and errors for obtaining a value of
E2

cþd that appears to be minimum. As in most nonlinear optimization problems, this procedure does not guar-
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antee that an absolute minimum has been attained. It was found that it led to relaxation curves where lcþd
app ðtÞ

fit remarkably well the lreal(t) (see Fig. 21). An example is developed in Section 3.3.

3.3. Procedure validation

For testing the procedure, the SC solution for an isotropic, incompressible and Maxwellian composite with
f = 20% and with the mechanical properties listed at Table 1 for g = 10 is used for generating the numerical
values of the shear relaxation modulus that were used in the solution of the least square problem. In this case,
the relaxation spectrum is already known and the goal is to recover it by using the procedure described above.
Three steps were performed:

(i) An optimum discrete spectrum was obtained by solving problem (3.5). The parameters hmin and hmax at
Eq. (3.3) were first optimized, by trials and errors for minimizing E2

d. The parameter h at Eq. (3.3) was
arbitrarily set to zero. Then some relaxation times were deleted, others sligthly varied for decreasing fur-
ther the value of E2

d.
(ii) For the cases studied here it was observed that the SC solution fitted very well the FE results. Therefore,

a spectrum constituted of a continuous part and a discrete line was obtained by solving problem (3.11).
However, if there is not a known function that approximates well the relaxation modulus it is necessary
to solve the problem (3.9). For the sake of generality, we solved problem (3.9) for testing the procedure.
A continuous spectrum was obtained by finding the bounds of s that minimizes E2

c . The bounds of the
continuous spectrum were obtained as described at the step 1 for the calculation of hmin and hmax. In
addition, the distribution of si used in the linear interpolation of the continuous spectrum was optimized.

(iii) The optimum relaxation times obtained at the step 1 and the bounds of the continuous spectrum
obtained at the step 2 were combined and the procedure of trials and errors applied on the relaxation
times selection for the discrete part and the range of s for the continuous part, was repeated until the
value of E2

cþd appeared to be minimum (problem 3.11).

The optimal spectrum was obtained by observing the values of E2. A combined spectrum was obtained if
E2

d > E2
cþd and E2

c > E2
cþd. Even if good approximations of the relaxation modulus can be obtained regardless

of the spectrum nature, the best approximation was obtained for a continuous and discrete spectra combina-
tion ðlcþd

app Þ. Fig. 12 shows the continuous and discrete spectra obtained: ‘‘ld
app’’ refers to the spectrum obtained
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by solving problem (3.5),‘‘lc
app’’ refers to the spectrum obtained by solving problem (3.9), ‘‘lcþd

app disc’’ and
‘‘lcþd

app cont’’ refer respectively to the discrete and continuous spectra obtained by solving problem (3.11).
The convergence of the continuous contribution for lcþd

app was difficult to obtain, even though the overall
approximate spectrum shape is close the exact spectrum. This exemplifies that our procedure is capable of
determining if the ‘‘real’’ spectrum is composed of a significant continuous part. It should be noted that
the difference between the approximate and exact spectral lines intensities is approximately 0.6%. For analyz-
ing the approximation degree of each solution the relative error between each approximation and the SC solu-
tion was calculated for each computation time. Fig. 13 shows the relative error defined as j lreal�lapp

l real
j for each

approximation. It is possible to observe that the discrete approximate solution ðld
appÞ fitted very well the values

obtained by the SC method. Contrarily, the continuous approximate solution ðlc
appÞ fitted the values of the SC

scheme only at the first computation times. Finally, lcþd
app gave the best results showing that it fitted the SC

values in all the time range calculated.
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4. Results and discussions

Four volume fractions were studied with g = 10: 10%, 15%, 20% and 25% and two volume fractions with
g = 100: 10% and 20%. For each volume fraction, the RVE size was established according to the procedure
described at Section 2.2. The relaxation spectra of the composites simulated using the FE method were calcu-
lated with the procedure described at Section 3.2.

For the MT scheme, one of the spectral lines corresponds to the relaxation time of the soft phase (matrix)
whose volume fraction is greater than the reinforcement volume fraction. Therefore, when the reinforcement
volume fraction increases, the intensity on this spectral line decreases. The same behavior is observed for the
SC and the TOA models. For the SC scheme the continuous part of the spectrum is of greater intensity than
the spectral lines intensities and it increases with the reinforcement volume fraction.

Figs. 14–17 show the relaxation spectra obtained by different methods for linear viscoelastic composites
with g = 10 for 10%, 15%, 20% and 25% volume fractions, respectively. Figs. 18 and 19 show the relaxation
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spectra obtained by different methods for linear viscoelastic composites with g = 100 for 10% and 20% volume
fractions. In all cases, ‘‘SC cont’’ and ‘‘SC disc’’ refer to continuous and discrete parts of the spectra obtained
with the Self-Consistent method; ‘‘TOA’’ refers to the spectra calculated with the Torquato technique; ‘‘MT’’
refers to the spectra calculated by the Mori-Tanaka model and finally ‘‘lcþd

app disc’’ and ‘‘lcþd
app cont’’ refer to

discrete and continuous parts of lcþd
app , respectively. The right scale is related to the continuous relaxation spec-

trum of the numerical solution lcþd
app . Thus, it is possible to note the difference between the intensities of the

discrete lines (left scale) and the continuous part of lcþd
app , which makes the continuous part negligible.

In all cases, the spectrum associated to lcþd
app shows one or two spectral lines close to the relaxation time

associated to the matrix. The intensities of these spectral lines decrease as the volume fraction of reinforce-
ments increases. This behavior has been observed with all the homogenization models tested in this study.
The relaxation spectrum associated to lcþd

app is composed of a discrete spectrum and a continuous spectrum
of a much lower intensity. In addition, the bounds of this continuous part are very similar to those
obtained with the SC model. It would therefore seem that the relaxation spectrum ‘‘nature’’ of the mate-
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Fig. 17. Relaxation spectra obtained by different methods. f = 25% and g = 10. Note that the scale for l cþd
app cont is on the right.
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rial studied is a mixture of the homogenization models characteristics: it is composed of a dominant dis-
crete spectrum, as in TOA and MT but also of a continuous spectrum whose bounds are very similar to
the SC scheme. However, this continuous contribution is much smaller and considered as ‘‘noise’’ in the
solution and can therefore be neglected. Fig. 20 shows the relaxation modulus obtained by using only the
discrete part of lcþd

app and the FE results for f = 10% with a g = 10 and g = 100, at the first computation
times. It can be seen that the discrete part fits very well the FE results. It is also clear from these results
that even if the constituent phases are Maxwellian, the resulting composite material is not, as it is pre-
dicted in analytical homogenization models.

Fig. 21 shows the relaxation curve for f = 15% with g = 10 obtained for each method and the FE data for
the first computation times. Only this short time interval is shown since the difference is more remarkable than
at longer times. This is due to the fact that both phases are Maxwellian and that for long times the relaxation
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Fig. 19. Relaxation spectra obtained by different methods. f = 20% and g = 100. Note that the scale for lcþd
app cont is on the right.
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stress in both phases is equal to zero. Similar results are obtained for the others volume fractions. It can be
observed that the MT model underestimates the relaxation modulus. Amongst the analytical homogenization
methods the SC method gives the best approximation to the FE data. Fig. 22 shows the relaxation modulus
calculated at the first computation time for each analytical method, l cþd

app and the FE data for linear viscoelas-
tic composites with g = 10. The MT model shows the maximum error in the relaxation modulus calculation,
and it increases as the reinforcement volume fraction increases. The maximum error increases from 5.97% for
a volume fraction f = 10% to 21% for a volume fraction f = 25%. Fig. 23 shows the relaxation modulus cal-
culated at the first computation time for each analytical method, l cþd

app and the FE results for linear viscoelastic
composites with g = 100. The MT model shows again the maximum error in the relaxation modulus calcula-
tion. However, now the error introduced by all the analytical methods is greater than linear viscoelastic com-
posites with g = 10. Therefore, the maximum error introduced by the MT model with g = 100 increases from
13.9% for f = 10% to 29% for f = 20%.
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5. Conclusions

In conclusion, the contributions of this study are:

(i) A novel procedure for the shear relaxation spectrum determination for isotropic linear viscoelastic mate-
rials that allows for a continuous as well as a discrete parts, while meeting the thermodynamics restric-
tions imposed on linear viscoelastic materials, to be obtained.

(ii) The comparison between FE simulations of 3D linear viscoelastic composite materials RVE and analyt-
ical homogenization models.

It is shown that the relaxation spectrum of the material studied here is composed of a dominant discrete
spectrum and also from a negligible continuous spectrum. Even if the constituent phases are Maxwellian, this
study confirms that, as predicted by analytical homogenization models, the effective relaxation spectrum is not
of Maxwellian nature.

In this study, we only studied a composite material reinforced with randomly distributed Maxwellian rein-
forcements. Future work will deal with cylindrical (i.e., fibers) reinforcements as well as other viscoelastic con-
stitutive theories in order to confirm the same trends as those observed in this study.
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