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Abstract

In this paper, we shall prove that any two triangulations on the projective plane with n vertices can
be transformed into each other by at most 8n − 26 diagonal flips, up to isotopy. To prove it, we focus
on triangulations on the projective plane with contractible Hamilton cycles.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For a graph G, let V (G) and E(G) denote the vertex set and edge set of G, respectively.
A k-cycle means a cycle of length k. For two graphs H and K, let H + K denote the graph
obtained from H and K by joining each vertex of H to all vertices of K.

A triangulation on a closed surface F 2 is a simple graph on F 2 such that each face
is bounded by a 3-cycle. A diagonal flip is an operation which replaces an edge e in the
quadrilateral D formed by two faces sharing e with another diagonal of D (see Fig. 1). If
the resulting graph is not simple, then we do not apply it.

Wagner proved that any two triangulations on the plane with the same number of vertices
can be transformed into each other by a sequence of diagonal flips, up to isotopy [9]. This
result has been extended to the torus [1], the projective plane and the Klein bottle [7].
Moreover, Negami has proved that for any closed surface F 2, there exists a positive integer
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Fig. 1. Diagonal flip.

N(F 2) such that any two triangulations G and G′ on F 2 with |V (G)| = |V (G′)|�N(F 2)

can be transformed into each other by a sequence of diagonal flips, up to homeomorphism
[4]. There are many papers concerning with diagonal flips in triangulations and they are
described in [6] for details.

In this paper, we focus on the minimum number of diagonal flips needed to transform two
given triangulations on a closed surface F 2. Negami’s argument in [5] shows that for the
minimum number of diagonal flips needed to transform two triangulations with n vertices
on a closed surface F 2, there is a quadratic bound with respect to n. However, if we restrict
F 2 to the sphere, then there is a linear bound 6n − 30 for it, as shown in [3].

In this paper, we shall prove the following theorem:

Theorem 1. Any two triangulations on the projective plane with n vertices can be trans-
formed into each other by at most 8n − 26 diagonal flips, up to isotopy.

This is the first result giving a linear bound for the minimum number of diagonal flips in
triangulations on a closed surface other than the sphere.

For a graph G, a Hamilton cycle of G is a cycle passing through each vertex of G exactly
once.A cycle C of G embedded in a closed surface F 2 is said to be contractible if C bounds a
2-cell on F 2. In order to prove Theorem 1, we show the following theorem for triangulations
on the projective plane with a contractible Hamilton cycle, as in the spherical case in [3].

Theorem 2. Let G and G′ be two triangulations on the projective plane with n vertices,
each of which has a contractible Hamilton cycle. Then G and G′ can be transformed into
each other by at most 6n − 12 diagonal flips, preserving their Hamilton cycles.

2. Triangulations with contractible Hamilton cycles

In this section, we deal only with triangulations which have contractible Hamilton cycles.
Clearly, a contractible Hamilton cycle in a triangulation G on the projective plane separates
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G into two spanning subgraphs of G. One is a maximal outer-plane graph, denoted by GP ,
and the other is a triangulation of the Möbius band, denoted by GM , in which all vertices
appear on the boundary of the Möbius band. We call it a Catalan triangulation on the
Möbius band.

Lemma 3. Let P be a maximal outer-plane graph with n�3 vertices and let v be a vertex
of degree k�2 in P. Then P can be transformed into a maximal outer-plane graph in which
the degree of v is exactly n − 1, by exactly n − k − 1 (�n − 3) diagonal flips, through
maximal outer-plane graphs.

Proof. Let xy be an edge of P not in its outer cycle and let vxy and uxy be two faces sharing
xy. Since degP (v)= k, the number of vertices not adjacent to v is n− k − 1. Since P has no
subgraph isomorphic to K4, u and v are not adjacent in P. Therefore, we can flip xy without
making multiple edges. Hence, we can increase the degree of v one by one, by diagonal
flips. Therefore, the lemma follows. �

In [2], the Catalan triangulations on the Möbius band with n vertices were enumerated
and it was proved that any two of them can be transformed into each other by diagonal flips,
but the number of diagonal flips had never been estimated yet.

Let M2 denote the Möbius band and let �M2 denote the boundary of M2. Let K be a
Catalan triangulation on M2 with m vertices. Let v1, v2, . . . , vm be the vertices of K lying
on �M2 in this cyclic order. An edge vivj is said to be trivial if cutting along vivj separates
a disk D from M2. Clearly, the subgraph of K induced by the vertices on D is a maximal
outer-plane graph, which is said to be bounded by vivj . Edges of K which are not trivial
are said to be essential.

Suppose that a Catalan triangulation K on the Möbius band M2 has no trivial edge. An
essential edge e of K incident to a vertex of degree 3 is called a spoke. The subgraph of K
induced by the essential edges which are not spokes is said to be the zigzag frame of K,
which is uniquely taken. It is easy to see that the zigzag frame of K is a cycle of an odd
length homotopic to the center line of M2. Moreover, if K has no trivial edge and no spoke,
then K is 4-regular.

Lemma 4. Let G be a triangulation on the projective plane with n�7 vertices. If G has a
contractible Hamilton cycle C, then G can be transformed into K + K1 by at most n − 1
diagonal flips, where K is some Catalan triangulation on the Möbius band.

Proof. Let GP and GM be the maximal outer-plane graph and the Catalan triangulation on
the Möbius band, each of which is a spanning subgraph of G with boundary C.

We shall make a vertex of degree 2 in GM by at most three diagonal flips, without breaking
the simpleness of G. If GM has a trivial edge xy, then xy bounds an outer-plane graph L. It
is easy to see that L has a vertex of degree 2 other than x and y. Thus, we have nothing to
do, and hence we may suppose that GM has no trivial edge.

First, if GM has no trivial edge and no spoke, then GM is 4-regular. Since GP is outer-
planar, GP has a vertex of degree 2 in GP , say v with two neighbors p and s. Suppose that
GM has faces pqv, qrv and rsv meeting at v, and faces vrs, rts and tus meeting at s in
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Fig. 2. Two diagonal flips making a vertex of degree 2.

GM . (See the left-hand side of Fig. 2.) Observe that since degGP
(v) = 2, any diagonal flip

in GM increasing the degree of v yields no edge forming multiple edges with an edge in
GP . Moreover, since n�7, we have vt, vu /∈ E(GM); otherwise, we would have u = q and
p = t . Therefore, rs can be replaced with vt, and next st can be replaced with vu. Now s
has degree 2 in the resulting graph on M2, which is obtained by two diagonal flips. (See
the right-hand side of Fig. 2.)

Finally suppose that GM has spokes but no trivial edges. We first suppose that GM has
two consecutive spokes pq and pr such that q and r are adjacent on C and degGM

(q) =
degGM

(r) = 3. Let pqs, pqr and prt be three faces meeting at p. It is easy to see that a
diagonal flip can replace an edge pq with sr without making multiple edges in GM , but GP

might already have an edge sr. In this case, by the planarity of GP , G does not have an
edge qt because of the obstruction of sr. Therefore, we can make r have degree 2 by one
diagonal flip.

Now consider the case when the vertices of degree 3 in GM are independent. Since n�7,
the zigzag frame of GM has length at least 5. (For otherwise, i.e., if the zigzag frame has
length 3 and all vertices of degree 3 are independent, then we have n�6, a contradiction.)
Let pq be a spoke with degGM

(q) = 3 and shared by two faces pqs and pqt. Note that
4�degGM

(s), degGM
(t)�5. Apply a diagonal flip of pq to make a vertex of degree 2 in

GM . If impossible, GP already has an edge st. (Here, if G is assumed to be 4-connected,
then this does not happen, because G − {p, s, t} must be connected.) If GP has an edge
st, then we can make q have degree 5 or 6 and s have degree 2 by at most three diagonal
flips, flipping the edges incident to s in GM , not on �M2, to make them be incident to q,
similarly to the case when GM is 4-regular. (Note that only the final case requires at most
three diagonal flips to make a vertex of degree 2 and it does not happen in the 4-connected
case. Hence this proves the following remark.)

We turn our attention to GP . Let G′
M denote a Catalan triangulation with a vertex v of

degree 2 obtained from GM by at most three diagonal flips. Then we can apply any diagonal
flip in GP increasing the degree of v, without making multiple edges with an edge of GM .
Observe that degGP

(v)�3, since every vertex of a triangulation on a closed surface has
degree at least 3. Therefore, at most n − 4 diagonal flips can make v have degree n − 1 in
Gp, by Lemma 3. In the resulting graph, v is adjacent to all other vertices, and the graph
with v removed is obviously a Catalan triangulation with n − 1 vertices. �
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Fig. 3. K5 and the standard form �m.

As shown in the above proof, we have the following remark.

Remark 5. In Lemma 4, if we assume the 4-connectedness of G, then the number of
diagonal flips can be improved to n − 2.

Consider a Catalan triangulation on the Möbius band shown in the left-hand side of Fig.
3, which is a unique Catalan triangulation with five vertices isomorphic to K5. Let e = v4v5
be an edge of the Catalan triangulation K5 lying on the boundary of the Möbius band.
Subdivide e by m vertices as shown in the right-hand side of Fig. 3, where the Möbius band
is obtained by identifying the arrows indicated in the left-hand and the right-hand sides of
the rectangles. The resulting graph is called the standard form of the Catalan triangulations
and denoted by �m.

The following is the most essential argument in this paper.

Lemma 6. Every Catalan triangulation K on the Möbius band with n vertices can be
transformed into the standard form �n−5 by at most 2n − 3 diagonal flips.

Proof. Suppose that K has p trivial edges. Then it is easy to see that the unique sub-Catalan
triangulation, denoted by K ′, of K with no trivial edges is obtained from K by successively
removing a vertex of degree 2. Clearly, K ′ has exactly n − p vertices.

Suppose that K ′ has q spokes and let r = n − p − q. Then the zigzag frame v1 . . . vr ,
of K ′ has an odd length r �3. Let qi be the number of spokes of K ′ incident to vi , for
i =1, . . . , r . We may suppose that q1 +q3 +· · ·+qr �q2 +q4 +· · ·+qr−1. (For otherwise,
we can replace vi by vi−1 for each i, because the subscripts are cyclic and taken modulo r.)
Let q2 + q4 + · · · + qr−1 = m and hence we have 2m�q. (See Fig. 4.)

If r =3, then by the simpleness of graphs, we have q2, q3 �1. Hence, we can flip an edge
v2v3 to make the zigzag frame have length 5. So, suppose that r �5. Apply diagonal flips
to all m spokes incident to v2, v4, . . . , vr−1 to make them trivial one by one. The number
of diagonal flips we did is exactly

q2 + q4 + · · · + qr−1 = m. (1)
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Fig. 4. K ′ with a zigzag frame v1v2 . . . vr .
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Fig. 5. Reducing the length of the zigzag frame.

Note that even if r = 3, the estimation (1) is true. Though we need one more diagonal flip
of v2v3 to increase the length of the zigzag frame, this diagonal flip decreases q2 and q3 by
one, respectively.

Next reduce the length of the zigzag frame from r to 5. In particular, we first apply a
diagonal flip of v4v5, secondly flip q5 spokes incident to v5, and finally flip v5v6. (See Fig.
5(1).) The number of diagonal flips we did is q5 + 2. In the resulting graph, the zigzag
frame has length r − 2, and exactly one new trivial edge v3v7 appears. As far as that the
length of the zigzag frame is at least 7, we apply these operations. If its length is exactly
5, then we apply q1 + qr diagonal flips, as shown in Fig. 5(2). Then the total number of
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Fig. 6. The Catalan triangulation H.

diagonal flips we did is

(q5 + 2) + (q7 + 2) + · · · + (qr−2 + 2) + q1 + qr �(q − m) + 2

(
r − 5

2

)
. (2)

Let H ′ be the current Catalan triangulation obtained from K ′. The zigzag frame of H ′
has length exactly 5, and all spokes of H ′ are incident to v3. Moreover, H ′ has 1

2 (r −5)+m

trivial edges, since all m spokes incident to v2, v4, . . . , vr−1 in K ′ are replaced with trivial
edges of H ′, and since decreasing the length of the zigzag frame of K ′ by two yields exactly
one new trivial edge. Let H be the Catalan triangulation consisting of H ′ and all trivial edges
of K. Then H has exactly p + 1

2 (r − 5) + m trivial edges.
Now, renaming vertices, we put H with the zigzag frame u1u2u3u4u5 as shown in Fig.

6, where u1 = v1, u3 = v3 and u5 = vr . The four triangular faces u1u2u5, u1u2u3, u3u4u5
and u4u5u1 of H come from K ′. Let Ri denote the outer-plane graph bounded by an edge
ui−1ui+1 and containing the edge ui−1ui+1, for i �= 3. (Note that Ri might be just an edge.)

The region Fi of the zigzag frame of H is the union of the faces bounded by the two
edges ui−1ui, uiui+1 and the path on �M2 connecting ui−1 and ui+1, for each i, where the
subscripts are taken modulo 5. Now we shall transform H into a Catalan triangulation in
which all the regions of the zigzag frame, except one corresponding to F3, consists of just
one face.

Here we focus on the outer-plane graph R2 and first suppose that |V (R2)|�3. By Lemma
3, we can make u1 have degree |V (R2)| − 1 by at most |V (R2)| − 3 diagonal flips. Let
u1, x1, . . . , xl, u3 be the vertices of R2 lying on �M2 in this order. Apply five diagonal
flips of u1u3, u1u2, u1xl , u1u5 and u4u5 in this order, if l�2. (See Fig. 7.) If l = 1, then
apply three diagonal flips of u1u3, u1u2, u4u5 in this order. In the resulting graph, each of
two regions of the zigzag frame corresponding to F2 and F5 is just a face. The number of
diagonal flips we did is at most |V (R2)| − 3 + 5.

Secondly we suppose that |V (R2)| = 2. If we also have |V (R5)| = 2, then we have
nothing to do for F2 and F5. So, suppose that |V (R5)|�3. Similarly to the above case, at
most |V (R5)| − 3 diagonal flips make u4 have degree |V (R5)| − 1 in R5 and we apply two
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Fig. 7. Moving vertices of R4 and R5.

diagonal flips of u1u4 and u4u5. In the resulting graph, the two regions corresponding to F2
andF5 are just faces.Then the number of diagonal flips we did is at most |V (R5)|−3+2. Note
that by the above operations, the number of trivial edges decreases by one, if |V (R2)|�3
or |V (R5)|�3.

We can do the same procedures for the regions R1 and R4. Let L denote the resulting
graph in which exactly four regions are just faces. Hence, the number of diagonal flips
transforming H into L is at most

max{|V (R2)| + 2, |V (R5)| − 1} + max{|V (R4)| + 2, |V (R1)| − 1}
�p + 1

2 (r − 5) + m + 8, (3)

since

(|V (R1)| − 2) + (|V (R2)| − 2) + (|V (R4)| − 2) + (|V (R5)| − 2)

�p + 1
2 (r − 5) + m.

Note that we can assume that the number of trivial edges of L is at most p+ 1
2 (r−5)+m−1,

since we may suppose that at least one of R1, R2, R4 and R5 has at least three vertices. (For
otherwise, we do not need to add (3) to the estimation of the maximum number of diagonal
flips, and this case requires a few number of diagonal flips.)

Finally we flip all trivial edges of L, all of which are incident to u3. Since the number of
trivial edges of L is at most p+ 1

2 (r −5)+m−1, the number of diagonal flips transforming
L into the standard form is at most

p + 1

2
(r − 5) + m − 1 = p + r

2
+ m − 7

2
. (4)

Therefore, by (1)–(4), the total number of diagonal flips is at most

m + (q − m + r − 5) +
(

p + r

2
+ m + 11

2

)
+

(
p + r

2
+ m − 7

2

)

= 2p + q + 2m + 2r − 3�2(p + q + r) − 3 = 2n − 3,

since q �2m. Therefore, the lemma follows. �



150 R. Mori, A. Nakamoto / Discrete Mathematics 303 (2005) 142–153

3. Triangulations with contractible Hamilton cycles

In the previous section, we described only the result on triangulations with contractible
Hamilton cycles. In this section, we shall mention how we can obtain triangulations with
contractible Hamilton cycles from any triangulations.

The following gives an important sufficient condition for a graph on the projective plane
to have a contractible Hamilton cycle.

Lemma 7 (Thomas and Yu [8]). Every 4-connected graph on the projective plane has a
contractible Hamilton cycle.

The following lemma is essential.

Lemma 8. Let G be a triangulation on the projective plane with n vertices. Then G can be
transformed into a 4-connected triangulation by at most n − 6 diagonal flips.

Proof. Observe that a triangulation on the projective plane has no separating 3-cycle if and
only if it is 4-connected. We first show that G has at most n − 6 separating 3-cycles, by
induction on n. It is well-known that the smallest triangulation on the projective plane is the
unique triangular embedding of K6, which has no separating 3-cycle. Therefore, the lemma
holds when n = 6.

When n�7, we may assume that G has a separating 3-cycle C =xyz, and it is innermost,
that is, there is no separating 3-cycle in the 2-cell bounded by C. Cutting along C, we can
decompose G into a plane triangulation G1 with no separating 3-cycle and a triangulation
G2 on the projective plane. By induction hypothesis, G2 has at most |V (G2)|−6 separating
3-cycles. Let M denote the number of separating 3-cycles in G. Then we have

M � |V (G2)| − 6 + 1 = (n − |V (G1)| + 3) − 5�n − 6,

since |V (G1)|�4.
Now we shall show that there is a diagonal flip decreasing the number of separating

3-cycles by at least one. Let C = xyz be a separating 3-cycle in G and e = xy. Let xayb be
the quadrilateral formed by two triangular faces sharing e, where a lies in the 2-cell region
bounded by C. Consider the diagonal flip of e replacing xy with ab. In the resulting graph
G′, the separating cycle C in G has disappeared.

We shall show that no new separating 3-cycle arises in G′, by possibly re-choosing e.
Suppose that G′ has a new separating 3-cycle C′. Then C′ contains both a and b; otherwise,
C′ would be contained in G. We must have C′ = abz, where we assume that x is contained
in the 2-cell region bounded by C′ in G′. This means that V (G1) = {x, y, z, a} since C is
innermost in G. In this case, the edge yz can be flipped to destroy a 3-cycle byz and make no
new separating 3-cycle, because byz separates a and other vertices outside byz. Therefore,
at most n − 6 diagonal flips can make the graph be 4-connected. �

4. Proof of theorems

It is well-known that the smallest triangulation on the projective plane is the unique
triangular embedding of K6. Let xy be one of its edges, and suppose that two faces xyz
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Fig. 8. The standard form �m of triangulations on the projective plane.

and xyw share xy. Subdivide xy by m vertices v1, . . . , vm and add 2m edges viz, viw for
i = 1, . . . , m. The resulting graph with m + 6 vertices is called the standard form of
triangulations on the projective plane and denoted by �m. (See Fig. 8.) Clearly, we obtain
the standard form �m from the standard form �m−1 of Catalan triangulations of the Möbius
band M2 by pasting a disk along �M2, placing a vertex v at its center and joining v to all
vertices of �m.

We first prove the following theorem.

Theorem 9. Let G be a triangulation on the projective plane with n vertices which has a
contractible Hamilton cycle. Then G can be transformed into �n−6, preserving the Hamilton
cycle, by at most 3n − 6 diagonal flips. If G is 4-connected, then the number of diagonal
flips is improved to 3n − 7.

Proof. We may suppose that n�7. By Lemma 4, G can be transformed into K + K1 by
at most n − 1 diagonal flips, preserving the Hamilton cycle, where K is some Catalan
triangulation on the Möbius band with n − 1 vertices. (By Remark 5, if G is 4-connected,
the number “n − 1” of diagonal flips can be replaced with “n − 2”.)

Note that no two vertices of K are joined by an edge outside K. Therefore, it suffices
to prove that K can be transformed into �n−6. By Lemma 6, it can be done by at most
2(n − 1) − 3 diagonal flips. Therefore, G can be transformed into �n−6 by at most 3n − 6
(3n − 7 when G is 4-connected) diagonal flips, preserving the Hamilton cycle. �

Theorem 10. Every triangulation on the projective plane with n vertices can be trans-
formed into the standard form �n−6 by at most 4n − 13 diagonal flips, up to isotopy.
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Fig. 9. A triangular mesh.

Proof. Let G be a triangulation on the projective plane with n vertices. By Lemma 8, at
most n − 6 diagonal flips transform G into a 4-connected triangulation, denoted by H. By
Lemma 7, H has a contractible Hamilton cycle. Then apply Theorem 9. �

Now we shall prove Theorems 1 and 2.

Proof of Theorems 1 and 2. Theorems 1 and 2 follow from Theorems 10 and 9, respec-
tively, via the standard form �n−6. �

Finally, we consider two triangulations G1 and G2 on the projective plane with n vertices
which need many diagonal flips to transform them into each other. Let G1 = �n−6, and let
G2 be a triangulation with maximum degree 6. For example, it is constructed from K6 by
putting a triangular mesh shown in Fig. 9 to each face.

The maximum degree of G1 is n − 1 and it is attained by two vertices, say x and y. To
transform G1 into G2, we have to decrease the degree of x and y to six or five. Since each
diagonal flip decreases the degree of a fixed vertex at most by one, each of x and y requires at
least (n− 1)− 6 diagonal flips. Observe that the degree of x and y decrease simultaneously
by one diagonal flip, only if this diagonal flip is applied to the edge xy. If such diagonal flips
are applied at least twice in the process from G1 to G2, then there must be a diagonal flip
joining x and y, which increases deg(x)+deg(y). Therefore, if the number deg(x)+deg(y)

is non-increasing in the process from G1 to G2, then the edge xy is flipped at most once,
and the number of diagonal flips transforming G1 to G2 is at least

(n − 1) − 6 + (n − 1) − 6 − 1 = 2n − 13.

Therefore, the order of our estimation in Theorems 2 and 1 cannot be improved.

Proposition 11. For any natural number N, there exists a pair of triangulations G1 and
G2 on the projective plane with n�N vertices such that at least 2n − 13 diagonal flips are
needed to transform them into each other.
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