
Journal of Computer and System Sciences 62, 668�690 (2001)

Verification by Augmented Abstraction:
The Automata�Theoretic View

Yonit Kesten

Department of Communication Systems Engineering, Ben Gurion University, Israel

Amir Pnueli1

Department of Applied Mathematics and Computer Science, Weizmann Institute of Science, Israel

and

Moshe Y. Vardi2

Department of Computer Science, Rice University Houston, Texas 7725-1892

Received March 1, 2000; revised December 19, 2000

This paper deals with the proof method of verification by finitary abstraction
(vfa), which presents an alternative approach to the verification of (potentially
infinite-state) reactive systems. We assume that the negation of the property to
be verified is given by the user in the form of an infinite-state nondeterministic
Bu� chi discrete system (bds). The method consists of a two-step process by which,
in a first step, the system and its (negated) specification are combined into a
single infinite-state fair discrete system (fds, which is similar to a bds but with
Streett acceptance conditions), which is abstracted into a finite-state automaton.
The second step uses model checking to establish that the abstracted automaton
is infeasible, i.e., has no computations.

The vfa method can be considered as a viable alternative to verification by
temporal deduction, which, up to now, has been the main method generally
applicable for verification of infinite-state systems.

The paper presents a general recipe for an fds abstraction, which is shown
to be sound, where soundness means that infeasibility of the abstracted fds
implies infeasibility of the unabstracted one, implying in turn the validity of
the property over the concrete (infinite-state) system. To make the method
applicable for the verification of liveness properties, pure abstraction is some-
times no longer adequate. We show that by augmenting the system with an
appropriate (and standardly constructible) progress monitor, we obtain an
augmented system, whose computations are essentially the same as those of

doi:10.1006�jcss.2000.1744, available online at http:��www.idealibrary.com on

6680022-0000�01 �35.00
Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.

1 Supported in part by the Minerva Center for Verification of Reactive Systems, by a grant from the U.S.�
Israel Binational Science Foundation, by NSF Grant CCR-970061, and by a grant from the Intel Corporation.

2 Work partly done when this author was a Varon Visiting Professor at the Weizmann Institute of
Science and partly supported by NSF Grants CCR-9700061 and CCR-9988322 and by a grant from the
Intel Corporation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82110698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the original system and which may now be abstracted while preserving the
desired liveness properties. We refer to the extended method as verification by
augmented abstraction (vaa).

We then proceed to show that the vaa method is sound and complete for
proving all properties whose negations are expressible by a bds. Given that
every linear temporal logic (ltl) property can be translated to a bds, this
establishes that the vaa method is sound and complete for proving the validity
of all ltl properties, including both safety and liveness. � 2001 Academic Press

1. INTRODUCTION

When verifying temporal properties of reactive systems, the common wisdom is:
if it is finite-state, model check it, otherwise use temporal deduction, supported by
theorem provers such as step or pvs. The study of abstraction as an aid to verifica-
tion demonstrated that, in some interesting cases, one can abstract an infinite-state
system into a finite-state one. This suggests an alternative approach to the temporal
verification of infinite-state systems: abstract first and model check later. This
general idea can be developed and applied in various frameworks that may differ
from one another by the formalisms used for computing the abstraction and model
checking the resulting abstraction. In all of these approaches, we consider a system
D presented as a fair discrete system (fds) and a specification given by a linear
temporal logic (ltl) formula �.

The work reported in [KP99b] presented a version of the verification by finitary
abstraction (vfa) method in which the separation between the system and its
specification was maintained throughout the abstraction process. The method there
was based on a joint abstraction of the reactive system D and its specification �.
The unique features of the abstraction method of [KP99b] are that it takes full
account of all the fairness assumptions (including strong fairness) associated with
the system D and can, therefore, establish liveness properties, in contrast to most
previous abstraction approaches that can only support verification of safety properties.

Since the presentation in [KP99b] worked directly with the temporal formula �,
it was necessary to present two different recipes for abstraction: the first dealing
with the fair discrete system D and the other showing how to abstract a temporal
formula. As a result, the presentation was more involved and the proof of complete-
ness of the approach became specially complex, due to the need to deal separately
with the two formalisms which, in principle, are very close to one another. This
additional complexity may obstruct the inherent simplicity of the ideas underlying
the vfa method.

In this paper, we develop the vfa method in a more homogeneous and uniform
framework, in which both the verified system D and its specification are presented
as fds's, which are, in principle, |-automata (Streett automata to be precise) extended
syntactically to deal with infinite-state systems. Indeed, couched in an automata�
theoretic framework, the presentation is very much simplified an the basic ideas
become clearer.

We start with D, the fds representing the system to be verified, and a Bu� chi
discrete system (bds) Tc� , which is an fds with Bu� chi acceptance conditions,

669VERIFICATION BY AUGMENTED ABSTRACTION

representing the complemented property c�, namely all the sequences violating the
property, or all counterexamples. For users preferring linear temporal logic as
specification language, we give references in Section 3 to the construction of Tc�

for a given formula �.
As usual in the automata�theoretic approach, we reduce the problem of verifying

D < � to proving that the bds B: D _ Tc� , formed by taking the synchronous
parallel composition of D with Tc� is infeasible, i.e., has no computations.

We first provide a sound recipe for the application of the method of vfa. That
is, given an arbitrary state mapping : which maps concrete to abstract states, we
show how to define the abstracted version B:, such that if B: is infeasible then so
is B, establishing that D < �. In the case that : maps all concrete variables into
abstract variables ranging over finite domains, B: will be a finite-state system, and
the infeasibility of B: can be verified by model checking. Some interesting examples
of abstractions of an infinite-state system into a finite-state one have been presented
in [BBM95] and [KP98].

Applying the method of finitary abstraction to the verification of liveness proper-
ties, we find that, sometimes, pure abstraction is no longer adequate. For these
cases, it is possible to construct an additional module M, to which we refer as a
progress monitor, such that the augmented system D _ M has essentially the same
set of computations as the original D and can be abstracted in a way that preserves
the desired liveness property. We refer to this extended proof method as the method
of verification by augmented abstraction (vaa).

In Section 7 we formulate the vaa method in the automata-theoretic framework
and show that the method is sound. That is, for every abstraction mapping :, if the
abstracted composed system (D _ M _ Tc�): is infeasible, and the monitor M does
not constrain the computations of D (effective sufficient conditions for this are
provided), then we can safely infer the infeasibility of the original system D _ Tc� .

Section 8 is dedicated to the proof of completeness of the vaa method in the
automata�theoretic framework. In this section, we show that if D _ Tc� is infeasible,
then there exists a monitor M that doe snot constrain the computations of D and a
finitary abstraction mapping : such that (D _ M _ Tc�): is infeasible.

As will be shown in the next section, the idea of using abstraction for simplifying
the task of verification is certainly not new. Even the observation that, in many
interesting cases, infinite-state systems can be abstracted into finite-state systems
which can be model checked has been made before. In [KP99b], we show that for
some verification tasks involving liveness, pure abstraction is inadequate and devise
the method of vaa. We then establish completeness of the vaa method.

The main contributions of the current paper can be summarized as follows:

v Reformulates the method of verification by augmented abstraction within
the automata�theoretic framework.

v Estalishes completeness of the vaa method within this framework.

1.1. Related Work

Most previous works on verification by finitary abstraction follow the work on
verification in which the system is specified by transition systems and the verified

670 KESTEN, PNUELI, AND VARDI

property is specified by one of the temporal logics such as ltl, ctl, and +-calculus.
In these works, the system and the property are abstracted separately using dif-
ferent methodologies for abstracting the system and the properties specified in these
logics. There has been an extensive study of the use of data abstraction techniques
in these frameworks, mostly based on the notions of abstract interpretation [CC77,
CH78]. See, for example, [CGL94, CGL96, DGG97, LGS+95, BBM95]. All of
these methods are only applied for the verification of safety properties. Liveness,
and therefore fairness, are not considered.

A deductive methodology for proving temporal properties over infinite state
systems is presented in [MP91a]. The methodology is based on a set of proof rules,
each devised for a class of temporal formulas. This methodology is proved to be
complete, relative to the underlying assertion language.

Verification diagrams (vd), presented in [MP94], provide a finite graphical
representation of the deductive proof rules, which can be viewed as a finite abstrac-
tion of the verified system, with respect to the verified property.

In [BMS95, MBSU98], the notion of a verification diagram is generalizes (gvd),
which allows a uniform verification of arbitrary temporal formulas. The gvd
method is also shown to be sound and complete. The abstraction constructed by
this method can be viewed as an |-automaton with either the Streett [BMS95] or
the Muller [MBSU98] acceptance condition.

A dual method to vd is the deductive model checking (dmc) presented in
[SUM96]. Similar to vd, this method tries to verify a temporal property over an
infinite state system, using a finite graph representation. The procedure starts with
the temporal tableau for c., which is repeatedly refined until either a counter-
example is found or the property is proved. The method is shown to be complete
in [SUM99].

Moving to the automata�theoretic framework, the problem of verification is
reduced to the problem of emptiness of (possibly infinite-state) automata. Verifica-
tion by finitary abstraction in the automata�theoretic framework means abstracting
a possibly infinite state automaton into a finite state automaton, preserving non-
emptiness. Abstraction in the automata framework has been studied as a state-space
minimization technique [Kur95], but the focus there is on soundness and not on
completeness.

A conference version of this paper appeared in [KP99a].

2. A COMPUTATIONAL MODEL: FAIR DISCRETE SYSTEMS

We assume an underlying assertion language L that contains the predicate
calculus augmented with fixpoint operators.3 We assume that L contains

671VERIFICATION BY AUGMENTED ABSTRACTION

3 As is well known [LPS81], a first-order language is not adequate to express the assertions necessary
for (relative) completeness of a proof system for proving validity of temporal properties of reactive
programs (which in this paper are specified by automata). The use of minimal and maximal fixpoints
for relative completeness of the proof rules for liveness properties is discussed in [MP91a], based
on [SdRG89]. However, the fixpoints are not needed for the assertion language used to specify the
components of an fds (3, \, J, and C) or the set of its reachable states (see Section 4).

interpreted symbols for expressing the standard operations and relations over the
integers.

Let p be an assertion and V be the set of free variables in p. Let 7 denote the
set of interpretations over V. We say that p holds on s # 7, denoted s < p, if p[s]=t.
An assertion p is called satisfiable if it holds on some s # 7. An assertion p is called
valid, denoted < p, if it holds on all s # 7. Two assertions p and q are defined to
be equivalent, denoted ptq, if p W q is valid, i.e., s < p iff s < q, for all s # 7.

As a computational model for reactive systems, we take the model of an fds,
which is a slight variation on the model of fair transition system (fts) [MP95]. The
fds model was first introduced in [KPR98] under the name ``fair Kripke structure.''
The main difference between the fds and fts models is in the representation of fairness
constraints.

An fds D: (V, 3, \, J, C) consists of the following components.

v V=[u1 , ..., un]: A finite set of typed system variables, containing data and
control variables. The set of states (interpretation) over V is denoted by 7. We
denote by s[u] the value assigned to u # V by state s.

v 3: The initial condition��an assertion characterizing the initial states.

v \: A transition relation��an assertion \(V, V$) relating the values V of the
variables in state s # 7 to the values V$ in a D-successor state s$ # 7.

v J=[J1 , ..., Jk]: A set of justice requirements (weak fairness). The justice
requirement J # J is an assertion intended to guarantee that every computation
contains infinitely many J-states (states satisfying J).

v C=[(p1 , q1) , ..., (pn , qn)]: A set of compassion requirements (strong
fairness). The compassion requirement (p, q) # C is a pair of assertions intended to
guarantee that every computation containing infinitely many p-states also contains
infinitely many q-states.

A state s$ is said to be a D-successor of a state s if (s, s$) < \(V, V$), where we
interpret V over s and V$ as the state variables of s$. For an assertion p= p(V), we
denote by p$ the assertion p(V$).

A computation of an fds D is an infinite sequence of states _: s0 , s1 , s2 , ... satisfying
the requirements:

v Initiality: s0 is initial, i.e., s0 < 3.

v Consecution: For each j=0, 1, ..., the state sj+1 is a D-successor of s j .

v Justice: For each J # J, _ contains infinitely many J-positions

v Compassion: For each (p, q) # C, if _ contains infinitely many p-positions,
it must also contain infinitely many q-positions.

We denote by Comp(D) the set of all computations of D. An fds D is called
feasible if Comp(D){<. The feasibility of a finite-state fds can be checked algo-
rithmically, as presented in [LP84, Eme85], and adapted to symbolic model checking
in [CGH97, KPR98]. A state is called D-reachable if it appears in some computation
of D.

672 KESTEN, PNUELI, AND VARDI

Let U�V be a set of variables. Let _ be an infinite sequence of states. We denote
by _ -U the projection of _ onto the subset U. We denote by Comp(D) -U the set of
computations of D projected onto the set of variables U. Let D1 : (V1 , 31 , \1 ,
J1 , C1) and D2 : (V2 , 32 , \2 , J2 , C2) be two fds's and U�V1 & V2 . We say that
D1 is U-equivalent to D2 (D1 tU D2) if Comp(D1) -U=Comp(D2) -U .

All our concrete examples are given in spl (Simple Programming Language),
which is used to represent concurrent programs (e.g., [MP95, MAB+94b]). Every
spl program can be compiled into an fds in a straightforward manner (see
[KPR98]). If we assume that location lj appears within the program for process
Pi , the predicates at�lj stand for the assertions ?i= j, where ?i is the control
variable denoting the current location within Pi .

2.1. Synchronous Parallel Composition

Let D1 : (V1 , 31 , \1 , J1 , C1) and D2 : (V2 , 32 , \2 , J2 , C2) be two fair discrete
systems. We define the synchronous parallel composition of D1 and D2 denoted by
D1 _ D2 , to be the system D: (V, 3, \, J, C) , where

V=V1 _ V2 3=31 7 32 \=\1 7 \2

J=J1 _ J2 C=C1 _ C2 .

As implied by the definition, each of the basic actions of system D consists of the
joint execution of an action of D1 and an action of D2 . We can view the execution
of D as the joint execution of D1 and D2 . The main, well established, use of synchronous
parallel composition is for coupling a system D with an fds representing a (negated)
property over D and then checking the feasibility of the combined system, as will be
shown in the following sections. In this work, synchronous composition is also used for
coupling the system with a monitor, used to ensure completeness of the data abstraction
methodology. We remind the reader that the concurrent composition of several spl
processes is an asynchronous composition based on interleaving, which is not presented
here.

2.2. From fds to jds

An fds with no compassion requirements is called a just discrete system (jds).
Let D: (V, 3, \, J, C) be an fds such that C=[(p1 , q1), ..., (pm , qm)] and

m>0. We define a jds D� : (V� , 3� , \~ , J� , C� : <) which is V-equivalent to D as
follows. First we construct m similar jds's, D1 , ..., Dm , one for each compassion
requirement (pi , qi) # C. The jds Di representing a compassion requirement (pi , qi)
is presented in Fig. 1.

Each Di consists of the components Vi=V _ [?i : [0..2]], initial condition 3i :
(?i=0), a single justice requirement Ji : (? i>0), and no compassion requirements.
The jds D� is given by D� : D _ D1 _ } } } _ Dm .

673VERIFICATION BY AUGMENTED ABSTRACTION

FIG. 1. A jds Di for a single compassion requirement (pi , qi) # C.

The transformation of an fds to a jds follows the transformation of Streett
automata to generalized Bu� chi automata (see [Cho74] for finite state automata,
[Var91] for infinite state automata). More efficient representation of the resulting
jds can be obtained. For example, we can reduce the size of the augmenting component
from 3m as implied by the construction of Fig. 1 into m } 2m. Unfortunately, it will
always be exponential in m.

2.3. From jds to bds

A jds with a single justice requirement is called a bds. Let D: (V, 3, \, J,
C : <) be a jds such that J=[J1 , ..., Jk] and k>1. We define a bds B: (VB , 3B ,
\B , JB : [J], CB : <) that is V-equivalent to D as follows:

v VB =V _ [u], where u is a new variable not in V, interpreted over [0..k].

v 3B : 3 7 u=0.

case

i=0: 1 ;

v \B : \(V, V$) 7 �
k

i=0

(u=i) 7 u$=_ Ji : (u+1) mod (k+1); &true : u ;

esac

v JB =[J], where J is the single justice requirement J: (u=0).

The transformation of a jds to a bds follows the transformation of generalized
Bu� chi automata to Bu� chi automata [Cho74].

3. REQUIREMENT SPECIFICATION LANGUAGES

One of the well-established languages for specifying properties of reactive systems
is ltl [MP91b, MP95]. The validity of an ltl property over an infinite state
system is verified by deductive methods. A (relatively) complete deductive proof
method for ltl properties is presented in [MP91a] and has been implemented into
a verification tool in [MAB+94a]. The validity of a propositional ltl property

674 KESTEN, PNUELI, AND VARDI

over a finite state system can be verified algorithmically [LP85, VW86]. A symbolic,
bdd-based, algorithmic method is discussed in [BCM+92, CGH97, KPR98].

Given a propositional ltl formula �, one can construct a finite |-automaton
that accepts precisely the computations satisfied by � [VW94]. Most algorithmic
methods for the verification of ltl properties over finite state systems are based on
this observation, transforming (the negation of) the ltl property into a w-automaton
[VW86, LP85].

In this work we take the automata�theoretic approach, using Bu� chi automata,
extended to variables that can range over infinite domains, as the specification
language. Automata were first introduced as a specification language for concurrent
systems by Wolper in [Wol83], where finite-state |-automata are used. The use of
infinite-state |-automata for the specification of infinite-state systems is discussed
in [Var91].

Let D be an fds and B be a bds representing a property over D. We say that
the system D satisfies the property B iff Comp(D)�Comp(B), which is equivalent
to Comp(D) & Comp(B�)=<, where B� is the complement of B. Since, unlike finite-
state w-automata, infinite-state w-automata are not closed under complementation
(see [Sis89]), we assume that the negation of the property to be verified is given
by the user in the form of a bds. Users preferring ltl as their specification language
can use the systematic transformation of a general ltl formula into a bds as
described in [KP99b]. Given an ltl formula � [KP99b] construct a tester Tc�

for �, which is a bds characterizing all the sequences which violate �.
Some of the tools that have been developed for automatic verification of (finite

state) reactive systems use this approach, representing the negated property directly
as a Bu� chi automaton [Hol97, Kur95].

4. VERIFYING BU� CHI DISCRETE SYSTEMS

4.1. Verification Reduced to Infeasibility

Let D be an fds and let Tc� be a bds representing the negated property. The
verification problem Comp(D) & Comp(Tc�) =

? < is reduced to an infeasibility
problem of a bds as follows:

v Construct the synchronous parallel composition D _ Tc� .

v Transform the fds D _ Tc� into an equivalent bds B(D, c�) .

Claim 1. Comp(D) & Comp(Tc�)=< iff Comp(B(D, c�))=<, i.e., iff B(D, c�)

is infeasible.

See [Var91] for the proof.

4.2. Infeasibility of Bu� chi Discrete Systems

In the following, we present a general proof method for establishing that a bds
is infeasible.

675VERIFICATION BY AUGMENTED ABSTRACTION

FIG. 2. Rule well.

A well-founded domain (W, O) consists of a set W and a total ordering relation
O over W such that there does not exist an infinitely descending sequence, i.e., a
sequence of the form

a0 oa1 oa2 o } } } .

A ranking function for an fds D is a function $ mapping the states of D into a well-
founded domain.

The standard approach to prove infeasibility of a bds B: (V, 3, \, J : [J],
C : <) is to define a ranking function $ for B. The ranking function is required to
satisfy the conditions that every transition of B does not increase the rank and every
transition into a state satisfying J, the single justice requirement of B, decreases the
rank. The (possibly infinite) set of reachable states of B can be characterized (or over-
approximated) by an inductive assertion .. The infeasibility of B can then be derived
from rule well, presented in Fig. 2. Rule well is sound and complete, relative to
the assertional validity, for proving emptiness of a bds. Soundness of the rule means
that, given a bds B, if we can find a ranking function $ and an assertion ., such
that . and $ satisfy the three premises W1�W3, then B is indeed infeasible. To see
this, assume, to the contrary, that B is feasible. Then B has an infinite computation
_: s0 , s1 , ... such that si < J for infinitely many states si in _. Then, from premises
W2 and W3, there exists an infinite sequence of states over which the ranking func-
tion $ decreases infinitely many times and never increases. Since $ is defined over
a well-founded domain, this is clearly impossible, contradicting our assumption.

The completeness of rule well is stated by the following claim:

Claim 2. Let B: (V, 3, \, J : [J], C : <) be a bds. If B is infeasible, then
there exist an assertion ., a well-founded domain (W, O), and a ranking function
$: 7V [W satisfying the premises of rule well.

Namely, if we can prove state validities (W1, W2, and W3), we can prove that
B is infeasible.

676 KESTEN, PNUELI, AND VARDI

Proof (sketch). To prove the claim, we have to find both an assertion . and a
ranking function $ that satisfy the premises W1�W3 of rule well.

The proof of existence of an assertion . characterizing the set of all reachable
states of a bds is presented in [MP91a] and discussed in more detail in [MP91b]
(Section 2.5). The assertion (using predicate calculus) is constructed as an encoding of
the finite paths to a reachable state, using the initial condition 3 and the transition
relation \ of B to constrain the path.

The existence of a well-founded domain (W, O) and ranking function $ satisfy-
ing the premises W1�W3 is shown in [Var91], based on [LPS81]. The syntactic
representation of the well-founded predicates $$P$ and $$O$, using an assertion
language based on the predicate calculus augmented with minimal and maximal
fixpoints operators, is discussed in [MP91a] based on [SdRG89].

5. FINITARY ABSTRACTION OF A BDS

In this section, we present a general methodology for abstraction of a bds,
derived from the notion of abstract interpretation [CC77]. For more details see
[KP99b]. Let B=(V, 3, \, J : [J], C : <) be a bds, and let 7 denote the set
of states of B, the concrete states. Let VA=[U1 , ..., Um] be a set of typed variables
to which we refer as the abstract variables. An abstraction presentation is a list of
definitions :: (U1=E:

1(V), ..., Um=E:
m(V)), where each E:

i (V) is an expression over
V. The abstraction presentation : induces a mapping f: from 7, the set of V-states,
into 7A , the set of VA-states, where S= f:(s) if, for every i=1, ..., m, the value of
Ui in S equals the value of E:

i in s. When there is no danger of confusion, we refer
to : simply as an abstraction (or abstraction mapping) and write S=:(s) instead of
S= f:(s). We say that : is a finitary abstraction mapping if 7A is a finite set.

Let p(V) be an assertion. We define the operator :+ as follows:

:+((V)) : _V(VA=E:(V) 7 p(V)).

Note that the free variables of the assertion :+(p(V)) are the abstract variables VA .
The assertion :+(p) holds for an abstract state S # 7A iff the assertion p holds for
some concrete state s # 7 such that s # :&1(S), i.e., some state s such that S=:(s).
Alternatively, :+(p) is the smallest set X�7A such that &p&�:&1(X), where &p&
represents the set of states which satisfy the assertion p. For readers who prefer to
view abstractions via the framework of Galois connections [CC77], we point out
that the pair (:+, :&1) form a Galois insertion [MSS86] between the concrete lattice
27 and the abstract lattice 27A. That is, for every abstract set A�7A and concrete
set C�7, we have (with some abuse of notation)

A=:+(:&1(A)) and C�:&1(:+(C)).

Let B=(V, 3, \, J=[J], C=<) be a bds. We define B:=(VA , 3:, \:,
J:, C:) , the :-abstracted bds, as follows:

3:=:+(3) \:=:++(\) J:=[:+(J)] C:=<,

677VERIFICATION BY AUGMENTED ABSTRACTION

where for an arbitrary formula .(U1 , U2), the operator :++ is defined by

:++(.) : _U1 , U2(VA=E:(U1) 7 V$A=E:(U2) 7 .(U1 , U2)).

In practice, more efficient ways of computing the abstract transition relation are
used, as discussed in [CU98].

The following claim relates the computations of B to the computations of B:.

Claim 3. Let _=s0 , s1 , ... be a computation of B. Then the sequence _A=
S0 , S1 , ..., where Si=:(si) for every i�0, is a computation of B:.

Proof. Denote by U j=sj[V] and U j
A=Sj[VA] the values of the system variables

V and VA in the states sj and Sj , respectively, for every j�0. Since _ # comp(B), then
U0 < 3, namely 3(U0)=t. Since U 0

A=E:(U0), then 3:(U 0
A)=(U0

A=E:(U0) 7

3(U0))=t, namely 3:(U 0
A)=t.

We proceed by considering two successive states, sj , sj+1 in _. Again, since
_ # Comp(B) then \(U j, U j+1)=t. Then,

\:(U j
A , U j+1

1)=(U J
A=E:(U j) 7 U J+1

A =E:(U j+1) 7 \(U j, U j+1))=t.

Finally, since _ is a computation of B, there exists infinitely many states in _
satisfying J. Let sk be such a state, namely J(Uk)=t. Then, J:(U k

A)=(U k
A=E:(Uk)

7 J(Uk))=t. K

The following claim states the soundness of the automata-theoretic approach to
verification by finitary abstraction:

Corollary 4 (Weak Preservation). Comp(B:)=< implies Comp(B)=<.

Proof. Immediate result from Claim 3. K

As an example, consider program bakery-2, presented in Fig. 3, which implements
the bakery algorithm for mutual exclusion by Lamport [Lam74].

Program bakery-2 is an infinite-state system, since y1 and y2 can assume
arbitrarily large values. The temporal properties we wish to establish are

�exc : gc(at�l4 7 at�m4) and �acc : g(at�l2 � hat�l4).

FIG. 3. Program bakery-2: the Bakery algorithm for two processes.

678 KESTEN, PNUELI, AND VARDI

FIG. 4. Program Bakery-2: the Bakery algorithm for two processes.

The safety property �exc requires mutual exclusion, guaranteeing that the two processes
never co-reside in their respective critical section. The liveness property �acc requires
accessibility for process P1 , guaranteeing that, whenever P1 reaches location l2 it will
eventually reach location l4 . As described in Section 3, we construct the testers Tc�esc

and Tc�acc
representing all the sequences violating �exc and �acc , respectively. Both

testers are finite state.
Following [BBM95], we define abstract Boolean variables Bp1

, Bp2
, ..., Bpk

, one
for each atomic data formula, where the atomic data formulas for bakery-2 are
y1=0, y2=0, and y1< y2 . The abstract system variables consist of the concrete
control variables, which are left unchanged, and a set of abstract Boolean variables
Bp1

, Bp2
, ..., Bpk

. The abstraction mapping : is defined by

:: [Bp1
= p1 , Bp2

= p2 , ..., Bpk
= pk].

That is, the Boolean variable Bpi
has the value true in the abstract state iff the asser-

tion pi holds at the corresponding concrete state. It is straightforward to compute
the :-induced abstractions of the initial condition 3: and the transition relation \:.
In Fig. 4, we present program Bakery-2 (with a capital B), the :-induced abstrac-
tion of program bakery-2.

Since the properties we wish to verify refer only to the control variables (through
the at�l and at�m expressions), both Tc�exc

and Tc�acc
are not affected by the

abstraction. The synchronous compositions DBakery-2 _ Tc�exc
and DBakery-2 _ Tc�acc

are finite-state fds's whose infeasibility can now be model-checked. By Claims 1 and
4, we can infer that the original program bakery-2 satisfies the temporal properties
�exc and �acc .

6. AUGMENTATION BY PROGRESS MONITORS

Program bakery-2 is an example of successful data abstraction. However, there
are cases where abstraction alone is inadequate for transforming an infinite-state
system satisfying a property into a finite-state abstraction which maintains the
property. In the following we first illustrate the problem and the proposed solution
and then present the general solution.

679VERIFICATION BY AUGMENTED ABSTRACTION

FIG 5. Program sub-add.

6.1. An Illustrative Example

In Fig. 5, we present a simple looping program. The assignment at statement l2

assigns to y nondeterministically the values y+1 or y. The property we wish to
verify is that program sub-add always terminates.

A natural abstraction for the variable y is defined by

Y=if y=0 then zero else if y=1 then one else large,

where y is abstracted into the three-value domain [zero, one, large]. Applying this
abstraction yields the abstract program sub-add-abs-1, presented in Fig. 6, where
the abstract functions sub2 and add1 are defined by

sub2(Y)=if Y=[zero, one] then zero else [zero, one, large],

add1(Y)=if Y=zero then one else large.

Unfortunately, program sub-add-abs-1 need not terminate, because the function
sub2 can always choose to yield large as a result. The termination of programs such
as program sub-add can always be established by identification of a progress
measure that never increases and sometimes is guaranteed to decrease. In this case,
for example, we can use the progress measure $: y+at�l2 , which never increases
and always decreases on the execution of statement l1 .

To obtain a working abstraction, we first compose program sub-add with an
additional module, called the progress monitor for the measure $, as shown in Fig. 7.

FIG. 6. Program sub-add-abs-1 abstracting program sub-add.

680 KESTEN, PNUELI, AND VARDI

FIG. 7. Program sub-add composed with a monitor.

The construct always do appearing in monitor M$ means that the assignment
that is the body of this construct is executed at every step. The comparison function
diff ($, $$) is defined by

diff ($, $$)=if $<$$ then 1 else if $=$$ then 0 else &1.

The presentation of the monitor module M$ in Fig. 7 is only for illustrative pur-
poses. The precise definition of this module is given by the following fds:

V: [VD , inc: [&1, 0, 1]] 3: t

\: inc$=diff ($, $$) J: < C: [(inc<0, inc>0)],

where VD are the system variables of the fds representing the program sub-add.
Thus, at every step of the computation, module M$ compares the new value of $
with the current value and sets variable inc to &1, 0, or 1, according to whether
the value of $ has decreased, stayed the same, or increased, respectively. This fds
has no justice requirements but has the single compassion requirement (inc<0,
inc>0) stating that $ cannot decrease infinitely many times without also increasing
infinitely many times. This requirement is a direct consequence of the fact that $
ranges over the well-founded domain of the natural numbers, which does not allow
an infinitely decreasing sequence.

FIG. 8. A sequential equivalent of the monitored program.

681VERIFICATION BY AUGMENTED ABSTRACTION

FIG. 9. Program sub-add-abs-2: Abstracted version of the monitored program.

It is possible to represent this composition as equivalent to the sequential program
presented in Fig. 8, where we have conjoined the repeated assignment of module M$

with every assignment of process sub-add. The abstraction of the program of Fig. 8
abstracts y into a variable Y ranging over [zero, one, large]. The variable inc is not
abstracted. The resulting abstraction is presented in Fig. 9. The program sub-add-abs-2
(Fig. 9) differs from program sub-add-abs-1 (Fig. 6) by being (synchronously)
composed with a progress monitor, which introduces the additional compassion
requirement (inc<0, inc>0). It is this additional requirement that forces program
sub-add-abs-2 to terminate. This is because a run in which sub1 always yields large
as a result is a run in which inc is negative infinitely many times (on every visit to
l1) and is never positive beyond the first state. The fact that sub-add-abs-2 always
terminates can now be successfully model checked.

6.2. The General Structure of a Progress Monitor

We proceed to define the general structure of a progress monitor and show that
its augmentation to a system being verified is safe. Let D be an fds with a set VD

of system variables. Let (W, O) be a well-founded domain and $ be a ranking
function for D, mapping the states of D into the well-founded domain (W, O).
A progress monitor for $ is an fds M$ of the following form:

M$=�V: [VD , inc: [&1, 0, 1]],
\: inc$=diff ($(VD), $(V$D)),

3: true,
J : <, C: [(inc<0, inc>0)]�.

The following claim states the soundness of the augmentation by a progress monitor:

Claim 5 (Soundness of Augmentation). Comp(D _ M$) -VD
=Comp(D).

Proof. The transition relation of the progress monitor M$ affects only the
variable inc, which is a variable not in VD . K

7. VERIFICATION BY AUGMENTED FINITARY ABSTRACTION

Let D be an fds and Tc� be a bds representing some (negated) property over
D, such that Comp(D) & Comp(Tc�)=<. We can now formulate the automata�
theoretic approach to vaa as follows.

682 KESTEN, PNUELI, AND VARDI

To verify that Comp(D) & Comp(Tc�)=<,

v Construct the synchronous parallel composition D _ Tc� of the fds D

representing the system to be verified and the bds Tc� representing the (negated)
property, and transform it into an equivalent bds B(D, c�) .

v Identify an appropriate ranking function 2 for B(D, c�) and construct the
progress monitor M2 .

v Construct and fds of the augmented system A: B(D, c�) _ M2 .

v Identify an appropriate abstraction function :.

v Abstract the augmented system A into a finitary abstract fds A:.

v Model-chek Comp(A:)=<.

v Infer Comp(D) & Comp(Tc�)=<.

Claim 6. Comp((B(D, c�) _ M2):)=< implies Comp(D) & Comp(Tc�)=<.

Proof. Assume that Comp((B(D, c�) _ M2):)=<. Then by Corollary 4 and
Claim 5, we obtain Comp(D) & Comp(Tc�)=<.

8. COMPLETENESS OF THE VAA METHOD

In the following we prove the completeness of the vaa method. First we introduce
the operator :& and establish some useful properties of the abstraction mappings
:+ and :++.

8.1. The :& Operator

Let p(V) be an assertion. The operator :& is defined by

:&(p(V)): map(VA) 7\V(VA=E:(V) � p(V)),

where map(VA): _V(VA=E:(V)). The assertion :&(p(V)), like :+(P(V)), has VA

as free variables. The assertion map(VA) states that VA is the image of at least one
concrete state s # 7. The assertion :&(p) holds for an abstract state S # 7A iff
map(VA) holds and the assertion p holds for all concrete states s # 7 such that
s # :&1(S). Thus, when map(VA) holds, :&(p) is the largest set of states X�7A

such that :&1(X)�&p&, where &p& represents the set of states that satisfy the asser-
tion p. If :&(p) is valid, then &:&(p)&=7A implying :&1(&:&(p)&)=7 which, by
the above inclusion, leads to &p&=7 establishing the validity of p.

Note the duality relations holding between :+ and :&, which can be expressed
by the equivalences

c:+(p)tmap(VA) � :&(cp) (1)

c:&(p)tmap(VA) � :+(cp) (2)

683VERIFICATION BY AUGMENTED ABSTRACTION

or, equivalently, by

:+(cp)tc:&(p) 7 map(VA) (3)

:&(cp)tc:+(p) 7 map(VA). (4)

An abstraction : is said to be precise with respect to an assertion p if :+(p)t:&(p).
For such cases, we will sometimes write :+(p) simply as :(p). The following claim
asserts a sufficient condition for : to be precise with respect to an assertion p. The
claim and its proof are presented in [KP99b] and are given here for completeness
of the presentation.

Claim 7 (Existence of precise abstractions). Let :=[U1=E1(V), ..., Um=Em(V),
Bp= p(V)] be a presentation of an abstraction from V to VA=[U1 , ..., Um , Bp].
Then : is precise with respect to p(V).

Proof. The first direction :&(p) � :+(p) is valid for any assertion p and
abstraction :, with no precision requirement. The proof is trivial and is thus omitted.

Next, we prove the second direction :+(p) � :&(p). Expanding the definitions,
we get

_V: VA=E:(V) 7 p(V) � \V: VA=E:(V) � p(V) 7 _V: VA : E:(V).

Since _V: VA=E:(V) 7 p(V) implies _V: VA=E:(V), we only have to show

_V: VA=E:(V) 7 p(V) � \V: VA=E:(V) � p(V).

We split VA into UA _ [Bp], expanding VA=E:(V) to

UA=E:
U(V) 7 Bp= p(V).

Assuming the antecedent and skolemizing the existential quantifier in the antecedent
by v1 , we get

UA=E:
U(v1) 7 Bp= p(v1) 7 p(v1).

It follows that Bp=t. Thus, for every value v2 , if

(UA=E:
U(v2) 7 Bp= p(v2))

holds, then p(v2) must hold. K

8.2. Properties of :+ and :++

The following lemma states a basic property of :+.

Lemma 8. If : is precise with respect to either p or q, then

:+(p 7 q)t:+(p) 7 :+(q).

684 KESTEN, PNUELI, AND VARDI

Proof. For the general case (i.e., no preciseness constraints) we can only claim
that

:+(p 7 q) implies :+(p) 7 :+(q).

For the special case that : is precise with respect to q (i.e., :+(q)t:&(q)), we do
have the equivalence

:+(p 7 q)t:+(p) 7 :+(q).

To see this, it is only necessary to establish that :+(p) 7 :+(q) implies :+(p 7 q).
This is established by the following chain of equivalences�implications, assuming
preciseness with respect to q:

:+(p) 7 :+(q)t:+(p) 7 :&(q)t

_V: (VA=E:(V) 7 p(V)) 7 \V: (VA=E:(V) � q(V)) implies

_V: VA=E:(V) 7 (p(V) 7 q(V))t:+(p 7 q).

By symmetry, :+(p 7 q)t(:+(p) 7 :+(q)) also for the case that : is precise with
respect to p. K

The following lemma states some of the properties of :++.

Lemma 9. If : is precise with respect to r(V), then

:++(p 7 r)t:++(p) 7 :+(r) (5)

:++(p 7 r$)t:++(p) 7 (:+(r))$, (6)

where (:+(r))$ is defined by _V: V$A=E:(V) 7 r(V), and :++(p 7 r$) is given by
_U1 , U2(VA=E:(U1) 7 V$A=E:(U2) 7 p(U1 , U2) 7 r(U2)).

Proof of Eq. (5). The first direction

:++(p 7 r) implies :++(p) 7 :+(r)

is obvious and does not require any precision constraints. For the special case that
: is precise with respect to r (i.e., :+(r)t:&(r)), we do have the equivalence

:++(p 7 r)t:++(p) 7 :+(r). (7)

To see this, it is only necessary to establish that :++(p) 7 :+(r) implies :++(p7 r).
This is established by the following chain of equivalences�implications,

:++(p) 7 :+(r)t:++(p) 7 :&(r)t

_U1 , U2 : (VA=E:(U1) 7 V$A=E:(U2) 7 p(U1 , U2))

7 \V: (VA=E:(V) � r(V)),

685VERIFICATION BY AUGMENTED ABSTRACTION

which implies

_U1 , U2 : VA=E:(U1) 7 V$A=E:(U2) 7 (p(U1 , U2) 7 r(U1))t:++(p 7 r). K

The proof of Eq. (6) is similar.
It follows from the definitions that if p= p(V), then both :++(p)t:+(p) and

:++(p$)t(:+(p))$ hold without any precision assumptions about p.
Finally, we observe that if an implication is valid, we can apply the abstractions

:+ and :++ to both sides of the implication.

Lemma 10.

< p � q implies \< :+(p) � :+(q) and
< :++(p) � :++(q) + .

Proof. Assume < p � q. Suppose :+(p) holds in an abstract state. Then this
state is an image of a concrete state satisfying p and consequently also q. It follows
that :+(q) also holds in the abstract state. The argument for < :++(p) � :++(q)
is analogous. K

8.3. The Completeness Statement

Let B be an infeasible bds. Let : be an abstraction mapping and $ be a ranking
function for B. We say that (:, $) is an adequate augmented abstraction for B if
: is finitary and Comp((B _ M$):)=<.

Claim 11 (Completeness of vaa). Let B(D, c�) be an infeasible bds. Then there
exists an adequate augmented abstraction for B(D, c�) .

Based on Claim 2, there exists an assertion and a ranking function that satisfy the
three premises of rule well (Section 4) for the bds B(D, c�) . We denote these asser-
tion and ranking function by 8 and 2, respectively. We choose : to be an arbitrary
finitary abstraction that is precise with respect to the assertions 3 (the initial condi-
tion of B(D, c�)), 8, and the single J of the bds B(D, c�) . Namely, based on Claim 7,
we choose any finitary abstraction and augment it with the three Boolean variables
B% , B8 , and BJ defined by B%=3, B8=8, and BJ=J.

We require that : does not abstract the auxiliary variable inc. Let A=
B(D, c�) _ M2 . In the following, we show that for this choice of ranking function
and abstraction mapping, Comp(A:)=<, that is, (:, 2) is an adequate augmented
abstraction for B(D, c�) .

8.4. Abstracting the Premises of Rule well

The proof is based on the abstraction of premises W1�W3 of rule well applied
to the bds B(D, c�) : (V, 3, \, J=[J], C=<) . These three premises are known

686 KESTEN, PNUELI, AND VARDI

to be valid for our choice of 8 and 2. Recall that A is the fds B(D, c�) _ M2 . From
the definition of M2 , the components of A are given by

3A : 3 \A : \ 7 inc$=diff (2, 2$)
\m2

JA : J CA : [(inc<0, inc>0)].

From the implication

inc$=diff (2, 2$) � (2$P2 � inc$�0 7 2$O2 � inc$<0)

and the three premises of rule well applied to B(D, c�) , we can obtain the follow-
ing three valid implications:

U1. 3A � 8

U2. \A 7 8 � 8$ 7 inc$�0

U3. \A 7 8 7 J$ � 8$ 7 inc$<0.

Based on Lemma 10, we can apply :+ to both sides of U1 and apply :++ to both
sides of U2 and U3. We then simplify the right-hand sides, using the fact that
:++(p$)t(:+(p))$ and that : does not abstract inc. Next, since : is precise with
respect to the assertions 8 and J, we use Lemma 9 in order to distribute the
abstraction over the conjunctions on the left-hand sides of U2 and U3. These
transformations and simplifications lead to the following three valid abstract
implications:

V1. :+(3A) � :+(8)

V2. :++(\A) 7 :+(8) � (:+(8))$ 7 inc$�0

V3. :++(\A) 7 :+(8) 7 (:+(J))$ � (:+(8))$ 7 inc$<0.

8.5. The Augmented System A: Has No Computations

We proceed to show that A: has no computations (Comp(A:)=<). Assume to
the contrary that there exists _: s0 , s1 , ..., a computation of A:.

First we use the implications V1�V3 to show that the assertion :(8) is an
invariant of _. Since _ is a computation of A:, the first state of _ satisfies :(3A)
and we conclude by V1 that the first state of _ satisfies :(8). Proceeding from each
state sj of _ to its successor sj+1 , which must be an :++(\A)-successor of sj , we
see from V2 and V3 that :(8) keeps propagating. It follows that :(8) is an
invariant of _; i.e., every state si of _ satisfies :(8).

Next, since _ is a computation of A:, it must contain infinitely many states that
satisfy :(J). According to implications V2 and V3, the variable inc is never positive
and is negative infinitely many times. Such a behavior contradicts the compassion
requirement (inc<0, inc>0) associated with A:. Thus, _ cannot be a computation
of A:, contradicting our initial assumption. This concludes our proof of completeness.

687VERIFICATION BY AUGMENTED ABSTRACTION

9. CONCLUSIONS

We have presented a method for verification by augmented finitary abstraction
by which, in order to verify that a (potentially infinite-state) system satisfies a
temporal property, one proves the infeasibility of a finite-state system. The finite-
state system is obtained by abstracting a system that is obtained by taking the
synchronous composition of the original system, a system that expresses the negation
of the temporal property, and a nonconstraining progress monitor.

The method has been shown to be sound and complete. It is interesting to note
that since the completeness proof only requires the abstraction to be precise with
respect to three assertions, the finite-state system that is the result of the abstraction
need not contain more than eight states. One is reminded of what is known as
Hoare's law of large programs: ``Inside every large program is a small program
struggling to get our.''

In principle, the established completeness promotes the vaa method to the status
of a viable alternative to the verification of infinite-state reactive systems by temporal
deduction. Some potential users of formal verification may find the activity of devising
good abstraction mappings more tractable (and similar to programing) than the design
of auxiliary invariants. Of course, on a deeper level, it is possible to argue that this
is only a formal shift and that the same amount of ingenuity and deep understand-
ing of the analyzed system is still required for effective verification via abstraction
as in the practice of temporal deduction methods.

The development of the vaa theory calls for additional research in the implemen-
tation of these methods. In particular, there is a strong need for devising heuristics
for the automatic generation of effective abstraction mappings and corresponding
augmenting monitors.

REFERENCES

[BBM95] N. Bjo% rner, I. A. Browne, and Z. Manna, Automatic generation of invariants and inter-
mediate assertions, in ``1st Intl. Conf. on Principles and Practice of Constraint Programming,''
Lecture Notes in Computer Science, Vol. 976, pp. 589�623, Springer-Verlag, Berlin�New
York, 1995.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang, Symbolic model
checking: 1020 states and beyond, Inform. and Comput. 98 (1992), 142�170.

[BMS95] I. A. Browne, Z. Manna, and H. B. Sipma, Generalized temporal verification diagrams,
in ``15th Conference on the Foundations of Software Technology and Theoretical
Computer Science,'' Lecture Notes in Computer Science, Vol. 1026, pp. 484�498,
Springer-Verlag, Berlin�New York, 1995.

[CC77] P. Cousot and R. Cousot, Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints, in ``Proceedings of
the 4th Annual Symposium on Principles of Programing Languages,'' ACM Press, New
York, 1977.

[CGH97] E. M. Clarke, O. Grumberg, and K. Hamaguchi, Another look at ltl model checking,
Formal Methods in System Design 10 (1997).

688 KESTEN, PNUELI, AND VARDI

[CGL94] E. M. Clarke, O. Grumberg, and D. E. Long, Model checking and abstraction, ACM
Trans. Progr. Lang. Systems 16 (1994), 1512�1542.

[CGL96] E. M. Clarke, O. Grumberg, and D. E. Long, Model checking, in ``Model Checking,
Abstraction and Composition,'' Nato ASI Series F, Vol. 152, pp. 477�498, Springer-
Verlag, Berlin�New York, 1996.

[CH78] P. Cousot and N. Halbwachs, Automatic discovery of linear restraints among variables of
a program, in ``Proc. 5th ACM Symp. Princ. of Prog. Lang.,'' pp. 84�96, 1978.

[Cho74] Y. Choueka, Theories of automata on |-tapes: A simplified approach, J. Comput. System
Sci. 8 (1974), 117�141.

[CU98] M. A. Colon and T. E. Uribe, Generating finite-state abstractions of reactive systems
using decision procedures, in ``Proc. 9th Intl. Conference on Computer Aided Verification
(CAV'98)'' (A. J. Hu and M. Y. Vardi, Eds.), Lecture Notes in Computer Science,
Vol. 1427, pp. 293�304, Springer-Verlag, Berlin�New York, 1998.

[DGG97] D. Dams, R. Gerth, and O. Grumberg, Abstract interpretation of reactive systems, ACM
Trans. Progr. Lang. Systems 19(2) (1997).

[Eme85] E. A. Emerson, Automata, tableaux and temporal logics, in ``Proc. Conf. Logics of Programs,''
Lecture Notes in Computer Science, Vol. 193, pp. 79�88, Springer-Verlag, Berlin�New York,
1985.

[Hol97] G. J. Holzmann, The model checker SPIN, IEEE Trans. Software Engineering 23(5)
(1997), 279�295. [Special issue on Formal Methods in Software Practice.]

[KP98] Y. Kesten and A. Pnueli, Modularization and abstraction: The keys to formal verification,
in ``The 23rd International Symposium on Mathematical Foundations of computer
Science'' (L. Brim, J. Gruska, and J. Zlatuska, Eds.), Lecture Notes in Computer Science,
Vol. 1450, pp. 54�71, Springer-Verlag, Berlin�New York, 1988.

[KP99a] Y. Kesten and A. Pnueli, Verifying liveness by augmented abstraction, in ``Annual
Conference of the European Association for Computer Science Logic (CSL'99),'' Lecture
Notes in Computer Science, Springer-Verlag, Berlin�New York, 1999.

[KP99b] Y. Kesten and A. Pnueli, Verification by augmented finitary abstraction, Inform. and
Comput., in press. [Special issue]

[KPR98] Y. Kesten, A. Pnueli, and L. Raviv, Algorithmic verification of linear temporal logic
specifications, in ``Proc. 25th Int. Colloq. Aut. Lang. Prog.'' (K. G. Larsen, S. Skyum, and
G. Winskel, Eds.), Lecture Notes in Computer Science, Vol. 1443, pp. 1�16, Springer-
Verlag, Berlin�New York, 1998.

[Kur95] R. P. Kurshan, ``Computer Aided Verification of Coordinating Processes,'' Princeton
University Press, Princeton, NJ, 1995.

[Lam74] R. P. Lamport, A new solution to Dijkstra concurrent programming problem, Comm.
Assoc. Comput. Mach. 17 (1974), 453�455.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem, Property preserving
abstractions for the verification of concurrent systems, Formal Methods in System Design
6 (1995), 11�44.

[LP84] O. Lichtenstein and A. Pnueli, Checking that finite state concurrent programs satisfy their
linear specification, in ``Proc. 11th ACM Symp. Princ. of Prog. Lang,'' pp. 97�107,
1984.

[LP85] O. Lichtenstein and A. Pnueli, Checking that finite-state concurrent programs satisfy their
linear specification, in ``Proc. 12th ACM Symp. Princ. of Prog. Lang,'' pp. 97�107, 1985.

[LPS81] D. Lehmann, A. Pnueli, and J. Stavi, Impartiality, justice and fairness: The ethics of
concurrent termination, in ``Proc. 8th Int. Colloq. Aut. Lang. Prog.,'' Lecture Notes in
Computer Science, Vol. 115, pp. 264�277, Springer-Verlag, Berlin�New York, 1981.

[MAB+94a] Z. Manna, A. Anuchitanukul, N. Bjo% rner, A. Brown, E. Chang, M. Colon, L. DeAlfaro,
H. Devarajan, H. Sipma, and T. Uribe, ``Step: the Stanford Temporal Prover,'' Technical
report, Dept. of Computer Science, Stanford University, 1994.

689VERIFICATION BY AUGMENTED ABSTRACTION

[MAB+94b] Z. Manna, A. Anuchitanukul, N. Bjo% rner, A. Brown, E. Chang, M. Colon, L. DeAlfaro,
H. Devarajan, H. Sipma, and T. Uribe, ``Step: The Stanford Temporal Prover,'' Technical
Report STAN-CS-TR-94-1518, Dept. of Comp. Sci., Stanford University, Stanford,
California, 1994.

[MBSU98] Z. Manna, A. Brown, H. B. Sipma, and T. E. Uribe, Visual abstractions for temporal
verification, in ``AMAST'98,'' Lecture Notes in computer Science, Springer-Verlag, Berlin�
New York, 1998.

[MP91a] Z. Manna and A. Pnueli, Completing the temporal picture, Theoret. Comput. Sci. 83
(1991), 97�130.

[MP91b] Z. Manna and A. Pnueli, ``The Temporal Logic of Reactive and Concurrent Systems:
Specification,'' Springer-Verlag, New York, 1991.

[MP94] Z. Manna and A. Pnueli, Temporal verification diagrams, in ``Theoretical Aspects of
Computer Software'' (T. Ito and A. R. Meyer, Eds.), Lecture Notes in Computer Sci.,
Vol. 789, pp. 726�765, Springer-Verlag, Berlin�New York, 1994.

[MP95] Z. Manna and A. Pnueli, ``Temporal Verification of Reactive Systems: Safety,'' Springer-
Verlag, New York, 1995.

[MSS86] A. C. Melton, D. A. Schmidt, and D. E. Strecker, Galois connections and computer
science applications, in ``Category Theory and Computer Programming'' (D. Pitt, S. Abramsky,
A. Poigne, and D. Rydeheard, Eds.), Lecture Notes in Computer Science, Vol. 240,
pp. 299�312, Springer-Verlag, Berlin�New York, 1986.

[SdRG89] F. A. Stomp, W.-P. de Roever, and R. T. Gerth, The +-calculus as an assertion language
for fairness arguments, Inform. and Comput. 82 (1989), 278�322.

[Sis89] A. P. Sistla, On verifying that a concurrent program satisfies a nondeterministic specification,
Inform. Process. Lett. 32 (1989), 17�23.

[SUM96] H. B. Sipma, T. E. Uribe, and Z. Manna, Deductive model checking, in ``Proc. 8th Intl.
Conference on Computer Aided Verification (CAV'96),'' Lecture Notes in Computer Science,
Springer-Verlag, Berlin�New York, 1996.

[SUM99] H. B. Sipma, T. E. Uribe, and Z. Manna, Deductive model checking, Formal Methods in
System Design 15 (1999), 49�74.

[Var91] M. Y. Vardi, Verification of concurrent programs��the automata-theoretic framework,
Ann. Pure Appl. Logic 51 (1991), 79�98.

[VW86] M. Y. Vardi and P. Wolper, An automata-theoretic approach to automatic program
verification, in ``Proc. First IEEE Symp. Logic in Comp. Sci.,'' pp. 332�344, 1986.

[VW94] M. Y. Vardi and P. Wolper, Reasoning about infinite computations, Inform. and Control.
115 (1994), 1�37.

[Wol83] P. Wolper, Temporal logic can be more expressive, Inform. and Control. 56 (1983), 72�99.

690 KESTEN, PNUELI, AND VARDI

	1. INTRODUCTION
	2. A COMPUTATIONAL MODEL: FAIR DISCRETE SYSTEMS
	FIG. 1

	3. REQUIREMENT SPECIFICATION LANGUAGES
	4. VERIFYING BUCHI DISCRETE SYSTEMS
	FIG. 2

	5. FINITARY ABSTRACTION OF A BDS
	FIG. 3
	FIG. 4

	6. AUGMENTATION BY PROGRESS MONITORS
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8
	FIG. 9

	7. VERIFICATION BY AUGMENTED FINITARY ABSTRACTION
	8. COMPLETENESS OF THE VAA METHOD
	9. CONCLUSIONS
	REFERENCES

