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By modifying our previous methods (1992, J. Nonlinear Anal. TM 4 19, 741-751;
1993, Proc. Amer. Math. Soc. 117, 951-956), and by using the notion of integral
solution introduced by Ph. Bénilan (1972, “Equations d’évolution dans un espace
de Banach quelconque et applications,” thesis, Université Paris XI, Orsay),
we study the asymptotic behaviour of unbounded trajectories for the quasi-
autonomous dissipative system du/dr + Aus f, where X is a real Banach space, 4 an
accretive (possibly multivalued) operator in X x X, and f— /. € L?((0, +00); X) for
some f, e X and 1 <p<co. © 1994 Academic Press, Inc.

1. INTRODUCTION

Let X be a real Banach space; the norms of both X and X* are denoted
by || |- We denote weak convergence in X by — and strong convergence
by —.

For notions concerning the geometry of Banach spaces, m-accretive
operators, nonlinear semi-groups generated by them, weak and integral
solutions, etc., we refer to [2-7, 13, 14, 197, recalling only the basic facts.

We studied in [8, 9] the asymptotic behaviour of bounded weak solutions
(if any) for the quasi-autonomous dissipative system

g—lf+Au af
! (1.1)
#(0) = uy,

where 4 is a monotone operator in a real Hilbert space H, u,e€ H, and
f—f.€LY((0, +c); H) for some f, € H, thus giving simple proofs for
theorems containing results of Baillon, Brézis, Browder, Bruck, Pazy, and
Reich (see [8, 9, 14, 15, 18, 19, 21] for appropriate references).
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In our setting, this study seems to be still an open problem when the
Hilbert space H is replaced by a Banach space X. The asymptotic
behaviour of unbounded orbits for non-expansive mappings in H was first
studied by Pazy [20]. Extensions of his result to more general Banach
spaces and to nonlinear contraction semi-groups were subsequently studied
by many authors, e.g., Kobayasi {167}, Kohlberg and Neyman {177, Plant
and Reich [22], Hulbert and Reich [15], and Reich [23-25].

In [10] we gave a simple short proof of the generalization of Pazy’s
result to non-expansive sequences in a Hilbert space H, and in [12] we
extended our result to the case of a Banach space X, thus containing the
previous results mentioned above.

In [11] we studied the asymptotic behaviour of unbounded weak
solutions (if any) for the system (1.1), where A4 is a monotone operator in
H, uye H, and f—f_ € L?((0,4+00); H) for some f, e Hand 1 <p< 0.

When A is maximal monotone in H, this was studied by M. G. Crandall
{unpublished result; see Brézis [4], Pazy [21], Reich [24]) using the
contraction semi-group generated on D(A) by — A.

In this paper, by modifying our previous methods in [11, 12] and by
using the notion of integral solution for (1.1) introduced by Bénilan [3],
we extend our results in [11] to the case of a Banach space X, where 4 is
an accretive (possibly multivalued) operator in X x X.

2. PRELIMINARIES

DEFINITION 2.1. A curve (¥(¢)),, in X is a continuous function u from
[0, +c[ into X (ie., ue C([0, +cc[; X).

DEFINITION 2.2. (a) A sequence (x,),s, in X is almost non-expansive
iV, j=0, lix; 1 —x;0l < Ilx; — x;ll + (4, j), where (&(i, /), ;50 is bounded
and lim, ; , , . &(i, j})=0.

(b) A curve (u(t)),., in X is almost non-expansive if 36 > 0 such that
Vs, 120, Vhe[0,0], [u(t+h)—u(s+h)|<|u(t)—u(s)]+e(s,t), where
(e(s, 1));.,»0 is bounded and lim,, _, . ., &(s, ) =0. (Note that in this defini-
tion £€ [0, ] may be replaced by A belonging to any bounded interval
[0, N1.)

Notation 2.3. If 4 is a subset of X, we denote by clco 4 the closed
convex hull of 4 in X and for xe X, d(x, A)=inf,_ , [|x—z|.

Given a sequence (x,), ., in X, we denote C=(\"_, clco{(x;,—x;_ )i }-
If ||x,/n|| is bounded and X is reflexive, then C 5 .

Now we recall some basic facts about the geometry of Banach spaces,
accretive operators, and integral solutions for (1.1).
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(a) The duality map J from X into the family of non-empty closed
convex subsets of X* is defined by

VxeX,  Jx={x*eX*/(x* x)=|x|I>=|x*|?],

where {x* x)> denotes the value of x* atx. Note also that we have
vx,ye X, Yjelx, (jyx—y)>= x> = (i y> 2 50x12 = yi?).

(b) If X is reflexive and strictly convex and K a non-empty closed
convex subset of X, the nearest point projection map Py of X onto K is
well defined, i.e., K is a Chebyshev set (see [14]).

(c) The norm of X is Fréchet differentiable if for each xe S=
{zeX/|z| =1}, lim,_ o((llx + t¥] — lIx|)/¢) exists uniformly for ye S.

We recall that the dual space X* has Fréchet differentiable norm if and
only if X is reflexive and strictly convex and satisfies the property

if x,—x
n— +o0

and

x|l then ||x,—x|| —0 (see [13]).

n— +wc

I,

n— +00

(d) A subset 4 of XxX with domain D(A4) and range R(A) is
called an accretive (possibly multivalued) operator in X if [lx, —x,| <
lx,—x,+ Ay, =yl for all (x,y)eA, i=1,2, and A>0. This 1s
equivalent to: Ife J(x, — x,) such that {f, y,—y,> =0 for all (x,, y;)e A4,
i=1,2. Ais called m-accretive if 4 is accretive and R(/+ A)= X; in this
case R(/+ AA)= X for every >0, and — A4 generates a nonlinear contrac-
tion semi-group (S(¢)), > on D(A). In fact this holds even if 4 satisfies the
range condition, i.e., R(I+ 1A4)> D(A) for all 1>0. Denoting (x, y), =
Il Tim, - o+ ((Ix + tyll = x]1)/2) we know that (x,y), =max,. . <f; .
Then A is accretive if and only if (x, — x5, yy —y,) . =0 for all (x;, y,)e 4,
i=1,2 (see [2,5-7, 14, 19]).

(e) An integral solution for (1.1) on [0, 7] is a curve u(t) on [0, T]
satisfying #(0) = u, and the inequality

L) = x| = 4 luts) — 17 < [ (wl®)~ x, £6) ~ y). df

for every (x, y)e A and every 0<s<1< T (see [2,3]).
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3. AsYMPTOTIC BEHAVIOUR OF UNBOUNDED
ALMOST NON-EXPANSIVE SEQUENCES

In this section we prove a general theorem for sequences (x,), ., in X
satisfying

lei+1_xj+]||2<llxi—xj‘|2+s(isj) (3.1

for all i, j =0, where: Ve > 0, 3k, such that Vi > kg, lim sup,, , . . (e(n, j)/n)<e
(ie, lim; , , . limsup,_ ,. (&(n, j)/n)=0).

We then show that every almost non-expansive sequence satisfies (3.1).
For notations we refer to Section 2.

THEOREM 3.1.  Assume (x,), 5, satisfies (3. 1) and x,,/n is bounded. Then:

(i) lim,_ o lx,./%l exists.
(i) If X is reflexive, then C# & and lim,, _, ., |x,/n| =d(0, C).

(iii) If X is reflexive and strictly convex, then x,/n converges weakly
10 PcO and |PO| =lim, , . |x,/n]l.

(iv) If X* has Fréchet differentiable norm, then x,/n converges
strongly to P 0.

Proof. i) Let k=1 fixed, and j,eJ(x,—x,_,), for n=k. Then we
have: Vnzk >1,
Cms Xk = X510 Z 3 1%, — Xpe 1P = 5 1, — x4l
23— xe P =3 Ix, = x4 P~ je(n~1,k—1).
Hence

_;15 Y oe(i—1,k—1).

2
xn_Xk_]’
i=k

2 < "
) Z jia X — Xp >2
n\ k ! n
Let A,=(2/n*)X7_ ji for n>k; we have || 4,]l <(2/n?) T7_, lx;— x4 _4ll;
hence || 4,| is bounded since ||x,/n| is bounded.

Let (n,),, be a sequence so that

X

n

X .
22— lim sup
ny

{— +

n— +C

From the weak star compactness of the closed unit ball of X*, it follows
that the sequence (4,,),, has a weak star cluster point g* € X* (obviously
independent of £ > 1).
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Now given ¢>0 we choose k3> 1 as in (3.1). Then for k= ky,+ 1, we

have
x 2
{g* x,— X,y =limsup || —¢
n— +a«
since k — 1>k, and by (3.1) we have
. | S ,
limsup— Y e(i—1,k—1)
n— +x izk+1
1 & —1,k—1
=limsup— ) (i—l)Fﬂ“"T;—'"lgg/2<8.
nos oo i=k+1 (i=1)

But we have

. . 2 &
lg*| <lim sup ||4,,]| <lim sup — 2 lxi—x ol
i=k

n— +oc n— +oo
= limsupzz- i i fi—x—f—" <lim sup ﬁu
nos v BT l notoc |1
Therefore we get
:_x-ﬂ 2

Vhk=ko+ 1, {q*, xp— X _ ;> 21lim sup

n— +0o

Hence, since ¢ >0 was arbitrary, we have

1 1 2
5 141+ 5 lim sup In

n— +owo

1 1
>3 lg*I + 5 lim inf | =2

2
> lim inf <q*, i”—>
n

n— +aoc

2
=liminf {(¢* x, — x,_,> =limsup |2
k— 4+

n— +x

1 1. x,|?
>> lg* I + 3 limsup | >2 > ¥

n— +w

—e>llg*I*—e.

(3.2)

This implies that lim sup,, , ., [|x,/nll =liminf, , . ||x,/#| and completes

the proof of (i).

(ii) If X is reflexive, any weak subsequential limit of x,/n belongs
toC; hence C# ¢ and d(0, C)<liminf, .. |lx,/»n|=1lim,_, ., lx,/#"l.

From (3.2) in (i) it follows that Vze C,



NON-AUTONOMOUS SYSTEMS IN BANACH SPACES 281

1 2

= lim

2"—» +ac

Xn

1
+5 1z

1
> Hq*II2+§ IzI?><g* 2>

r | —

2
= lim

n— +oc

2

X
— = =lg*2

= lim sup

n— +0o0

This implies that

Xn

lg*ll < lim ‘
n— 4+ n

< inf |z|| = 4(0, C).
zeC

llx,/nll =d(0, C), which proves (ii).

(iii) Because X is reflexive, x,/n has a weakly convergent subsequence;
let x,/n,—;.,,.peC; because X is also strictly convex, we have
d(0, C)=|[P-0|. Therefore || pjl <liminf, ., ., Ix,/nl =lim, . .. llx,/n] =
| P-0| by (ii); hence we must have p = P -0; this shows that x,,/n —, _, , . p0
with | P-0| =lim, _, , |lx,/n] and completes the proof of (iii).

Hence lim

n— 4+

(iv) This is an immediate consequence of (iii) and the characteriza-
tion of X given in Section 2, (c).

Now we prove our results for almost non-expansive sequences in X. The
first lemma is classical and its proof can be found, for example, in [11,
Lemma 3.1]; therefore we omit its proof.

LemMa 3.2. Let (a,),», be a sequence of non-negative real numbers
satisfying a,, ,<a,+a,+e(p) for all nzp>1, where lim,_, . (e(p)/p)
=0. Then the sequence (a,/n), , converges as n-— +oo.

PROPOSITION 3.3. For an almost non-expansive sequence (Xx,),so in X,
lim,, , ., lx,./%| exists.

Proof. For nz1, let a,=|x,—x,|; then we have

vn?p?l’ an+p:||xn+p—x0||<ap+“xn+p_~xp”
p—1

<a,+a,+ ), en+ii).
i=0

Now let n(i)=sup,. e(n+i i) for i=0, and e(p)=3X%7_, n(i) for p> 1.
Then we have a,, ,<a,+a,+&(p), where lim, , , . (e(p)/p) =0; hence an
application of Lemma 3.2 completes the proof of the proposition.
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ProposiTiON 3.4. Every almost non-expansive sequence (x,),., in X
satisfies (3.1).

Proof. We have |x;,, — ;117 < [lx, — x| + (i, )]* = |x, — x| +
&,(i, j), where &(i, j)=¢(i, j} [e(i, j))+ 2 |x,—x,|]. For ¢>0 given, let
ko =0 be such that ¢(i, j) <e¢ for all j, j>k0; then for every j =k, we have

lim sup El(lf /) <e¢lim sup [w]

1

P— oo i— o

= 2¢ him sup

F— +0o0

o

i— +oC T
by Proposition 3.3. This shows that (x,),., satisfies (3.1) and completes
the proof.

COROLLARY 3.5. For every almost non-expansive sequence (x,), ¢ in X,
all conclusions of Theorem 3.1 are satisfied.

Proof. x,/n is bounded by Proposition 3.3, and (x,),, satisfies (3.1)
by Proposition 3.4; hence the conclusions of Theorem 3.1 are satisfied.

Remark 3.6. In Kohlberg and Neyman [17] it is shown that the
assumptions on X in (iii) and (iv) of Theorem 3.1 are also necessary for the
respective conclusion to hold (even for non-expansive sequences).

Remark 3.7. In order to study the asymptotic behaviour of bounded
sequences in a Hilbert space H, we defined in [8,9] the notion of a
“uniformly” almost non-expansive sequence” (x,), o as

Via j’ k>03 Hxi+k _Xj+k||2 < ||xi—xj||2+£(i’ ]),

where lim, ; , , . &(4, j)=0.
For bounded sequences (x,),-, in H, this is equivalent to

Vi,j,k>0, ”xi+k_xj+k”<”xi~xju+8(i’j)’

where lim, ; _ ... (i, j)=0.

This study seems to be still an open problem in a Banach space X.
However, for the study of unbounded behaviour, this uniformity condition
is not needed and the results are valid in a Banach space, as the conclu-
sions of Corollary 3.5 show.
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4, ASYMPTOTIC BEHAVIOUR OF UNBOUNDED
ALMOST NON-ExPANSIVE CURVES

In order to apply our results to quasi-autonomous dissipative systems we
prove the following theorem for almost non-expansive curves in.X, by
modifying the proof of [11, Theorem 5.1].

THEOREM 4.1.  Let (u(t)),.o be an almost non-expansive curve in X and
Co=NZ_pclco{(u(t+h)—u(t))},5, for h>0. Then:
(i) bm,_ .. jlu(z)/t) exists.

() If X is vreflexive, then for every h>0, C,# and
lim, , o, fu(2)/t]l=d(0, Cy)/h.

(iii) If X is reflexive and strictly convex, then for every h >0, u(t)/t
converges weakly to (1/h) P, 0 as (- +oo, and (1/h)|P0=
im, ., fu(e)/1].

(iv) If X* has Fréchet differentiable norm, then for every h>0, u(t)/t
converges strongly as t — +oc to (1/h) Pc,0.

Proof. For nz20 let x,=u(1,), where for 1,20 and 0 < < fixed, ¢, is
defined by t,=nh+ t,; without loss of generality we may assume that
to=0. We have |x, ., —x; | =lu((i+1)h)—u((j+ 1)) <lulih)—
u(jm)l| + e(ih, jh) = || x,— x| + e(ih, jh). Therefore (x,), 5, is an almost non-
expansive sequence in X, and hence the conclusions of Corollary 3.5 hold
for (x,),¢ with C replaced by K, = _, clco{(u(i+ 1)h) — u(éh));5 .} for
n>0. Since we have u(z,)/t,=x,/nh it follows that the conclusions of
Theorem 4.1 hold for the sequence u(t,)/t, with C, replaced by X,,.

If X is reflexive and strictly convex, we have (k/h) P, 0={(1/h) P,0 for
every k = 1; this follows by considering the sequence ¢, = n(h/k) and noting
that 7, is a subsequence of 7,. Now to show that (1/A) P, 0 is independent
of 4 and also to complete the proof, it suffices to show that

u(t) ult,)
T

VO < h <, lim =0.

n— 4+ KISyt

n

We have

Vnzl1,Vt,<t<t,,,,

u(r) ()| N, — 1) ult,) + 2 (u(t) — u(z,))|
! 6 | 1,1
T b u(t,) +llu(t)—u(l,,)ll
t, t, t,
<Lt | W0 — e — )] + 30 et 1k (1= 1))
n t,, f"

505/110/2-9
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Hence
u(t) u(t,)| 1|ult)] 2
=1, “wy w2 2 t
SEE N s bl AR Al
Infl

+~= > sup &(t;, t,+5)————0
nh o o<s<n
since |u(1,)/t,]] converges as n-— +oo, hence is bounded, and
SUDg<s<k E(2;5 t;+5) 7= O since (u(t)),,, is an almost non-expansive
curve. This completes the proof of the theorem.

Remark 4.2. Observations similar to Remarks 3.6 and 3.7 apply here
for almost non-expansive curves in X.

5. AsyMPTOTIC BEHAVIOUR OF UNBOUNDED
TRAJECTORIES FOR du/dt + Aus f

In this section wse consider the quasi-autonomous dissipative system
(1.1), where A4 is an accretive (possibly multivalued) operator in X, u, € X,
and feL| ((0, +o0); X). We study the asymptotic behaviour of the
unbounded (or, better stated, “not necessarily bounded”) integral solution
(u(£));5o of this system (if any) under suitable conditions on f. The
bounded case in a Hilbert space was treated in [8, 97. First we recall the
following theorem on the existence and uniqueness of integral solutions for
(1.1) and refer to Barbu [2, Theorem 3.2.1., p. 124] for its proof.

THEOREM 5.1. Let C be a closed convex cone in X and A a closed
accretive operator in X x X such that R(I+ AA)> C > D(A) for every A >0.
Let uye D(A) and fe LY((0, T); X) be such that f(t)e C a.e. on (0, T). Then
the system (1.1) has a unique integral solution u(t) such that u(t)e D(A) for
every te [0, T]. Moreover, if u and v are respectively integral solutions of
du/dt + Au> f and dv/dt + Avag on [0, T, then

4 u(0) = o(0) 1P < § () = o(5)1>+ | (u(8) —(6), £(6) — 5(6)., b
for0<s<t<T.

COROLLARY 5.2. If f,ge LY((0, T); X), u and v are respectively integral
solutions of du/dt + Au3f and dv/dt + Av> g on [0, T], then

lu(0) = () < luls) = v(s)1 + [ 1/0) - (6 do

for0<s<t<T.
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Proof. Since (x,y), <|lx|l |y, the inequality in Theorem 5.1 implies
that

VO<s<r<T,
1 1 «
3 Hu(t)—v(t)HzSE flu(S)—v(S)||2+J lu(8)—v(0)Il 1|/(8) — g(O) d6.

Now the result follows by using Brézis [4, Lemma A.S, p. 157].

COROLLARY 5.3. If fe Ll ((0, +00); X) and u is an integral solution for
(1.1), then we have

Yh=20,Vi=2s20,
o+ B — (s + ) < )= ()l + [ 1O+ (1= 5)) - /(6] do.

Proof. Applying Corollary 5.2 with g(8)=f(8+(1—s)) and v(8)=
u(f + (r —s)) gives the result.

PROPOSITION 5.4. If for every T>0, u is an integral solution for the
system (1.1) on [0, T], and if f satisfies
s+

o
If,eX,36>0  suchthat lim Lf(0)~ ful dB=0 (5.1)

s— 400 vy

then (u(1)),o is an almost non-expansive curve in X.
Proof. This follows from Corollary 5.3 by taking

et S)_{ﬁﬂs"f(6+(t_5))—f(6)” g if t2s
ITU O+ s— ) —fO) I i s>

In fact we have Vs, t 20,

s+é s
s, )<[ IOV~ Ll dO+] T ISO)~ ol dB.

1+
5 14

(Note also that (5.1) implies the same conclusion for every 6 >0.)

COROLLARY 5.5. If for every T>0, u is an integral solution for the
system (1.1) on [0, T, and if f— [, € L*({0, +0); X) for some f., € X and
1 <p< oo, then (u(t)),s, is an almost non-expansive curve in X.

Proof. This follows from Proposition 5.4 since by Holder's inequality
we have
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s+3
>0, [ IO~ Sl

¥

< - (f” nf(e)—fxll”d@) p'__.lT’ 0.

5

Now we state the main result of this section.

THEOREM 5.6. Assume u is an integral solution for the system (1.1)
on every interval [0,T), and f— f. € L?((0, +0); X) for some f X
and 1<p<oo (or more generally [ satisfies (5.1)), and let C,=
N, cleo(u(t+hy—u(t)),.,} for h>0. Then:

(i) lim,_ o |lu(e)/t]l exists.

() If X is reflexive, then for every h>0, C,# and
lim, ., .. [lu(2)/t] =d(0, C\)/h.

(ni) If X is reflexive and strictly convex, then for every h>0, u(t)/t
converges weakly to (Y/h)P,0 as t— 4o and (1/h) [P0 =
im, _, ., fu(2)/e].

(iv) If X* has Fréchet differentiable norm, then for every h>0, u(t)/t
converges strongly as t - 4+ to (1/h) P,0.

Proof. 1n fact by Corollary 5.5 (or Proposition 5.4) the curve (#(?)),.,
is an almost non-expansive curve in X. The result now follows by applying
Theorem 4.1.

Remark 5.7. In Theorem 5.6 the existence and uniqueness of the
integral solution u for the system (1.1) on every interval [0, T'] is guaran-
teed (by Theorem 5.1) when A is m-accretive and u, € D(A). Moreover in
this case, letting D= R(A)— [, if in addition X'* is strictly convex, then
lim, _, . ffu(2)/t] =d(0, D), and in Theorem 5.6(iii), (iv) the limit of wu(z)/t
as t — +oo can be identified with —v, where v is the unique point of least
norm in D. This is due to M.G. Crandall (unpublished result; cf. Brézis
[4], Pazy {21], Reich [24]) when X' = H is a Hilbert space, and to Plant
and Reich [22] and Reich [25] (for the autonomous case f=0) in the
Banach space.

Remark 58. Assume f satisfies (5.1); if u is an integral solution of (1.1)
and v an integral solution of the autonomous system

dv
— 4+ (A4 - 0
dt+( fe)va

v(0)=u,
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then by Corollary 5.2 we have
()= o0l < [ 11(6) = f. b,

Hence by (5.1) we get lim,_, ... lu(?)/t —v(t)/t]| =0. Therefore to prove
Theorem 5.6 we may first prove it for the autonomous case (ie., f=0 in
(1.1)) by using [12, Theorem 3.1, Corollary 3.2] adapted for non-expansive
curves in X and then use Corollary 5.2 to get the result. However, here we
proved a general theorem for almost non-expansive curves in X.

Remark 5.9. Theorem 5.6 extends also, for the non-autonomous case,
previous results by Reich [26, Proposition 1.2], where R(A4) is assumed to
have the minimum property, by Reich [25, Remarks, p. 124], where 4 is
assumed to satisfy the range condition and the norm of X to be uniformly
Giéteaux differentiable, and by Aizicovici, Londen, and Reich [1,
Theorem 3.4] (for the case b=1 and g=0), where 4 is assumed to be
m-accretive.
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