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It is an important question whether the final/initial state gluonic interactions which lead to naive-time-
reversal-odd single-spin asymmetries and diffraction at leading twist can be associated in a definite
way with the light-front wave function hadronic eigensolutions of QCD. We use light-front time-ordered
perturbation theory at the lowest nontrivial order to obtain augmented light-front wave functions which
contain an imaginary phase which depends on the choice of advanced or retarded boundary condition
for the gauge potential in light-cone gauge. We apply this formalism to the wave functions of the
valence Fock states of nucleons and pions, and show how this illuminates the factorization properties
of naive-time-reversal-odd transverse momentum dependent observables which arise from rescattering.
In particular, one calculates the identical leading-twist Sivers function from the overlap of augmented
light-front wave functions that one obtains from explicit calculations of the single-spin asymmetry in
semi-inclusive deep inelastic lepton–polarized nucleon scattering where the required phases come from
the final-state rescattering of the struck quark with the nucleon spectators.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Wave functions are key objects of the quantum world, specify-
ing the structure of composite states in terms of their fundamen-
tal constituents. The conceptual extension of the non-relativistic
wave functions of Schrödinger theory to relativistic hadron physics
are the frame-independent light-front wave functions (LFWFs) of

hadrons Ψ H
n (xi, �ki⊥, λi) where xi = k+

i
P+ = k0

i +kz
i

P 0+P z are the light-front
momentum fractions of the n constituents, ki⊥ the transverse mo-
mentum components, and λi the parton helicities. The LFWFs are
defined as constituent wave functions at fixed light-front time
τ = x+ = t + z/c and in the light-cone gauge A+ = A0 + Az = 0
where Aμ represents the gauge field [1–4]. The LFWFs are ob-
tained explicitly by computing the hadronic eigensolutions |ΨH 〉
of the QCD light-front Hamiltonian HLF projected on the free Fock
basis Ψ H

n = 〈n|ΨH 〉.
Light-front wave functions in QCD describe the quark and gluon

composition of hadron at a fundamental level, leading to a de-
scription of a wide range of hadronic and nuclear physics phenom-
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ena [2]. For example, the parton distribution functions measured in
deep inelastic lepton–hadron scattering, including DGLAP evolution
and their transverse momentum extensions, are defined from the
sum over squares of the light-front wave functions. Form factors
are given by the sum of overlap matrix elements of the initial and
final LFWFs with the electroweak currents. The gauge-invariant
distribution amplitudes φ(xi, Q ) which control hard exclusive re-
actions are the valence LFWFs integrated over transverse momenta
k2⊥ < Q 2.

Recent theoretical developments have shown that final and/or
initial-state interactions can generate a phase in scattering ampli-
tudes which lead to novel single transverse spin asymmetries in
high energy hadronic reactions at leading twist. A prime exam-
ple of this rescattering physics in QCD is the Sivers single-spin
asymmetry measured in semi-inclusive deep inelastic scattering
and spin-dependent Drell–Yan lepton pair production [5–7]. Dou-
ble initial-state interactions lead to an anomalous cos 2φ azimuthal
dependence of the production plane in unpolarized lepton pair
hadroproduction, corresponding to the breakdown of the Lam–
Tung relation in PQCD [8,9]. Similarly, diffractive deep inelastic
lepton scattering �p → �′ p′ X arises from the exchange of gluons
in the final state which occurs after the hard lepton–quark in-
teraction [10]. Since nuclear shadowing involves diffractive deep
inelastic processes, nuclear distributions are also dependent on
rescattering processes.
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The wave functions of stable hadrons that are obtained by solv-
ing the Heisenberg problem HQCD

LF |Ψ 〉 = M2|Ψ 〉 have a real phase.
As discussed in Ref. [11], one can distinguish “static” structure
functions, the probabilistic distributions computed from the square
of the light-front wave functions of the target hadron from the
“dynamic” structure functions measured in deep inelastic lepton-
hadron scattering which include the effects of rescattering as-
sociated with the Wilson line. Thus it is an important question
whether the final/initial state gluonic interactions responsible for
the dynamics of rescattering can be associated in a definite way
with the light-front wave function eigensolutions of QCD. The re-
sulting augmented LFWFs provide an important tool for under-
standing the factorization properties of dynamical hadronic phe-
nomena including single-spin asymmetries and diffraction.

It has been shown that the light-cone gauge condition A+ = 0
does not fix the gauge of Abelian or non-Abelian gauge fields
completely [7]: one has to choose a boundary condition for the
transverse component of the gauge potential at spatial infinity:
A⊥(x− = ±∞) [7]. The propagators of the gauge field which
define the QCD light-front Hamiltonian in the Heisenberg prob-
lem are regulated using the principal value prescription. However,
a different choice of boundary condition will lead to different
properties of the light-front wave function amplitudes. In partic-
ular, if we choose a retarded (A⊥(x− = −∞) = 0) or advanced
(A⊥(x− = ∞) = 0) boundary condition, the resulting augmented
light-front wave function will contain the necessary phase to gen-
erate the nonzero single spin asymmetry in hadronic reactions. We
will demonstrate these properties, giving an explicit calculation in
light-front time-ordered perturbation theory [2]. The result of our
analysis provides the general structure of augmented LFWFs which
is easy to apply to phenomenological applications. As an example,
we will present results for the three-quark Fock state component
of nucleon and the quark–antiquark component of pion at lowest
nontrivial order. We can further simplify the result for the pion in
terms of the distribution amplitudes. Given these light-front wave
function amplitudes results, it is straightforward to calculate the
pseudo-time-reversal-odd quark distributions of the nucleon and
pion, by applying the overlap formalism derived in [12]. The light-
cone gauge with retarded/advanced boundary condition has also
been used to investigate the small-x physics [13–16], in particular,
to study the evolution and factorization for nucleus–nucleus colli-
sions [16].

The rest of this Letter is organized as follows. In Section 2, we
present a general derivation of augmented LFWFs using light-front
time-order perturbation theory within a lowest order formalism.
In Section 3, we apply our method to the construction of aug-
mented light-front wave function amplitudes for the three-quark
Fock component of nucleon and quark–antiquark component of the
pion. We summarize our Letter in Section 4.

2. General derivations

We start our derivation by constructing the general form for a
Fock state expansion of any given hadron,

|P , S〉 =
∑

n

∫ n∏
i=1

d[i]ψn(xi,ki⊥, λi)a
†
1a†

2 · · ·a†
n|0〉, (1)

where P and S are the momentum and spin of the hadron,
d[i] = dxi d2ki⊥/(

√
2xi(2π)3) with the overall constraint on xi and

ki⊥ implicit. For convenience, in following calculations we set the
transverse momentum of hadron equal zero: P⊥ = 0. Because the
wave functions are boost invariant, all our results can be extended
to more general case with P⊥ �= 0. In this Fock state, each par-
ton is represented by the associated creation operator a†

(ki) with
i
kμ
i = (k+

i , �k⊥i) = (xi P+, �k⊥i), which contains certain longitudinal
momentum k+

i = xi P+ and transverse momentum ki⊥ , whereas
the minus component is determined by the on-shell condition
k−

i = (k2⊥ + m2
i )/k+

i . Implicitly, the above light-front wave function
amplitude ψn depends on the orbital angular momentum projec-
tion from the constituents with the form of (kx

i ± iky
i ) [17]. Since

the following derivation does not depend on this structure, we will
not include it explicitly.

As discussed in the introduction, the definition of a light-front
wave function amplitude ψn can be extended to include rescat-
tering effects so its phase is not necessarily real. We can obtain
the imaginary part (or the phase), by iterating the light-front wave
function eigensolutions employing a particular boundary condition
for the gauge field. In fact as we shall show, the phase of the
augmented wave functions can be computed perturbatively by ap-
plying light-front time-ordered perturbation theory [2] analogous
to the Lippmann–Schwinger method.

The first order correction to the LFWF can be obtained by iter-
ating the light-front equation of motion:(

P− −
∑

k−)
ψn(xi,ki⊥) =

∫
d[i]′K [k;�] ⊗ ψ ′

n(yi, �i⊥), (2)

where
∑

k− represents the sum of all partons energy k−
i , d[i]′ rep-

resents the integral of (yi, �i⊥). The interaction kernel K can be
calculated from the light-front time-order perturbation theory [2].
The wave functions ψn and ψ ′

n may differ. From the above expres-
sion, we find that the phase of ψn may come from the wave func-
tion in the right-hand side ψ ′

n or the interaction kernel K . In the
following, we assume that the wave function ψ ′

n is real, for exam-
ple, from model calculation such as constituent quark model [18].
We will focus on the contribution from the interaction kernel. We
will calculate, in particular, the one-gluon exchange contribution to
the interaction kernel.

At the lowest order of the light-front time-order perturbation
theory, we have one gluon exchange contribution to the interaction
kernel. This can be expressed as a sum of all diagrams with gluon
connection between all possible pair of constituents in the light-
front wave function. For example, the contribution from the gluon
exchange between the ith and jth quark can be written as

K [k;�]i j

= ūλi (xi,ki⊥)√
xi

γ μ
uλ′

i
(yi;�i⊥)
√

yi
dμν

ūλ j (x j,k j⊥)√
x j

γ ν
uλ′

j
(y j;� j⊥)
√

yi

×
{

1

P− − q− − k−
i − �−

j − ∑
α �={i, j} k−

α + iε

θ(q+)

q+

+ 1

P− − q′− − k−
j − �−

i − ∑
α �={i, j} k−

α + iε

θ(q′+)

q′+

}
, (3)

where λ represents the helicity for the associated quarks, q+ =
k+

j − �+
j and q′+ = k+

i − �+
i , and the color factors are implicit in

the above equation. Similar expression shall hold for the gluon
constituent in the wave function, and so the final results. We illus-
trate the contribution in the above calculations for i = 1 and j = 2.
The first term in the above bracket comes from Fig. 1(a), whereas
the second term comes from Fig. 1(b). Moreover, at this particu-
lar order, quark number is conserved, such that n = n′ . The gluon
polarization tensor is defined as

dμν = −gμν + vμq̃ν + vν q̃μ

[v · q] , (4)

where v is a light-like vector v · P = 1, q̃ differs from q in
the minus component to take into account the instant propa-
gator contribution with q̃+ = q+ , q̃⊥ = q⊥ , and q̃− = ∑

inc k− −
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Fig. 1. Light-front time-order perturbation Feynman diagrams for the phase contri-
bution from one-gluon exchange between two constituent quarks.

∑′
interm k− [2]. Here,

∑
inc denotes summation over initial par-

ticles whereas
∑′

interm denotes summation over all particles in
the intermediate state other than the gluon q. When one solves
the Heisenberg eigenvalue problem for light-front QCD as in dis-
cretized light-front quantization [3], the light-cone gauge singu-
larity is regulated by the principal value prescription, which cor-
responds to the antisymmetric boundary condition for the gauge
potential A⊥(x− = +∞) + A⊥(x− = −∞) = 0. However, this pre-
scription will not result into an imaginary part for the light-front
wave function from the above interaction kernel. In the follow-
ing calculation, we will choose the advanced boundary condition:
A⊥(x− = +∞) = 0 whereas A⊥(x− = −∞) �= 0 in order to con-
struct the augmented light-front wave function. With this bound-
ary condition, the light-cone singularity will be regulated by [7],

vμq̃ν + vμq̃ν

[v · q]
∣∣∣∣
Adv

= vμq̃ν

v · q − iε
+ vν q̃μ

v · q + iε
, (5)

where the momentum flow of q is toward to the vertex ν . Clearly,
this term contains a phase. The imaginary part is simple, and
proportional to a Delta function: iπδ(v · q). Since we are only
interested in the imaginary part of the light-front wave function
amplitudes, we simply apply this Delta function to the interaction
kernel in Eq. (3). In particular, we find that the dominant contri-
bution comes from the d+⊥ components of the dμν tensor [7,15].
All other contributions cancel out between the above two terms or
by themselves. Another important consequence is that the helici-
ties are conserved in the interaction kernel: δλiλ

′
i
δλ jλ

′
j
. After a little

algebra, we obtain a rather simple result for the imaginary part
of the light-front wave function amplitude generated from lowest
order perturbation theory,

I
[
ψn(xα,kα⊥)

] = − αs

2π
[C.F.]

∫
d2q⊥
�q2⊥

(
1 − P− − ∑

�−

P− − ∑
k−

)

×
∑
i �= j

ψ
(i j)
n (xβ;�β⊥), (6)

where [C.F.] represents the color-factor for the Feynman dia-
gram in Fig. 1 and ψ

(i j)
n = ψn(xα;�i⊥ = ki⊥ − q⊥, � j⊥ = k j⊥ +

q⊥, �β⊥|β �=i, j = kβ⊥). We emphasize that the wave function at the
right-hand side only contains the real part.

The above equation is the main result of this Letter. It explicitly
demonstrates that the light-front wave function amplitudes con-
tain an imaginary part if we choose advanced boundary condition
for the transverse component of the gauge potential. If we choose
the retarded boundary condition, we obtain an opposite sign in the
above equation.

3. Applications to pion and nucleon

The three-quark Fock state components have been classified in
Ref. [12]. For these light-front wave function amplitudes, we can
apply the derivation in the last section, and obtain the imaginary
part as
I
[
Ψqqq(xi,ki⊥)

]
= αs

2π
C B

∫
d2�1⊥ d2�2⊥ d2�3⊥ δ(2)(�1⊥ + �2⊥ + �3⊥)

× Ψqqq(xi, �i⊥)

(
1 − P− − ∑

�−

P− − ∑
k−

)

×
[

δ(2)(�3⊥ − k3⊥)

(�k1⊥ − ��1⊥)2
+ (2 ↔ 3) + (1 ↔ 3)

]
, (7)

where C B = (Nc + 1)/2Nc and Ψ represents the general wave func-
tion amplitude constructed in Ref. [12]. By applying these results,
we are able to formulate the naive time-reversal-odd quark dis-
tributions (such as the quark Sivers function) in terms of the
light-front wave function amplitudes, by taking into account the
above imaginary phase using the above derivation [12].

For the quark–antiquark Fock component of pion, the result can
be further simplified as

I
[
ψ(x,k⊥)

] = αs

2π
C F

∫
d2q⊥
�q2⊥

ψ(x,k⊥ − q⊥)

×
(

1 − x(1 − x)M2 − (k⊥ − q⊥)2 − m2
q

x(1 − x)M2 − k2⊥ − m2
q

)
, (8)

where we have chosen P⊥ = 0 and assumed that the quark and
antiquark have the same mass mq and C F = (N2

C − 1)/2NC . In par-
ticular, if we are interested in the large transverse momentum be-
havior of the light-front wave function amplitudes, we can expand
the interaction kernel in terms of �⊥/k⊥ , and keep the leading or-
der contribution. By doing that, we will obtain

I
[
ψ(x,k⊥)

] = αs

2π

1
�k2⊥

C F φ(x), (9)

and φ(x) is the leading-twist distribution amplitude for the pion,
normalized by the leading Fock component light-front wave func-
tion φ(x) = ∫

d2�⊥ ψ(x, �⊥). Similar expressions can be found for
the quark–diquark model [5].

Although light-front wave functions depend on the boundary
condition of the gauge potential in the light-cone gauge, phys-
ical observables cannot depend on this choice because of gauge
invariance [7,10]. In particular, the single-spin asymmetry in semi-
inclusive deep inelastic polarized proton deep inelastic scattering
�p� → �′qX and the associated quark Sivers function can be for-
mulated simply as the overlap of augmented LFWFs using the ad-
vance boundary condition [12]. In particular, it is the phase differ-
ence between the LFWFs for the S and P -wave Fock components
that contributes to the quark Sivers function in the quark–diquark
model studied in Ref. [5]. The imaginary phases are calculated
by using the general formalism Eq. (6) with similar expression as
Eq. (8).

For the quark Sivers function and the single spin asymmetry in
the Drell–Yan process pp� → γ ∗ X → �+�− X , we have to choose
the retarded boundary condition to have the LFWF overlap inter-
pretation. Under this condition, the imaginary phase for the aug-
mented wave function in Eq. (6) will change the sign. The resulting
Sivers function and the spin asymmetry will change the sign as
well. This is consistent with the opposite sign prediction between
the quark Sivers function for the SIDIS and Drell–Yan processes by
using the time-reversal transformation [6,7].

The result for the Sivers single-spin asymmetry using aug-
mented LFWFs is identical to that found in Ref. [5] using con-
ventional LFWFs (with the principal value boundary condition),
together with an explicit calculation of the final state phases which
arise from the rescattering of the struck quark with the spectator
diquark after the lepton–quark interaction. This identity is possible
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since the final-state phase due to rescattering is independent of
the momentum transferred in the lepton–quark interaction in DIS
process. On the other hand, if we choose the retarded boundary
condition, the augmented wave function will have opposite imag-
inary part. However, under this boundary condition, we have to
take into account the final state interaction effects (the transverse
gauge link contributions at spatial infinity in the quark distribu-
tion definition in DIS process [7]), and we do not have the sim-
ple light-front wave function overlap interpretation for the quark
Sivers function [12].

4. Summary and discussions

We have used light-front time-ordered perturbation theory at
the lowest nontrivial order to obtain augmented light-front wave
functions that contain an imaginary phase which depends on the
choice of advanced or retarded boundary condition for the gauge
potential in light-cone gauge. We have applied these results to
construct augmented wave functions for the three-quark or quark–
diquark Fock state components of nucleon and the quark–antiquark
component of the pion. We obtain the leading-twist quark Sivers
function from these augmented light-front wave functions by ap-
plying the overlap formalism [12]. The result is identical to the ex-
plicit calculation [5] of the single spin asymmetry in semi-inclusive
deep inelastic lepton-polarized nucleon scattering where the re-
quired phases come from the final-state rescattering of the struck
quark with the nucleon spectators.
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