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We propose an inequality on bulk viscosity of strongly coupled gauge theory plasmas that allow for a
dual supergravity description. Using explicit example of the N = 2∗ gauge theory plasma we show that
the bulk viscosity remains finite at a critical point with a divergent specific heat. We present an estimate
for the bulk viscosity of QGP plasma at RHIC.
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Recently, a holographic link between finite temperature gauge
theories and string theory black holes emerged as a viable theo-
retical tool to model properties of strongly coupled quark gluon
plasma (QGP) produced at RHIC [1–4]. While the precise holo-
graphic dual to QCD is still missing, a progress in study of string
theory black holes made it possible to compare the thermodynam-
ics of strongly coupled QCD-like gauge theories [5,6] with lattice
results [7]. The dual holographic approach has been successful to
address dynamical properties of QGP such as the shear viscos-
ity [8] and the parton jet quenching [9,10], where few alternative
techniques are available (see however of [11]). Intriguingly, dual
string theory studies reveal certain universal features of gauge the-
ory plasma dynamics. A notable example is the ratio of the shear
viscosity η to the entropy density s. It was shown in [12–15] that

η

s
= 1

4π
−→ h̄

4πkB
≈ 6.08 × 10−13 K s, (1)

in any gauge theory plasma at infinite ’t Hooft coupling and in-
finite number of colors (or in the supergravity approximation),
irrespectively of the dimensionality of the space, the microscopic
scales of the theory, and chemical potentials for the conserved
quantities. The universality of the shear viscosity ratio (1) in
strongly coupled gauge theories at finite temperature led Kovtun,
Son and Starinets (KSS) to conjecture a shear viscosity bound [16]

η

s
� 1

4π
, (2)

for all physical systems in Nature. Empirically, the KSS bound in-
deed appears to be satisfied by all common substances [13]; more-
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over, it is correct at large (but finite) ’t Hooft coupling in N = 4
Yang–Mills theory plasma [17,18].

We believe that it is such universal features of dual holographic
models of gauge theories that might have some relevance to QCD.
Thus, it is imperative to ask what are other generic properties
of strongly coupled gauge theories. The question is complicated
as neither the bulk viscosity [19] nor the quenching of parton
jets [20] is universal for different gauge theory plasmas.

It this Letter we propose an inequality on bulk viscosity ζ of
strongly coupled gauge theories that allow for a dual supergravity
description. Based on holographically dual computations, we con-
jecture that a bulk viscosity in a strongly coupled gauge theory
plasma in p space dimensions satisfies

ζ

η
� 2

(
1

p
− c2

s

)
, (3)

where cs is the speed of sound. Notice that unlike the shear viscos-
ity bound (2), our inequality (3) is dynamical: as the temperature
varies, generically both the speed of sound and the ratio of bulk to
shear viscosities will change. Our conjecture is that the inequality
(3) is correct over all range of temperatures, but only in the regime
of the validity of the supergravity approximation in the dual holo-
graphic description.

In the following we present evidence in support of the bulk
viscosity inequality (3). First, we observe that the inequality is
saturated by the p + 1 space–time dimensional gauge theory
plasma holographically dual to a stack of near-extremal flat Dp-
branes [21], as well as in the hydrodynamics of Little String Theory
[21,22]. Second, we point out that the inequality (3) remains sat-
urated once the above p-space dimensional gauge theory is com-
pactified on a k < p space dimensional torus [21,23]. Third, we
observe that the inequality is satisfied (but in general not satu-
rated) in certain 3 + 1 strongly coupled non-conformal plasma at
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high temperature [19,24]. Finally, we present results [25] for the
bulk viscosity of the N = 2∗ gauge theory plasma [5,26–30] over
a wide range of temperatures, and for various mass deformation
parameters. We find that the bulk viscosity of the N = 2∗ plasma
satisfies the inequality (3). As observed in [5], the N = 2∗ plasma
with zero fermion masses undergoes an interesting phase tran-
sition with vanishing speed of sound. A detailed analysis of the
critical point [25] reveals that at the transition point the specific
heat diverges as cV ∼ |1 − Tc/T |−1/2. We find that despite the di-
vergent specific heat the bulk viscosity at criticality remains finite.
We use results for the N = 2∗ gauge theory plasma to estimate
the bulk viscosity of QGP at RHIC.

Bulk viscosity of Dp-brane gauge theory plasma. N = 4 Yang–Mills
plasma at strong coupling is holographically dual to near-extremal
stack of D3-branes. In this case conformal invariance of the theory
implies that

c2
s = 1

3
, ζ = 0. (4)

Eq. (4) was verified in supergravity approximation in [31] and be-
yond the supergravity approximation in [18]. Notice that N = 4
plasma trivially satisfies the inequality (3).

In [21] the authors generalized computation of [31] to p + 1
space–time dimensional gauge theory plasma holographically dual
to near-extremal stack of Dp-branes. They found the following dis-
persion relation for the sound waves

w =
√

5 − p

9 − p
q − i

2

9 − p
q2 + · · · , (5)

where

w ≡ ω

2π T
, q ≡ q

2π T
. (6)

Hydrodynamics of a fluid with shear and bulk viscosities {η, ξ} in
p-space dimensions predicts the following sound wave dispersion

ω = csq − i
η

sT

(
p − 1

p
+ ζ

2η

)
q2 + · · · . (7)

Using the universality of the shear viscosity (1), one can verify that
the inequality (3) is saturated [21] in the hydrodynamics of the flat
Dp-branes. It is saturated as well in the hydrodynamics of Little
String Theory [21,22].

We point out now that the inequality (3) is saturated as well
for above strongly coupled gauge theory plasmas compactified on
a k-dimensional torus (k < p).1 Indeed, upon such a compactifi-
cation the dispersion relation (5) will not change—much like an
equation of state it is sensitive only to the local properties of the
background geometry:

wk<p =
√

5 − p

9 − p
q − i

2

9 − p
q2 + · · · . (8)

On the other hand, the hydrodynamics relation (7) is sensitive to
the number of macroscopic (infinitely extended) directions:

ωk<p = csq − i
ηk<p

sk<p T

(
(p − k) − 1

(p − k)
+ ζk<p

2ηk<p

)
q2 + · · · . (9)

Again, using the universality of the shear viscosity (1) we find (see
also Eq. (5.2) of Ref. [21])

ζk<p

ηk<p
= 2

(
1

p − k
− c2

s

)
. (10)

1 A saturation of the inequality (3) upon Kaluza–Klein compactification on k-
dimensional torus was also observed in [21].
Fig. 1. Ratio of viscosities ζ
η versus the speed of sound in N = 2∗ gauge theory

plasma with zero fermionic mass deformation parameter m f = 0. The dashed line
represents the bulk viscosity inequality (3).

It is precisely for the stated reason the inequality (3) is saturated in
Sakai–Sugimoto model in the quenched approximation [23], even
though

ζ

η
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Sakai–Sugimoto

= 4
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= ζ

η

∣∣∣∣
D4

. (11)

Bulk viscosity of non-conformal plasma at high temperatures.
A much more nontrivial example is the bulk viscosity of non-
conformal gauge theory plasma in four dimensions. The compu-
tation in the cascading gauge theory [32,33] produced [24]

ζ

η

∣∣∣∣
cascading

= 2

(
1

3
− c2

s

)
+O

([
1

3
− c2

s

]2

∼ ln−2 T

Λ

)
, (12)

where Λ is the strong coupling scale of the cascading gauge the-
ory.

Likewise, for N = 2∗ gauge theory plasma with bosonic and
fermionic mass deformation parameters mb � T and m f � T ,

ζ

η

∣∣∣∣
m f =0

= π2βΓ
b

16

(
1

3
− c2

s

)
+O

([
1

3
− c2

s

]2)
, (13)

where βΓ
b ≈ 8.001 [19];

ζ

η
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mb=0

= 3πβΓ
f

2

(
1

3
− c2

s

)
+O

([
1

3
− c2

s

]2)
, (14)

where βΓ
f ≈ 0.66666.2

In all cases above we find that the viscosity inequality (3) re-
mains true—in general, it is no longer saturated.

Bulk viscosity of N = 2∗ plasma. The strongest support for the
bulk viscosity inequality (3) comes from study of the N = 2∗ bulk
viscosity over the wide range of temperatures. Such analysis is a
direct extension of the framework presented in [19]. The computa-
tions are extremely technical and will be detailed elsewhere [25].
Here, we report only the results of the analysis.3

Fig. 1 represents the ratio ζ
η versus the speed of sound in

N = 2∗ gauge theory plasma with m f = 0. This model reaches
a critical point with vanishing speed of sound at mb

Tc
≈ 2.32591

[5]. Although near the critical point the specific heat diverges as
cV ∼ |1 − Tc/T |−1/2 [25] (also Fig. 8 of [5]), we find that the bulk
viscosity remains finite, Figs. 2 and 3.

2 There is a mistake in Eq. (4.37) in [19]: correspondingly to the connection co-

efficient of dZ 0
ψ/dx in Eq. (4.35), the connection coefficient of dZ 1

ψ/dx in Eq. (4.37)

must be 12x2(x2 − 1)2. Fixing this mistake leads to the value of βΓ
f presented [25].

3 Numerical data is available from the author upon request.
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Fig. 2. Ratio of viscosities ζ
η in N = 2∗ gauge theory plasma near the critical point.

Note that the critical point corresponds to c2
s = 0.

Fig. 3. Ratio of viscosities ζ
η in N = 2∗ gauge theory plasma with zero fermionic

mass deformation parameter m f = 0.

Fig. 4. Ratio of viscosities ζ
η versus the speed of sound in N = 2∗ gauge theory

plasma with “supersymmetric” mass deformation parameters mb = m f = m. The
dashed line represents the bulk viscosity inequality (3). We computed the bulk vis-
cosity up to m/T ≈ 12. A single point represents extrapolation of the speed of sound
and the viscosity ratio to T → +0.

Fig. 4 represents the ratio ζ
η versus the speed of sound in

N = 2∗ gauge theory plasma with “supersymmetric” mass defor-
mation parameters mb = m f = m. We did not find any phase tran-
sition in this system up to temperatures T ≈ m

12 .
The dashed line in Figs. 1 and 4 represents the bulk viscosity

inequality (3). In both cases the inequality is satisfied.
Estimates for the viscosity of QGP at RHIC. It is tempting to use the

N = 2∗ strongly coupled gauge theory plasma results to estimate
the bulk viscosity of QGP produced at RHIC. For c2
s in the range

0.27–0.31, as in QCD at T = 1.5Tdeconfinement [34,35] we find

ζ

η

∣∣∣∣
m f =0

≈ 0.17–0.61,
ζ

η

∣∣∣∣
mb=m f =m

≈ 0.07–0.15. (15)

Since RHIC produces QGP close to its criticality, we believe that
m f = 0 N = 2∗ gauge theory model would reflect physics more
accurately. If so, it is important to reanalyze the hydrodynamics
models of QGP with nonzero bulk viscosity in the range given
by (15).

In this Letter we presented some evidence in support of the
bulk viscosity inequality in strongly coupled gauge theory plas-
mas. It would be interesting to examine other holographic mod-
els and test the inequality. As in [13], it would be interesting to
study applicability of the inequality in common substances real-
ized in Nature. It appears that common liquids, like water, satisfy
the inequality [36]. While the inequality is generically satisfied in
polyatomic gases [37], it is violated in monoatomic gases [38]. The
inequality also appears to be violated in high-temperature QCD at
weak coupling [39]. In fact, experimental study of the bulk vis-
cosity in argon at different densities [40] demonstrates that its
ratio of bulk-to-shear viscosities violates/satisfies the inequality at
small/large densities. All this indicates the relevance of the bulk
viscosity inequality (3) to strongly coupled systems only.

We demonstrated that the bulk viscosity in the N = 2∗ plasma
with vanishing fermionic masses has a finite value at the critical
point with divergent specific heat. The corresponding critical ex-
ponent α = 0.5 (cV ∼ |1 − Tc/T |−α ) coincides with the mean-field
universal value at the tricritical point [41]. Such a tricritical point
is realized experimentally in solids [42]. It would be interesting to
find a fluid with such a universal tricritical point and compare its
bulk viscosity with that of the N = 2∗ plasma at criticality. For
most physical substances the bulk viscosity is less than the shear
viscosity, but for pure fluids at the critical point the bulk viscosity
can reach a finite but sharp peak (see [43] for references), much
like observed for the N = 2∗ plasma here. On the other hand, in
mixtures at the critical point the bulk-to-shear ratio can be very
large [44].
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