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Abstract

Givenn polynomials inn variables 6 respective degreed, ..., dn, and a set of monomials of
cadindity d1 - - - dn, we gve an explicit subresultant-based polynomial expression in the coefficients
of the input polynomials whose noniahing is a necessary and suffiet condition for this set of
monomials to be a basis of the ring of polynomialsiigariables modulo the ideal generated by the
system of polynomials. This approach allows us to clarify the algorithms for the Bézout construction
of the resiltant.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a system ofi polynomials inn variables vith coefficients in a fieldK,
fi(X1, ..., %n), ..., fn(Xq, ..., Xn), With respective degreeh, ..., d,. Gererically, this
system hasl := dj.dy...dy roots in the algebraic closure &. This is the vey well-
known Bézout formulawhich appeared irBézout(1779 (seeCox et al.(1996 for a
modern treatment of this).
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_nOne can say something more about what “generic” means above(lgt, ..., f,) C
K" be the set of common zeros of the polynomifils. . ., f,, and set

di
fiizzfij, i=1...,n,
=0

where fjj is the homogeneous component df of degreej. Then, it turns out that
V(fq,..., fn) is a finite set and its cardifity (counting mutiplicities) is d if and only
if the system of hormgeneous equations

fldl =0, f2d2 =0,..., fndn =0 (1)

has no solution in projective spaB&~1—seeCox et al (1998 Chater 3, Theorem 5.5) for
a poof of this resit and alsoCox et al.(1998 Chapter 4, Definition 2.1) for the definition
of multiplicity of a zero of a polynomial system.

From a nore algebraic point of view, if we sét:= (f1, ..., fn) for the ideal generated
by the fi'sin K[x4, ..., Xp], the fact thatv (1) C K" hasd points counted with multiplicity
means that th&-algebrad := K[xy, ..., Xy]/| is aK-vector space of dimensiah As
A is generated by the set of (the images4nof) all monomials inK[xy, ..., X,], one can
always find a basis of monomials fgk (finite or not).

In this paper, we will focus our attention on the following problem: given avéeif d
monomials, how can we decide if they are a basiglafr not?

We could use Grdbner bases for solving this problem, but we would like our answer to
be a function on the input s&f only, and not depending on an extra monomial ordering
and other intermediate steps that are needed in Grébner bases algorithms.

One o the main results of this paper is a polynomial expression in the coefficients of
f1, ..., fn which vanishes if ad only if the setM fails to be a basis afd. The epression
we get canbe described in terms of resultants and subresultants of homogeneous
polynomials obtained from the input system, which is the algebraic counterpart of this
problem in the homogeneous case (€es et al, 1998 Chardin 1995 Szantqin press.

The problem of deciding whether a given set of monomiidlss a basis of4 or not
is important in elimination theory due to the fact that algorithms for computing resultants,
Bézout identities, reduction modulo an ideatlaplicit versions of the Shape Lemma can
be reduced to linear algebra computations in the quotient ring, avoiding the use of Grébner
bases, if one succeeds in finding such a biskis

Bézout(1779 was the first to wdt following this approach, Wich was extended by
Macaulay(1902), who answered this question in the cade= {x;*...xq", 0 < & <
di — 1} by means of a polynomial expression in the coefficients of the input polynomials
(see alsoMacaulay 1916. Our results, when applied to Macaulay’s case, recover his
original formulation.

In this direction, some results were obtained ®@lgardin (19944, provided that all
the fi’s are generic and homogeneous. If the input system is generic and sparse, a
generalization of the case weeadeding with here, partial results were obtainedBiris
and Regg(1994 and Pedersen ah Sturnfels (1996 for M's constructed by means of
regular triangulations of polytopes.
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A different approach based on recursive linear algebra is providgi#ieer and Uteshev
(1999 for specific M. In Section 7we will compare our results witthose obtained in this
article.

The paper is organized as follows. Some preliminary results are statgelction 2
In Section 3 we recall the definition and basic properties of multivariate subresultants,
as introduced irChardin(1995. We relate subresultants with our problemSaction 4
associating with any given s@l a polynomial whose non-vanishing is equivalent to
the fact thatM is a basis ofA. In Section 5 we show hat, for certain M's, this
polynomial expression depends only on the coefficient§igf, . .., fnd,, and moreover,
it can be decomposed into factors. Then, we giv&@ttion 6some ratbnal expressions
for generalized Vandermonde determinants. These results, along with those presented in
Section 5 dlow us abetter understanding of the recursive algorithm proposegikker
and Uteshey1999. Finally, we conclude by comparing our results with those obtained in
Bikker and Uteshey1999 in Section 7

2. Preliminary results

LetReg,,....d, (") be the homogeneous resultant operator, as defindddaulay(1902),
van der Werden(1950 andCox et al.(1998. We recall the following well-known result
(seeCox et al, 1998 for a proof):

Proposition 2.1. The system(1) has a nontrivial solution inK" if and only if
Re%l ..... dn(fldlv"-s fndn) =0.

Remark 2.2. This proposition, together with our priewis remarks about the quotient ring
A, gives a poof for the Choice Conjecture stated Bikker and Uteshey(1999: The
condition Reg; ... d,(f1d; - - -, Tnd,) # O is necessary and sufficient for the existence of a
setM of d monomials which is a basis of (and hence, any polynomial can be reduced
with respect to this set). Of course, the hard problem is to find sudfilan

LetK be afield,f1, ..., fn € K[Xy, ..., Xn] and
M :={m1,...,mg} C K[Xq, ..., Xn]
be a set ol monomials. Sep :=d; +---+d, —n, and

8 :=38(M) = max{degm;), i =1,...,d}.

Let Xg be a new variable. For every polynomialxs, . .., Xn) € K[X1, ..., Xy] we define
0 deg p) X1 Xn
X0, X1, «+ ., Xp) 1= X — . — ),
P~ (X0, X1 n) 0 p(XO Xo

i.e., p° is the honogenization ofp with a new variablexg, and fa everyt > §, we set

M = {mxéfdegm), m e Mj.

Let .4 be the quotient rind[xo, . . ., xn]/(fo, A fr?). It is a gracekd ring of the form
Ao = EBioio Ao
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SetHd,,....d,) (7) for the coefficients of the power series
n d:
. fa-t
.=
;)H(dl ..... d(OT" = T 2)
Itturns out thatH g, .. d,) is the Hilbert function oK[xg, X1, . . ., Xn]/J whenJ is an ideal

generated by a regular sequencendiomogeneous polynomials of degrehs. .., d,
that is, Hg,,....d,) (v) is the dimension as K-vector space of the piece of degreen
KXo, X1, . - ., Xn]/J; seeMacaulay(1902 andChardin(1995.

Remark 2.3. From the right-hand side of identity2), it is easy to check that
Hdy,...dn(t) < dif T < p, andHq,, . d,)(t) =dif T > p.

.....

If Resy,....dy(f1dy,---5 Tndy) # O holds, Proposition 2.limplies that the family

of polynomials f2, ..., 9, xo has no common roots in projective space and so,
Resy,...d.1(f2, ..., 10, x0) # 0. But this implies thatf?,..., 0, xo is a regular
sequence ifK[Xo, . . ., Xn] and, in particularf?, .. ., f0is also a regulasequence in that

ring. Therefore, dimdo:) = H,,....dy (7).

The next proposition shows a relationshigtlween a monomial basis of the affine ring
A and bases of certain graded parts of the ritag This will allow us to state the condition
for an arbitrary seM to be a basis ofl.

Proposition 2.4. If Resg,
equivalent:

dn(f1dys - -+, Tnay) # O, then he following conditions are

yenes

(1) M is abasis ofA as aK-vector space.
(2) There existsgt> max{s, p} suchthatMy, is a basis ofAq, as aK-vector space.
(3) For every t > maxs, p}, M is abasis ofAq as aK-vector space.

Remark 2.5. We will see inCorollary 2.6that a necessary condition fbf to be a basis of
Ais thats > p. Therdore, in the statement d?roposition 2.4ve can replace mdg, p}
with §.

Now we will proveProposition 2.4

Proof. Recall that the assumption RgS. d,(f1d,, - - ., fad,) # O implies thatf?, ..., fr?
is a regular sequence iK[Xg, . .., Xn].

(1) = (3| Lett > maxs, p} and consider a linear conmation of vectors inM
which lies in the ideal f2, ..., f9):

d n

_d ;
E Aimix(t) eam) _ E Aj(XO,...,Xn)fJO. (3)
i—1 =

Settingxp = 1 we get dinear combination of elements M which lies inl. So, if M is

linearly independent, we get thatl; is linearly indgendent. A¢ > p andf?, ..., f0isa

regular sequence, the dimension4y; is d, and theefore we conclude thatl; is a basis
of Agt.



C. D’Andrea, G. Jeronimo / Journal of Symbolic Computation 39 (2005) 259-277 263

(8) = (1) | Consider a linear combination df as follows:

Zk.mi - Zaj(X]_,...,Xn)fj.
i=1 j:l
Lettp := maxs$, p, dedaj fj), j =1, ..., n}. Homogenizing the lineacombination up

to degreetp, we have an equdity like (3) with tg instead ot. As M, is linearly independent,
itturns outthat; = O0fori = 1,...,d. Then,M s a linearly independd set. Taking into
account that dira4) = d it follows that it is a basis of4.

(3) = (2)|Obvious.

(2) = (3) |Consider the following exact complex of vector spaces:

0 — ker¢y — Aot ﬂ Aot+1) — (K[xo, ..., Xnl/(Xo, flo, o f'?))t+1 — 0,
where ¢(m) = xo.m. As Resg, .d,(Xo, f2,..., f9) # 0, it turns out that
(KIxo, . - ., Xnl/(Xo, 9., f,?))tJrl = 0ift > p. In addtion, fort > p, we have that
dim(Agt) = dim(Agit+1)). S0,¢¢ is an isonorphism ift > max{s, p}, and futhermore,
¢t (M) = Mi11. Then, M, is a basis ofdot, for sometg > max{(s, p} if and only if M is
a basis ofAq; for everyt > max(s, p}. O

The following result, which follows immediately from the proof Bfoposition 2.4
gives us a lower bound of the maximal degree one may expect from a monomial basis
of A.

Corollary 2.6. If M is abasis ofA, thens (M) > p.

Proof. Lett < p, and suppose tha¥l is a basis ofd with § = t. Proceeding as in the
proof of (1) = (3) in Proposition 2.4it follows thatM is linearly independent itdg; .
But, from Remark 2.3we have that difdq) < dif t < p, which isa contradiction. [

Example2.7. Let f1, f2, f3 be generic polynomials of degree twoliix1, X2, x3]. In this
cased = 2.2.2 = 8. It iswell-known that

M := {1, X1, X2, X3, X1 X2, X1X3, X2X3, X1X2X3}

is a basis of4 (see for instancéacaulay(1902). Observe tha = 3 = p in this
case. On the other han@prollary 2.6 implies that there are no eight monomials linearly
independent in the set

2 2 2
{1, X1, X2, X3, XT, X5, X3, X1X2, X1X3, X2X3}.

This can be explained as follows. AQ, fZO, fg? is argular sequence, they must be linearly
independent. So, the dimension of tRevector space they generate is 3, and hence the
dimension ofdg2is 10— 3= 7.
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3. Subresultants by means of Koszul complexes

In this section we recall the theory of tiuariate subresultants for homogeneous
polynomials as formulated i@hardin(1995; see als®emazurg1984).

First, we are going to introduce the cralc notion involved in the definition of
subresultants.

3.1. The determinant of an&st complex of vector spaces

Let K be a field and le€C be an exact complex ofriitely generated -vector spaces
Fi = KB, with basesB;, of theform

COoF BF, . 2% o
Then, there exists a decomposition of evector spaceb; which enables us to associate
with the complexC an elementA € K. This dementA is called thedeterminantof the
complex (se&el’'fand et al, 1994 Appendix A). In order to obtain the decomposition, we
can proceed as iDemazurg1984), Chardin(1995 andGel'fand et al(1994:

ASCENDING DECOMPGCSITION

e Setly := BpandV; := K'1.

e Sinced is onto, there exists a non-zero maximal minor of the matri¥0fChoose
suwch a non-zero minor, and séf for the subset 0By corresponding to the elements
indexing the columns of the chosen submatrix &nd= By — I;. Then, if V] := K 1
andVs, := K'2, we haveF; = Vo @ V/, anddily; : Vi — Vi is an isonorphism.

e Fori > 2, conside®;” := 7109 : Fj — V;, wherer;_1 is the projection fronf; _;
to Vi. The mapd;* is onto, due to the exactness©fand the chosen decomposition of
Fi_1. Then, we can choose a non-zero maximal minor of the matrd¥ @ind consider
the subsetl/ of B; indexing the columns of the chosen submatrix &nd := B; — I,
SettingV;' := K Iy andV;,1 := K'i+1 we obtain a decompositidfy = Vi1 @ Vi such
that the restriction*|y, : V' — Vj is an isonorphism.

e In the last step, we obtain a square matrix fgf, due to the fact that
o= dim(F) = 0.

For every 1<i < n, let¢; := O lyy V/ — Vi. Thedeterminanbf the complexC
(relative to the base®;) is defined to be

n—1 )
A= []detgin Y.
i=0

We remak that A is (up to a gjn) independent of the choices made to perform the
decomposition.

A second procedure to obtain a decomposition of a complex which also enables us to
compute its determinant, is the following:

DESCENDING DECOMPGCSITION
e Setl, := By andV, := K'n.
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e Sinced, is into, there exists a non-zero maximal minor of the matrigfChoose such
a minor and defind,_1; C Bj_1 to be the abset of elements oB,,_; indexing the
rows not invdved in this minor and/, := Bn_1 — In—1. Then we have adecomposition
Fro1 =V} ® Va1, whereV/, := K'n andVq_ := K'n-1.,

o Notethat, foii > 1, the previous construction for 1 implies that IM(0n—_j+1)NVh—i =
0, and therefore Ke&b,_i) N Vh_i = 0, thatis, the restriction ob,_j to V,_j is into.
Then we can iterate the process and choose a maximal non-zero minor of the matrix of
on—ilv,_;, anddefinel ; to be the abset ofB,_j_1 indexing the rows of the chosen
submatrix andl,_j_1 to be its complement iB,_j_1. We obtain a decomposition
Fnoi—1:=V/_; ® Vn_i_1, whereV’ . := K'n-i andVp_j_1 := K'n-i-1,

¢ In the last step a square matrix is obtained, due to the exactness of the complex.

As before, for every 1< i < n, we defineg; := 97|y, : Vi — V. It turns out that
(Gel'fand et al, 1994 Chardin 1995 the deterninant of C reldive to the base®; can
also be computed as

n-1 )
A= ] detgin Y.
i=0

3.2. Subresultants

Multivariate subresultants are defined as determinants of generically exact Koszul

complexes. Les < n+ 1 and letPy, ..., Ps be generic homogeneous polynomials in
n + 1 varieblesxo, .. ., Xn of respective degrees, . . ., ds:
F)I(X01"'1Xn):= Zci,axav i:l,...,S,
lor|=di

where thegi o,’s are new vaables.

In this caseK is the field of fractions ofA := Z[Ciq, |l¢| = di, i = 1,...,s]. Set
R := A[Xg, X1, . .., Xnl-
Let M be the set of all monomials of degreén the variableo, .. ., X, and letS

be a family ofHg,,....d,(t) monomials in9t;. With this data we can construct a complex
C = C? which isobtained by modifying the degré@art of the Koszul complex associated
with Py, ..., Ps as follows:

0— (AR 5 (ASIRS) Y. 2 (AR S A\ S) — 0

equipped with the basé := (J;<j, -... i, <s UXO‘GM‘*dir--fdik X%, A A B,

If this complex is generically exact (i.eG ® K is exact as a@mplex of K-vector
spaces), then theubresultant of S with respect to the polynomialg .P., Ps, which
will be denoted WithAtS, is defined ® be thedeterninant of C ® K with respect to the
monomial bases; otherwise we xﬁé := 0. Aswe haveH; (C{) = 0 fori > 0 (Jouanoloy
1980 Chardin 1999, it turns out thaTAtS is apolynomialin the coefficients of thé>’s
which satisfies théollowing property Chardin 1995 Theorem 2): Letk be any field, and
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P eK[X0,...,%nld, i =1,...,s Then
AY(Py, ..., Ps) #0 <= J +k(S) =KIXo, . .., Xnlt,

whereJ; is the degreé part of the ideal generated by ti¥'s.

4, Monomial bases and subresultants

In this section, we will relate our problem with multivariate subresultants.
We sets = n, and letPy, . .., P, be the homogeneous polynomidﬁ, ..., 19 defined
above. The following may be regarded as the main result of this section.

Theorem 4.1. LetM C K[X4, ..., Xn] be a set ol monomials, and set t= §(M). Let
AtMt be the subresultant dfl; with respect to 1? o f,?. Then, M is abasis ofA if and
only if

PVLdy.....dn -= R€SY. _do(Fady, ..., fady) Ay, #O. (4)
Proof. If M is a basis of4, the family f1,..., f, has allits zeros inKn, and theefore,
Resy,.....d,(f1d;, - --» Tady) # 0. In addition, fromCorollary 2.6 and Proposition 2.4it

follows thatM is a basis ofdq, whichimplies thatA}MIt # 0.

In order to prove the converse, we can applpposition 2.4as Reg, ... d,(f1d;. - -,
fna,) # 0.The conditionA}MIt # 0 implies thatM is a basis ofdq;, and then weonclude
thatM is a basis ofd. O

Example4.2. Fori = 1,2, 3, let fj := Z‘alsz Ci o X* be generic polynomials of degree

two in K[x1, X2, X3], and letM be as inExample 2.7 The sr..JbresuItantAg413 can be
computed as the product of the determinants of the following two matrices:

C1,2,0,0 €1,0,20 €C1,00,2
C2,2,00 €2,0,2,0 C2,00,2
C3,2,0,0 €3,0,2,0 C3,0,0,2

and

ci200 O 0 «c1110 €101 O cCioo2 O c¢011
0 co20 0 €200 O ©o01212 O cC1002 C1110
0 0 c1002 O 1200 C1,020 C1,101 C1011 O

c2200 O 0 c2110C101 0 o002 0 <2011
0 c020 O 2200 0 2011 0 2002 C2110
0 0 2002 O 2200 €020 C2101 C2011 O

c3200 O 0 c3110¢C3101 O c3002 O cC3011

0 3020 O 3200 O 3011 O €3002 C31,10

0 0 c3002 O 3200 C3020 C3101 C3011 O

For a poof of this fact, se&’heorem 5.elow.
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5. Factorization of subresultants

For seveal setsM, the polynomialPyy g, .. 4, defined in §) degends only on the
coefficients of fiq,, ..., fnd, and factorizes as a product of more than two terms. For
instanceMacaulay(1902 showed hat one can decide whether

MO;Z{xfl---xﬁ”,OsaiSdi—l} ®)

is a basis ofA by applying linear algebra on the coefficients of the highest terms of
f1,..., fn (see alsdBikker and Uteshey1999. The same has been done Bikker and
Uteshev(1999 with

M= {xflxgz, O0<a1<0,0<ap <dy+dy — 207 — 2}, (6)
and with

{(X7*%5?x3%, 0 < 1 < d1, 0 < a2 < min(dy, dp, 2(dy — ar1) — 1),
O<az<di+do+d3—2(x1+az+ 1)},

for n = 2 andn = 3 respectively. This is not always the case, as the following cautionary
example Bows.

Example5.1. Considern = 3. Setd; = dy = d3 = 2 andwrite f; := Zla\<2 Ci o X* for
i =12, 3. Take -

. 3
M := {X7, X1, X2, X3, X1X2, X1X3, X2X3, X1X2X3}.

Then,Ag413 is the determinant of the following matrix:

01,0,0,0 0 0 0 CZ,O,O,O 0 0 0 C3,0,0,0 0 0 0
0 0 C1,0,2,0 0 0 0 C2,0,2,0 0 0 0 03,0,2,0 0
0 0 0 €1,0,0,2 0 0 0 €2,0,0,2 0 0 0 €3,0,0,2

€1,2,00 €1,1,0,0 0 0 c2200 €100 0 0 ¢3200 €3100 0 0

€1,0,2,0 0 €1,0,1,0 0 €2,0,2,0 0 €2,0,1,0 0 €3,0,2,0 0 C3,0,1,0 0

€1,0,0,2 0 0  c1001 €002 0 0 2001 €002 0 0 c3001
0 1110 €200 0 0  c2110 €200 0 0 c3110 ©3200 o |
0 101 0 c¢1200 0 ¢2101 0  ¢2200 0 ¢3101 0 3200
0 €1,020 €1,1,10 0 0 c2020 2110 0 0 c3020 ©3110 0
0 €1,0,0,2 0 €1,1,0,1 0 €2,0,0,2 0 €2,1,0,1 0 €3,0,0,2 0 3,1,0,1
0 0  c1002 €011 0 0 c2002 €011 0 0 3002 C3011
0 0 c1011 €1020 0 0  c2011 €020 0 0 c3011 €3020

With the aid ofMaple we have computed this determinant, which is an irreducible
polynomial depending on all the variablgs, .

Set

o [1@-T%
T j=1
rng)h(dl,...,dn)(f)-r = (1—7T)” (7)
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It turns out thathg,, .. 4, is the Hilbert function of the ide@enerated by a regular sequence
of n homogeneous polynomials imvariables 6degeesds, . . ., d, respectively.
The following is the main result of this section:

Theorem 5.2. Let Ry g,....d, be the polynomial defined i@). Then, if Py g, . 4, iS not
identically zero, the following conditions are equivalent:

e Pyig, ...d, depends only on the coefficients @4, f. .., fnd,.
e Foreveryt=0,1,..., p, thecardinality of M N K[Xy, ..., Xnlt €quals Rq,, .. d,) (t).

If any of the above conditions hold, we have the following factorization:
8
Ay, = l_[ DMK xq. ks (8)
t=min{d; }

where Eg denotes the subresultant in n variables of S with respectdg .f.., fad,.

Proof. If Py q,...d, depends only on the coefficients &fq,, ..., fnd,, We can set to
zero all the coefficients off1, ..., f, not appearing in these Ieadlng forms and work
with this family of homogeneous polynomials instead &f, ..., f,. AS Pyig,,.. d, IS

not idertically zero, we have thaﬂfw is not identically zero elther and this |mplles
that M is a basis of the hocrgeneous quotient rind[xq, ..., Xnl/(f1d;, - - -, fndy)-
As the family fiq,. ..., faq, iS a reular sequence iK[xy, ...,xn], it turns out that
#MNK[Xg, ..., Xnlt) = hgy....q () foranyt =0, ..., p, and we are done.

In order to prove the other implication we will work with generic homogeneous

polynomials. For each = 1,...,n anda € N“ with |@| < d;, introduce a variable
Cigo. Set
fi(Xe, ..., Xn) 1= Zci,ax"‘, i=1,...,n. 9)
Joe|<dj
We shall wok in the field K := Q(C4). In this stuation we have that

Resy,.....dn(f1dy, - .-, Tady) # O (see forinstanceCox et al.(1998) and, due to the
universal property of subresultanGHardin 1999, if Py q,.....4, # O for a given family
of polynomials inanyfield, then it will not be zero for the generic familg)(
As before, setfi0 for the homogenization of the polynomid| in K[Xo,..., Xa].
Consider the followind-linear map:
¢pzsg_d1@...@32_dn_> S
n 10
(pla ey pn) = Z pl f|05 ( )
i=1

whereS, := KXo, X1, ..., Xnlp, andforeach =1,...,n,

n

i «a

Sp—di = <X0°---Xﬁ‘”, Zaj =p—d,a1 <dy,...,ai_1 < di_1>.
i=0
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Let M be the matrix obtained from the matrix ¢f in the monomial bases by deleting the
columng indexed by the elements M and letM’ be the matrix obtained in the same way
but using the set

S::{xgo---xﬁ”,|a|=p,ai<di,i=1,...,n} (11)

instead ofML. It is well-known that de¢M’) £ 0 (Macaulay 1902 Chardin 1995.

As the sibresultant ofS with respect tof?, ..., 0 is the deteminant of CS, it turns
out that detM’) may be regarded as a non-zero maximal minor in the last morphism of the
complex whose determinantisg.

Starting with this maximal minor and using the ascending decomposition of the Koszul
complex, it turns out that there exists an elem@rt K, which is actually a polynomial in
thec; o, such hat detM’) = £ A. As detM’) # 0, then& # 0.

This £ is a product of complementary minors i@°. Stating now with these minors
from theleft and applying the descending decomposition of the Koszul complex, one can
see that, as i€hardin(1995, def{M) = & A‘jM, as the comiex whose determinant iﬂ{{41
is the same ae one whose determinantdk% except in the last map.

SetM(t) := M N K[X1,..., %], t = 0,1,...,p, and suppose w.l.o.g. thal; <
di,i =2,...,n. As #M(t) = hq,,..d,(t), proceeding as itMacaulay(19032), it follows
that—ordering appropriately its rows and columns—the maitikas the following block
strucure:

M, * * *
0 Mp_1 = *
. ) (12)
0 0 Lk
0 0 -+ Mg,

whereM; is the gjuare matrix obtained by deleting the columns indexed by the monomials
in M(t) in the matrix of theK-linear map:

$: §Hg @ e, — g

n

(P1, .-+ Pn) = > pi fid-
=

HereS" := K[Xy, ..., Xn]t, and foreach =1,...,n,

n
Sfdi = <Xf1~'xﬁ”, Zak:t—di, a1 <dy, ..., a1 < di1>.
k=1

Then, we have that dg¥l) = ]_[f’:dl det(M;), which shovg that detM) depends only

on the coefficients offig,,i = 1,...,n. Furthemore, detM;) = & vaan[xl Xl for
t =0,...,p, and the gtraneous facto€ has also a block struatel compatite with the

one given in {2), thatis, £ = ]_[tp:dl &, seeMacaulay(1902 andChardin(19944. This
completes the proof of the theorem

Lasin Macaulay(1902), the rows ofM are indexed by the monomial basis of the domain.
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Corallary 5.3. If Py g, .4, iS NOt identically zeo and depends only on the coefficients of
fidy, - - -, fnd,, thens(M) = p.

6. Simple rootsand generalized Vander monde deter minants

In this section, we willstudy a result byMacaulay(1902 corncerning the structure of
a generalized Vandermonde determinant associated with the monomigl’sand, with
the aid of subresultants, we will extenddt arbitrary sets of monomials with cardinality
d. This will make apparent the relationship between the non-vanishing of the generalized
Vandermonde determinant associated with a set of monoiiadsd the fact thabl is a
basis of the quotient algebs&in the case of a polynomial system with simple roots.

We will work in the generic fieldK = Q(ci,), and wth the family ©). Let
V(fi, ..., fn) = {£1,...,&) c K, and sef® = {my, ..., mg} (recall thatM° was
defined in B)). Let Mg be thed x d matrix whose rows (resp. columns) are indexed by
the elements of/ (fq, ..., fn) (respMO), such thathe element indexed bg , mj) is the
evaluaion of mj até;, thatis,Mo := (Mj (&), ;-

In (Macaulay 1902 Section 10), it$ proven that

(A§@>2

detMo)? = cJ :
Resd,....dn (fidys - - > frgy)? T2

(13)

where7 := [[%; J(&) (hered := det(dfi /3xj),_; ; -, is the Jacolsin of the sequence
f1,..., fa), andc € Q is a numerical consta depending only om and the degrees
dl, . eny dn.

The constant in (13) hasan explicit expressioninterms di, ..., dy:

Lemma6.1.

c=(-1 En(dy.....dn) ,

dj — 1dj

n
(
En(dr, ... d) =) dui-dja———djs1-dh
=1

Proof. First, observe that a systeffa, ..., f, having the property thafig, = Xidi for
i = 1,...,n, verifies Regy,... d,)(fid;, ..., fng,) = 1 and (AI‘\’,HS)2 = 1, as both
polynomials depend only on the coefficients@af,, . .., fnd, (Se€Theorem 5.2above).
Therefore, the numerical factarcan be obtained from identityl8) by specializing the
coefficients offj in such a way thafig, = xid‘, i =1...,n. Ifthisis thecase, we get
o _ detMo)?

J

The theorem will be proved by induction on

(14)
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First, we fix some nattion. We denote by, (dy, . . ., dy) the numerical factor associated
with n and degreesls, ..., d,. If f1,..., fy is a gystem of polynomials im variables
of degreedls, ..., dy, we denote by M (f1, ..., fy) the matrixMg associated with the

systemfy, ..., f, and the seM®, and we set/n(f1, ..., fy) := ]_[f'=l J(&).
Forn = 1, setd; = d for a positve integer ad let f; := xf — 1. We have that
V(f1)) = {&1,..., &g} is the set ofdth roots of unity. The matrixMg is the Vandermonde
d d 1
matrix assomatednth the roots off, and so, déMg)? = disq( f1) = (— 1)d 14+ )dd
In addition,7 = (—1)9-1d9. Then we cndude from identity (4) that

d(d b}

ci(d) = (-1

Assume nowhat the formula holds for systems ofpolynomials inn variables and
considem + 1 polynomials inn + 1 variables.

e For degeesds, ..., dy, 1: Setf; := xidi —1fori =1,...,n,and fry1 := Xny1. We
have
V(f, ..., ) ={(n1, ..., 90, 0) : nid‘ =1 1<i<n},
and so, it is straightforward to check that
Musa(fr .o, fon fopa) = Mo = 1, xd — 1),
Inpa(fr, oo fn, fapn) = Jn(Xi11 —1,...,x% —1).
Identity (14) implies
Cnt1(dy, ..., dn, 1) =cn(dy, ..., dn),
and the formula holds.

e Fordegeed, ..., dn, dyt1+1: Setfj .= x —1forl<i <n,andfpy1:= xgj:l”l—

Xnt1. Then, V(f1, ..., fai1) = ViUV, whereVy = V(X — 1, ..., x3" — 1) x {0}
andVp = V(xdl —-1,. d” — D x{neK: =1} Arranging the monomials
in MO so that thos whlchdo not depend on the varialtg 1 come first and the roots
of the system so that thoseVh come first, it follows thatM1(f1, ..., far1) hasthe
following block structure:

MO =1, xS — 1) 0
* Ml O =1, X — 1, xS — 1)

» Al
Where/\/anrl(xd -1,.. d” -1, xgj:ll 1) is a matrix difering frOmMn+1(Xf —
1,.. d" -1, xg’”ll - 1) only in a factor by adn;1-th root of unity in each row.

Moreover each root of unity appears in exadtly - - d, rows. Taking into account
that the product of all thei,,1th roots of unity equalg—1)%+1=1 it follows that

(detMpja(fy, ..., fn+1))2 equals the product

(detMn(x —1,..., xth — 1))*(detMny (¥ — 1., xd — 1, Tt — 1)),
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On the aher hand, the Jacobian of the polynomial systém..., fy, frp1 is J =
dlerl . -dnxn”_l((dn+1+1)xgj:11—1) and then, foreverg € V4, J(§) = (—1)J(xfl—
1,....xE —1)(&) and, for eveng € Vo, J(€) = £n31J (X —1, ..., x™l — 1)(&). Then,

. K n+1
it follows easily that

136 = D% e — 1, x$ - 1),

eV

[T 3¢ = (p IO — 1, xd -1, x,ﬁ‘jjl1 -1

§eV
and so, Jn+1(f1, ..., far1) equals
dn
(—pddhdnin 7 (x 1, xO — DT (T - 1, xE - 1 xE— 1),

From the epressions forM 1 and 7n+1, we daluce:
Cn+1(dls ceey dnv dn+l + 1) = (_1)dl”'dndn+1cn(dl’ ceey dn)cn+1(dls ceey dnv dn+l)'

Thus, the inductive assumption implies th@t.1(ds, ..., dn, dner + 1) = +1. More

precisely, the exponef,1(ds, ..., dn, dnt1 + 1) giving the sign equals
di---dndny1 + En(dy, ..., dn) + Eng1(dy, ..., dn, dny)
n+l (dj — Dd;

= Zdl"‘djflf djt1---Ondnyz. O
i=1

Let M be any set of monomials of cardinality and letM := M (M) be the matrix
defined asMg but with the columms indexed by the elementsidf. The main reult of this
section is an expression similar tb3) for M:

Theorem 6.2.
5 2
(43,) |
ReSd,.....dy (fidy, - - - fndn)ZS—p+1

The following result will be needed in the proof ©heorem 6.2

detM(M))2 = + 7

Lemma6.3. Foranyt> § = §(M),

Ay, = Ay, ReSdy.....d) (Fagys -0 fad)' ™.

Proof. It is enough to prove the result far = § + 1 and§ > p (otherwise, both
subresultants are identically zero and the claim holds).
Consider the rarphisms for computinglﬁw[(s andA‘?Mtl asin (0):

S a® -0, %o s
! ! (15)

S+1

1 ¢
Si1-¢, @ @ %Ll—dn - S+
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where the vertical maps are multiplication ky. It is straghtforward to check that the
diagram (5) commutes. Foi = 8,8 + 1, let M' be the matrix ofp' where we have
deleted the columns indexed by thases Mj . If we order the rows and columns pfi+lL

in suich a way that the monomials having degree zenpinome first, it is easy to see that
this matrix has the following structure:

Ms+1  *
0o M%)

whereM; 1 has been defined in the proof tfieorem 5.2

As 8§ +1 > p, there exists a polynomiaf1 € QI[ci 4] such that detM;s;1) =
gy (f1dgs - -+, T €1 (Macaulay 19029). Besides, there are also elemefiisand
£ such that detM?) = AISML;SZ and detM%+1) = A‘?Mﬂilﬁ. As in theproof of Theorem 5.2
we use lhe block structure of the extraneous facfo(Macaulay 1902 Chardin 19943,
anditturnsoutthaf = £1&>. O

Proof of Theorem 6.2. Let § = §(M). If Afwa = 0, it follows that the same holds for
det(M (M)). B
If this is not the case, consider the following compleXXe¥ector spaces:

O—)Sg'id]-@"'@%ﬁ_dnﬁ)%in—)O, (16)
whereS := K[xg, X1, . . ., Xn]s and, as before,
. o o n
Sé—di =0 X", Yaj=8—di, a1 <di, ... i1 <di1)g,

j=0
n
¢(p1’ LRI pn) = Z;L pl f|05
1=
v (p(X) = (p(1,81), ..., p(L, &)).

It is easy to see that the complek6] is exact. If M is another set ofd elements such
thats(M') < §(M) and detM(M')) # 0, we denote withD (M) (resp. D (Mjy)) the
deterninant of the matrix ofp in the monomial bases where we have deleted the columns
indexed by those monomials lying I (resp.Ms). Then, consideringie determinant of
the conplex (16), we have the following:

D (M) 4 D (M)
detM(M)) ~ ~ detM (M)’

As in the poof of Theorem 5.2it turns out thatD(M) = & AK/{[/ andD(M;) = & Afwa,
)
with the same exaneous factof. Therdore
s )
.
det(M (M) detM(M"))
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Taking asM’ the setM?, it follows that

2

2 _
Ay 2 B A‘ng B A‘fMgReidl ..... dn (F1dps -5 Fng)’ ™
detMM)) ] ~ \detMg) | — det(Mo) ’

where the last equality holds foemma 6.3
Now, the claim is an immediate consequence of identify andLemma 6.1 [

7. An overview of the Bézout construction of the resultant

In this section we will compare several results obtainedikker and Uteshe{1999
with ours. This will allow us to clarify the Bézout construction of the resultant.

In Bikker and Uteshe\(1999 Sedion 4), the matrixMg defined at the beginning of
Section 6is introduced (it is denoted a¢) and the sucture of detMg)? is sudied.
Following Macaulay(1902), it is stated that

detMo)? = 177,

where 7 is as defined irSection 60of this paper. Furthermore, it is claimed th#tis a
rational function in the coefficients of the leading forms of the polynomfals. ., f,
whose numerator is a product pfpolynomials in these coefficients.

In our notation, identity ((3) andLemma 6.1imply that

(App)?

T=+ .
ReSd,,...dn) (f1d;, - - - Tray)?

Moreover, the fact stated iBikker and Uteshe1999 about the factorization of the
numerator of?" is Theorem 5.2f the present paper applied kP (see alsdVlacaulay
1902 Section 10). lally, let us observe that the irredbte factors of he numerator and
the deominator of 7" and of the polynomiaPypo 4 4, defined inTheorem 4.1are the
same ad, therefore, due to our main result we have thag 0 if andonly if M© is a basis
of A.

Also, the structure of demM (M?1))? is studied inBikker and Uteshe\(1999 Theorem
5.1) in the bivariate case (see the definition i in (6)). We point out a mistake in
formula(5.30) of Bikker and Uteshey1999, which is incorrect if the degrees of the input
polynomials are different. This follows straightforwardly due to the fact thahdé¥i'))2
has degree zero in the coefficientsfaf ..., fy, and ifn = 2, then7 has degreed®d,
in these coefficients and tHeah classical subresultant has degdae+ do — 2k, k =
1,...,min(dg, dp). If di < dp, it turns out that thekth classical subresultant is the
multivariate subresultant M#k 41 with respect tofyq,, fag, if 1 < k < d; — 1 (Chardin

1995. It remains to compute the multivariate subresultariwftffor those degreessuch

thatd; <t < dp. This iseasily seen to be equal o@tg:g)l Herce, we have the following
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Proposition 7.1.

2~(d2—dy)(dz—d1+1)
(R1... Ray-1Cr {g0

Resdl,dz)( fld]_v f2d2)p+1

whereR; is the classicalisubresultant and is the contant ofLemma6.1

T =c

s

Concerning the reducibility problemhat is, given a family of polynomial$y, ..., fy
with respective degreedy, ..., d, and a set of monomialdl with cardinalityd =
d: ...dn, decide whether every polynomial is a linear combinatiorivbfwhen reduced
modulo the ideal f1, ..., fy)), in Setion 5 of Bikker and Uteshe\1999, a reduction
algorithm with respect t&1° andM? is presented by seing a succession of linear systems
whose coefficients depend rationally on the leading forms of the input polynomials. One
can easily check that the matricefsthese linear systems can be regarded as subresultant
matrices. Indeed, iBikker and Uteshey1999 Theorem 5.1), reduction moduld! is
completely charactezed in terms of the classical subresultants i 2.

In Bikker and Uteshe\(1999 Theorem 5.2) it is claimed that, for three polynomials
of equal degred, it is afficient for reducibility that 2 — 1 determinants are non-
zero. However, as a result dheorem 5.2we getthat 4 — 2 conditions suffice. This
can be verified following the approach IBjkker and Uteshey (1999 in detil: it turns
out that the linear systems they consider hdeterninants which are rational functions
involving subresultants, and that the condition arising in the last system in their algorithm
is redundant. Also, irBikker and Uteshe\(1999 Theorem 5.3) it is shown that the first
d conditions of the @ — 1 needed in their reduction algorithm can be rewritten in terms
of the nested minors of the Macaulay matrixtbe initial forms of the polynomials. This
follows straightforwardly in our frameworldue to the structure of the Macaulay matrix
given in (12) and the fact that, ford <t < 2d — 1, defM;) = DMQK[XlWth, i.e., there
are no extraneous factorglécaulay 1902.

Similar remarks can be made about the general approach they predgikkar and
Uteshe(1999 Sedion 5.3.).

Finally, we will answer negatilg the Rank Conjectre posted irBikker and Uteshev
(1999 Sedion 4). Let fi, ..., f, be polynomials such tha¥I® is a basis ofA. Let

g € K[xy, ..., Xn], and let us dnote with3 the matrix of the following linear map in
the basigv®:
A — A (17)

P(X) = P(X) g(x).
It is a well-known fact (se€ox et al, 1998 Bikker and Uteshey1999 that, if V(g) N

V(fy,..., fn) = @, then he determinant oB3 equals the dense resultant of the family
f1,..., fn, g Up to a constant. Suppose now thatg) NV (fy, ..., fn) = {p1,..., Ps},
and for each = 1, ..., s, we daote withl; the minimum between the multiplicity qf;

as a zero oW (fy, ..., fn) and the multiplicity ofp; as a zero o). The Rank Conjecture

asserts that the rank &fshould be equal tal — Y 5_, I;.

This conjecture is not true in general. For instance, we can téke.., f,
homogeneous polynomials of respective degies. ., dn such ttat the specialization
of Pyog,.4, in the coefficients of this family is not identically zero. This implies that

yenes
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the only zero of the affine variety (f1, ..., fy) is the zero vector with multiplicityd.
Moreover, MO is a basis of4, which is a gaded ring of fiite dimension with4; = 0
fort > p. Let g be any homogeneous polynomial of degdeeAccording to the Rank
Conjecture, the kernel oF should have dimension equal to njé) d}, which istrue if
d = 0ord > d, butnotin general. A straightforward computation shows thatc ker(3)
ift>p—d,so

)
dimker®) = > hay..dy ().
j=p—d+1
and this number may be greater thdhri-or insance, ifd = 2, d; > 3, we have that
dn(@ =D +hy,..dy(p) =n+1,

which is greater than 2 unlegs= 1.

yeney
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