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Abstract

We deal with the unit balUg (X) of non-negative Radon measures on a Tychonoff space g
is a functor in the categoryych It is proved that/g has all properties of a normal functor, with the
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Introduction

The functor Pz of Radon probability measures in the categdyghof all Tychonoff
spaces and continuous mappings was defined and studied by Banakh [2,3]. The author
obtained analogous results for the funct®s of probability measures with compact
supports [9,11-14]. In [15] the functeéf, : Tych— Tychof r-additive measures with norm
< 1 was defined and studied.

In this paper we investigate the functdfz : Tych— Tych of Radon measures with
norm < 1. This functor is a subfunctor of the functdy and an extension of the functor
U :Comp— Comp whereCompis the category of all compacta (Hausdorff compact
spaces) and continuous mappings, and for a compagétutime space/(K) is the unit
ball of the setM,. (K) of all reqular Borel measures K equipped withx-weak topology.

Our main goal is to show that’r has all properties of a normal functor, with the
exception of point preservation. Namely:

(1) Ug is monomorphic (preserves embeddings);
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(2) Ug is epimorphic (transfers surjections into mappings with dense images);

(3) Ur preserves intersections of closed subsets;

(4) Ug preserves inverse images;

(5) Ug preserves weight;

(6) Ug is continuous with respect to inverse limits.

We prove also that the functdrg has some additional properties. For example,
preserves perfect mappingsech-complete spaces, paracompaspaces. Besides/z
transfers open mappings between metric spaces, having local Borel selections, into open
mappings.

In Section 1 we give necessary information concerning measures. The background is
rather extensive (fills up about a half of the paper). The main reason for this is the following
one. There are two approaches to measures: a measure as a function of Borel subsets,
and a measure as a linear functional (integral). For compact spaces and regdtiitive
measures these two approaches coincide by Riesz’ theorem. But in arbitrary Tychonoff
spaces the situation is more complicated. In the main part of the article (Section 2) we
use both definitions of a measure. So we have to be very punctual. For this, we map the
set Mg (X) of Radon measures in a Tychonoff spacento the setM(8X) and study
properties of this mapping and its submappings. Doing so, we can avoid certain confusions,
especially when we define and study mappings of #/péf).

All spaces in this paper are assumed to be Tychonoff. Any needed additional information
from General Topology can be found, for example, in [5].

1. Preliminaries

We recall basic definitions and facts. L&¢X) be theo-algebra of all Borel subsets of
a spaceX.

Proposition 1.1 [10, Proposition 3.4]lf Y C X, then
BY)=BX)|Y={BnY: BeBX)}.

A Borel measuren B(X) (or in X) is a countably additive non-negative function
w:B(X)— [0, 400).
The set of all Borel measureskis denoted by (X). Forp € M(X) we setjju|| = n(X).

Definition 1.2. A Borel measure: in X is called
(a) aprobability measuréf ||| = 1;
(b) regularif w(B) =sugu(F): F C B, F is closed;
(c) weakly Radoiif 1 (X) =sugu(K): K C X, K is compac;
(d) Radonif u(B) =supu(K): K C B, K is compac}for any B € B(X);
(e) r-additiveif for every open selGo C X we haveu(Go) = supu(G): G € Go},
wheregy is an arbitrary upwards directed family of open subsetX afith Go =

U Go.
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The sets of all regulat,-additive, Radon measuresihare denoted by, (X), M. (X),
Mg (X), respectively. Evidently,

Mg(X) C M. (X) foran arbitraryX. (1.1)
Corollary 6.11 from [10] implies

Proposition 1.3. Everyt-additive measure is regular.
In view of Proposition 1.3, the next statement is trivial.

Proposition 1.4. For every compactumd we have

MRr(K) = M(K) =M, (K).
It is easy to see that one can partially strengthen this assertion.

Proposition 1.5. For every Lindel6f spac& we have
M (X) = M, (X).

Let
Ur(X) = {1 € Mr(X): |lull <1}.

In a similar way we define the sets, (X) andU, (X). By Pr(X), P.(X) and P.(X) we
denote the subsets éfz(X), U;(X) and U,(X) consisting of all probability measures.
If K is a compactum, then for the sake of brevity we denoté/lo) ) the setUg(K) =
U.(K)=U,(K). Similarly, by P(K) we denote the set of probability measurRg K) =
PT(K) = Pr(K)-

Let X C BX be the identity embedding. F& Cc B(X) andu € M(BX), set

rx(w)(B) =inf{u(C): C € B(BX), CNX = B}. (1.2)

Definition 1.2 is correct in view of Proposition 1.1.
Proposition 1.6 [10, Construction 3.5k x (1) is a Borel measure iiX.

So, we have the functiory : M(BX) - M(X). Now letu € M(X) and letB € B(8X).
Set

eX(W)(B) = n(BNX). (1.3)

Proposition 1.7 [10, Construction 3.7k (1) is a Borel measure i8 X with [eX (u)| =
[l el

Thus, we have the functian® : M (X) — M(BX).
The next statement is trivial:

Proposition 18.rxo eX = idM(X).
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The next assertion is also rather simple, but very important:

Proposition 1.9 [10, Proposition 3.8]A measureu € M (X) is t-additive iff eX (1) is
r-additive. In particulare® mapsM, (X) into M. (BX).
Now let us set
M*(BX) = {n e M, (BX): n(K) =0 for any compactunk C BX \ X},
M (BX) = {1t € My (BX): n(BX) = (X},
where
ns(X) =sup{u(K): K C X is a compacturh
Itis clear that
M.(BX) C M*(BX). (1.4)
If there can be no confusion, we shall denote the restrictioa$ @indry onto arbitrary
subsets oM (X) andM (8X) by the same symbols® andry.
Proposition 1.10. For an arbitrary spaceX the functions
X M.(X) > M*(BX) and ry:M*(BX)— M. (X)

are bijections inverse to each other.

Proof. First of all, let us check

eXory|M*(BX) =id. (1.5)
Since bothy andeX (rx (1)) are Borel measures ifX, to prove (1.5) it is sufficient to
verify

1K) =e*(rx(n))(K) (1.6)
for an arbitrary compactunk c X and u € M*(8X). We havee* (ry(u))(K) =
(by (1.3) = rx (W) (K N X) < (by (1.2) < u(K). So,

1w(K) = e* (rx (W) (K). (1.7)

From (1.7) and Proposition 1.8 we obtain (1.6). Therefore, (1.5) holds.
Proposition 1.9 and (1.5) imply

rx(M*(BX)) C My (X). (1.8)
Now letu € M. (X), and letK C BX \ X be a compactum. Proposition 1.7 yields
n(X) = e* () (BX). (1.9)

Further,u(X) = (by Proposition 1.8=rx (e* (1))(X) < (by (1.2) <X (u)(BX \ K) <
eX(w)(BX) = (by (1.9) = u(X). Hence,eX(n)(BX \ K) = eX(n)(BX) or, in other
words,eX (u)(K) = 0. ThereforegX (1) € M*(8X). So,

X (M (X)) C M*(BX). (1.10)
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Then (1.10), (1.8) and (1.5) imply
X (M (X)) = M*(BX). (1.11)
But Proposition 1.8 implies that
XM (X) > M(X)
is an injection. Consequently,
et Mo (X) - M*(BX)
is a bijection. Applying Proposition 1.8 once more we get that
FIM*(BX) = (XM (X)) .

Proposition 1.10 is proved.O
Now we may identify measurgse M, (X) with measures® (1) € M*(8X).
Proposition 1.11. eX (Mg (X)) = M. (BX).

Proof. Let u € Mg(X). Then for an arbitrary positivethere is a compactuiki C X such
that

u(X) — pn(K) <e.
But eX (1) (8X) = u(X) by Proposition 1.7, ane* (11)(K) = 1 (K) by definition. Hence
X (BX) — X (W(K) <e.

ConsequentlyeX (1) (BX) = eX (1)« (X). This implies thae* (1) € M, (8X).
Conversely, lejx € M. (8X). Then for a giverz > O there is a compactuki C X such
that

n(BX) — u(K) <e. (1.12)
On the other hand, in view of Proposition 1.10 and (1.4) there exists a unique measure
M. (X) such thae* (v) = . Then, as above, we havéX) = u(8X) andv(K) = u(K).
Hence, (1.12) yields

v(X)—v(K) <e.

Therefore,v is a weakly Radon measure. On the other hands regular in view of
Proposition 1.3. But, clearly, every regular weakly Radon measure is a Radon measure.
Consequentlyy € M(X), andu € eX (Mg (X)). Proposition 1.11 is proved.O

Remark 1.12.

Now we may identify measurgse Mg (X) (M, (X)) with measuresX (1) € M. (BX)
(M*(BX)), respectively. In what follows, by Radom-@additive) measures we shall mean,
as arule, measures fromf, (8X) (M*(8X)).

Let us recall some notions and facts concerning regular measures in compacta. For
a compactumK by C(K) we denote the Banach space of all continuous functions
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¢: K — R. By Riesz’ theorem, the sé, (K) is embedded into the dual spa€éK)*.
Besides the topology of a normed spaCék)* can be equipped witlk-weak topology by
the identity embedding

C(K)* c RCK),

Riesz’ embedding

/:M,(K) — C(K)*

induces«-weak topology onV, (K) = M. (K). In particular,M, (K) is a Tychonoff space.
At last, the bijection

X M (X) > M*(BX)
inducesx-weak topology onM,(X) and Mg(X), and other subsets a¥/, (X) for an
arbitrary spaceX. So, Propositions 1.10 and 1.11 imply
Proposition 1.13. The mappings
XM (X) > M*(BX) and X:Mgr(X) > M. (BX)
are homeomorphisms.
In x-weak topologyU (K) for a compactunk is compact being a closed subset of the

Tychonoff cubel €X' (more precise[{[—l¢ll. ll¢lll: ¢ € C(K)}). The spaceP(K) is
also compact as a closed subset/ak ). Set

U*(BX)=M*(BX)NU(BX);
Us(BX) = M. (BX) NU(BX);
P*(BX) =U"(BX) N P(BX);
Py (BX) =U«(BX) N P(BX).

There are important particular cases of Proposition 1.13.

Corollary 1.14. The mappings
XU (X) > U*(BX) and eX:Ugr(X) = U.(BX)

are homeomorphisms.

Corollary 1.15. The mappings

eX:P.(X) > P*(BX) and e*:Pr(X)— P.(BX)
are homeomorphisms.
Remark 1.16.

In slightly different terms the first part of Corollary 1.14 was proved in [15, Section 2],
and Corollary 1.15 was obtained by Banakh [2, Section 0].
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For a continuous mapping : K1 — K2 we define the mappind/, (f): M, (K1) —
Mr(KZ) by
M () () (@) = p(@o f) (1.13)

for arbitraryu € M, (K1) andg € C(K?2). In this definition we identify the measurewith
the linear functiona}fﬂ :C(K1) — R. The next assertion is well known and easily follows
from the definitions ok-weak topologyM, (f) and||u|. As for the last definition, let us
notice thatl| || = ©(K) = u(1lg), where k (x) = 1 for anyx € K.

Proposition 1.17. The mappingV, (f) is continuous and, moreoveiic || = || M, (f) ()|
for everyu € M, (K1).

Let f1: K1 — Kz and f2: K2 — K3 be continuous mappings between compacta. Then
(1.13) implies

M (f20 f1) = Mr(f2) o Mr(f1). (1.14)
The equality (1.14) yields

Proposition 1.18. M, : Comp— Tych is a covariant functor.

Propositions 1.17 and 1.18 imply that
U:Comp— Comp and P:Comp— Comp

are subfunctors of the functa?, (the mapping?/(f) andP(f) are defined as in (1.13)).
It is known thatP is anormal functor(for details see, for example, [7] or [8]). In the same
way as for the functoP, one can show that the functor has all properties of a normal
functor with the exception of point preservation.
If f:X — Y is a continuous mapping between Tychonoff spaces, we can define the
mappingM (f): M(X) — M(Y) by
M ()(B) = u(fH(B)), (1.15)

whereB € B(Y). The next statement is well known:

Proposition 1.19.If f:K; — K> is a continuous mapping between compacta, then
M(f)=M:(f).

Corollary 1.20. Let f: K1 — K> be a continuous mapping, and IEtbe a closed subset
of K1. Then for anyu € M, (K1) we have
1(F) < My () (f(F)).

If f:X — Y is acontinuous mapping, then by
Bf:BX — BY
we denote the natural extensionpbver g X. It easily follows from the definition that
(BAHHBY\Y)C BX\ X. (1.16)
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Proposition 1.21. If f: K1 — K2 is a continuous mapping, then

M, (B (M*(BX)) c M*(BY) and M, (Bf)(M«(BX)) C M(BY).

Proof. Let u € M*(8X), and letk be a compact subset gf \ Y. According to (1.16),

(BF)HK) C X\ X.
Hence, u((8f)~1(K)) = 0. Then M, (Bf)(1)(K) = (in view of Proposition 1.19=
1((Bf)~1(K)) = 0. Consequentiy, (Bf)(n) € M*(BY).

Now let © € M, (BX), and lete be an arbitrary positive number. There is a compact set
K C X such that

u(BX) —n(K) <e.

ThenM, (Bf)(1)(BY) — M, (Bf) () (Bf (K)) = (by Proposition 1.19= u((8f)1(BY))
— (B MBS (K)) < w(BX) — n(K) < &. Therefore,M, (Bf) (1) € M.(BY), since
Bf(K)= f(K) is a compact subset &f. Proposition 1.21 is proved.O

Corollary 1.22. If f: X — Y is a continuous mapping, then

UBHUBX)) cU*BY) and UBf)(Ux(BX)) C U(BY).

The first part of this corollary was proved in [15, Section 2].

2. The functor Ug and its basic properties

We start with definitions. Iff : X — Y is a continuous mapping, we set

Ur(f) =UBNHIU(BX). (2.1)
By virtue of Corollary 1.22, the definition (2.1) gives us the mapping
Ur(f):Ur(X) — Ugr(Y). (2.2)

Here we identifyUg(Z) with U.(8Z) for any Z. If we prefer to considelUz(Z) as
the space of Radon measures 4n then in view of Propositions 1.8 and 1.13, the
definition (2.1) can be written as

Ur(f) =ry o Ux(Bf) o eX. (2.3)
The mappind/; (f) is defined in the same way.

Theorem 2.1 [15, Theorem 2.2]U, is a covariant functor in the category Tych which
extends the functdy : Comp— Comp.

The definition (2.1), Theorem 2.1, the statement (1.4) and Corollary 1.22 yield

Theorem 2.2. Uy is a covariant functor in the category Tych, that is an extension of the
functorU : Comp— Comp and a subfunctor of the functty : Tych— Tych.
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Proposition 2.3. The functorUg preserves the class of injective mappings.

Proof. Let f:X — Y be an injective mapping ands, u2 € Ur(X), u1 # u2. Every
Radon measure oX is uniquely defined by its values on compact subsetX ofhen
there exists a compactuki C X such thatu1(K) # u2(K). Then f(K) is a compact

subspace of. Moreover,Ug(f)(11)(f (K)) = pa(f~H(f (K))) = p1(K) # pa(K) =
Ur(f)(n2)(f(K)), sSOUR(f) (1) # Ur(f)(12). Proposition 2.3 is proved.O

Proposition 2.4. The functorUg preserves the class of all embeddings.

Proof. In [15, Theorem 3.3] it was proved thaf, preserves embeddings. Hence, an
application of Theorem 2.2 finishes the proofa

Proposition 2.5. The functorUgr preserves inverse images, i.e., for any continuous

mapping f:X — Y and for any subsetd C Y, the equality Ug(f) Y (Ur(A)) =

Ur(f~1(A)) holds.

Proof. Itis clear thatUz (f~1(A)) C Ur(f) 1(Ur(A)). We will show that
Ur(f)"H(Ur(A)) C Ur(fH(A)).

Let u € Ur(X) be a measure such thidiz (f)(i) € Ugr(A). Lete > 0. On the one hand,
there is a compacturki; C X such that

w(BX) — n(K1) < g (2.4)

On the other handlUr(A) C Ug(Y), because of Proposition 2.4. Hence, there is a
compactumk, C A such that

Ur(H)(BY) — Ur(f)()(K2) < % (2.5)
Proposition 1.19, the inequality (2.5) and the definition (2.1) imply

w(BHTHBY)) = w(BN T KD) < 5.
or

wBX) = (BN M (K2) < 3. (2.6)
SetKs= (Bf) 1(K2). Then

wn(K3) = u(K1N K3) + n(K3\ K1).

Consequentlyze > (by (2.6) > u(BX) —u(K3) = n(BX) — n(K1NK3) — 1 (K3\ K1) >
w(BX)—u(K1NK3)—u(BX\ K1) > (by (2.4) > n(BX) — u(K1NK3)— %a. Therefore,

n(BX) — u(K1NK3) <e. (2.7)
But X N (8f)"1(Z) = f~Y(2) for any Z c Y. Hence,K1 N K3 is a compact subset
of f~1(A). So, the inequality (2.7) shows that € Ur(f~1(A)). Proposition 2.5 is
proved. O
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Theorem 2.6. The functorUy preserves the class of perfect mappings.

Proof. Let f: X — Y be a perfect mapping of Tychonoff spaces. Tifgh X — BY

is a perfect mapping, being a continuous mapping between compacta. By the same
reason,U (Bf) is perfect. Hence, to prove the perfectnes2/af( /), we have to check,

in accordance with (2.1), that

UBf)HUr(Y)) = Ur(X).
To check this equality, it suffices, in view of Proposition 2.5, to show that
BHHY) =X, (2.8)
Since f is perfect,Bf(BX \ X) C BY \ Y [5, Theorem 3.7.15]. Adding (1.16) to this
inclusion we obtain (2.8). Theorem 2.6 is proved:
From Proposition 2.4 and Theorem 2.6 we have

Corollary 2.7. The functorUg preserves the class of all closed embeddings.

Definition 2.8. Let F;:C — C’, i = 1,2, be covariant functors from a categofy=
(O, M) into a categoryC’ = (O', M’). A family of morphisms® = {px: F1(X) —
Fo(X), X € O} c M’ is said to be anatural transformationof the functorF; into the
functor F3 if for any morphismf : X — Y from M the diagram

F1(X) 2~ Fy(X)
F1(f)l le(.f)
F1(Y) 2> Fy(Y)

is commutative.
For any Tychonoff spac&, let §x: X — Ugr(X) be the mapping which maps every
pointx € X into its Dirac measuré(x).

From (1.4) and [15, Theorem 3.6] it follows:
Theorem 2.9. The familys = {§x} defines a natural transformation of the identity functor
Id: Tych— Tych into the functot/k : Tych— Tych. Moreover, every componéit: X —
Ug(X) is a closed embedding.

By analogy with [15, Proposition 3.1] we can prove

Proposition 2.10. Let f: X — Y be a mapping such that(X) is everywhere dense in.
ThenUg (f)(Ug(X)) is everywhere dense iz (Y).

Lemma 2.11. Let X be a Tychonoff space, and I8 c X be its Borel subset. Then
Ur(B) =U.(B) NUgr(X) CU(BX).
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Proof. It is clear thatUg(B) C U;(B) N Ugr(X). Let u € U;(B) N Ur(X). Since B

is a Borel subset inX, there exists a Borel subsé# C X such thatrx(w)(B) =

u(B1) and By N X = B. Further, u.(X) = n(BX). Since the measurg is regular,
for everye > 0 there exists a compactui; C By such thatu(B1 \ K1) < %e. From
the definition of u.(X) it follows that there exists a compactuiki, C X such that
w(K2) > u(BX) — %a. ThenK = K1 N K2 € B1 N X = B is a compactum irB. Since
Bi\ K =B1\ (K1NKz)=(B1\ K1) U(B1\ Kz) C(B1\K1)U(BX\ K2), we have
1w(B1\ K) < w(B1\ K1) + (BX \ K2) < 3¢ + 3¢ = . But K C B ande is arbitrary.
Thus, . (B) = u(B1). Thereforeu € Ugr(B). Lemma 2.11 is proved.O

From [15, Theorem 3.4] and Lemma 2.11 we obtain

Theorem 2.12. The functorUyg preserves the intersection of closed subsets, i.e, for any
Tychonoff space and for any its closed subseks,, o € A, we haveUg (e Xo) =

Naea Ur(Xa).

Now we will examine the continuity of the functérg. Let A be an upwards directed
partially ordered set, and ¢, p, } be a spectrum consisting of Tychonoff spaces. By
I(im X, we denote the limit of this spectrum, by, : I(im Xy — Xo, @ € A, we denote the
limit projections. The spectrufX,, p.} generates the spectruftiz (X, ), Ur (pL)}. We
denote its limit by(LmUR(XO,) and its limit projections by pr: le Ur(Xo) = Up(Xy).
The mappingd/g(pe) : UR(Lim Xqo) — Ur(Xy) generate a mappinﬁ:UR(I(im Xo) —

I(im Ur(Xy). Since the functot is continuous in the catego§omp the mappingd’ is an
homeomorphism i, is compact for any.

Theorem 2.13. The mappind’: UR(I(im Xo) — I(im Ur(Xy) is an embedding. If
Pa - I(imXa — X,

are dense(that is, pa(l(im X,) is everywhere dense iX,), then T(UR(I(im Xo)) is
everywhere dense I(ir_n Ur(Xy). If A is countable, thel” is an homeomorphism.

Proof. Let {8X4, B(pL)} be the StoneSech compactification of the spectryiy, pl }.
It is clear that the limit mappingjnxo, — I(imﬂXa is an embedding. Moreove(r,_lima
is everywhere dense i(n_liﬁ]Xo, if p, are dense. Then the mappifig U(Lim BXy) =
lim U(BX.) is an homeomorphism. From Propositions 2.4 and 2.10 we obtain the first and
the second statement of this theorem.
Let A be countable. We will show that the mappiiig UR(I(im X)) — I(im Ur(Xy) is
an homeomorphism. It is enough to prove that the mappimgsurjective. Lef{uy}oeca €
I(im Ur(BXy). We will show that

n=T "({taluca) € Ur(im Xa) C Ur(lim pXo).

Let e > 0. Let§: A — N be a bijection. For every € A there exists a compactum
Ko C X, such thatue (Ky) > n(BX) —e - 275@ |t is clear that the sek = {(xq)aca €
I(im Xo: pa(xq) € Ky, o € A} is compact. Moreover,
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/L((le Xo) \ K) < Z /L(Pt;l(Xa \ Koz)) = Zﬂa(xa \ Kq)
acA acA
< Z g-275@ —¢,

a€A

Hence, the mapping is surjective. Theorem 2.13 is provedd

Definition 2.14. A mapping f : X — Y has a Borel selectioff there exists a function
s:Y — X such thatf o s = idy and for every open sét c X the sets—1(V) is a Borel
subset ofY.

Proposition 2.15. Let f: X — Y be a mapping between separable metric spaces which
has a Borel selection. Then the mappiig(f) : Ur(X) — Ug(Y) is surjective.

Proof. Here we consider measures as functions of Borel sets and implicitly use the
definition (2.3) of the mappind/g(f). Let s:Y — X be a Borel selection of the
mappingf. For an arbitrary measupe € Ug(Y) we take a measuree U (X) such that
v(A) = u(f(ANs(Y))) for any Borel setA ¢ X. We will show that the measune is
Radon. It is enough to prove that for an arbitrary 0 there is a compactuiki C X such
thatv(K) > v(BX) — ¢. Since the mapping: Y — X is Borel measurable, there exists
a closed subsef C Y such thatu(C) > u(BY) — %s and the mapping|C:C — X

is continuous [6, 2.3.5]. Since the measwreon Y is Radon, there is a compactum
K c C such thaiu(C \ K) < %s. Thens(K) C X is a compactum. Moreover(s(K)) =
w(fs(K)yns)) = u(fs(K)) = u(K) > n(BY) —¢. So, the measure on X is
Radon and/z(f)(v) = . Proposition 2.15 is proved.O

Definition 2.16. A mapping f: X — Y has local Borel selectiong for any open set
V C X there exists a Borel selectienY — X of the mappingf such that(f(V)) C V.

Theorem 2.17.Let f: X — Y be an open mapping between separable metric spaces
which has local Borel selections. Then the mapgihd f) : Ur(X) — Ug(Y) is open.

Proof. We start with the same remark as at the beginning of the proof of Proposition 2.15.
The system of sets

N*(H’Oa Ula ERE] Un,e) = {M € UR(X) : M(Ul) - /-’LO(Ul) > —¢€,
1<i <n, [1(X) = po(X)] <},

wheree > 0, uo € Ugr(X) and U1, ..., U, are open sets iX, is a base of a topology

on Ugr(X) [16, Il, 81]. One has to note that Varadarajan considered spaces of Baire
measures. But in every perfectly normal, in particular, in every metric space, each
Baire measure is a Borel one. L&f* (1o, Us, ..., U,, &) be a basic set. We will show
that Ur (f)(N* (o, U1, ..., Uy, €)) is a neighborhood of the measurg, wherevg =
Ur(f)(ro) € Ur(Y). First we will find a basic neighborhoo®™ (1.0, V1, ..., Viu, &) C
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N*(no, U1, ..., Uy, €) such thatV;, 1 <i < m, are open subsets af andV; N V; = ¢ if
i .

By N we denote the sefl,...,n}. Let expN be the set of all non-empty subsets
of N. It is easy to introduce a linear order on this set satisfying the proper/dfA,
then A < B. It is clear that|expN| < 2". Let ¢/ = ¢/2"+1. For everyA ¢ N we
denoteUu = ();c4 Ui. By induction, for everyA ¢ N we find an open sev, C X
such thatVy € Ua \ Ug_4 Vs and uo(Va) > uo(Ua \ Ug_4 V) — &'. HereV is the
closure of a set/. It is clear that for anyA ¢ N we haveuo(Va \ Vi) < €. Hence,
ro(Ua) < puo(Va) + 3 pa no(Ve) + &' < no(Va) + g4 1o(Vs) + 2"¢’. Moreover,
it is obvious thatV, N Vg =@ if A £ B. We will show thatN* (o, {Va: A C N}, &) C
N*(uo, U, ..., Uy, &) If e N*(uo, {Va: A C N}, ¢&'), then

u(Ui>=Zu<v_A>+u(Ui \ UV_A>

icA icA

> (V) > ) (mo(Va) = )
icA icA

> D no(Va) = 2"’ > po(Up) — 2He’
icA

=poUij) —e, 1<i<n.

Henceu e N*(u, U, ..., Uy, €).

We will re-denote the seV™* (g, {Va: A C N}, &") asN*(uo, V1, ..., Vi, &), Where
m = |expN|. By M we denote the sdtl, ..., m}. We introduce a linear order on the set
expM with the same property as the linear order on ¥xjp-or everyA C M we put

Wy =[5
icA
Since f is an open mapping, the seii§, C Y are open. Let = ¢’ /21, By induction,
for everyA ¢ M we find an open séV4 C Y such that

Wacwi\ [JWs and vo(Wa)>voWj\ () Ws) —s.
B<A B<A

It is clear thatWa N Wg =0 if A # B, A, B C M. Moreover,uo(W, \ Ug_4 Wy) \
Wa) < & for everyA ¢ M. We will show that\* (vo, {Wa: A C M},8) C Ur(f)N* (o,
Vi,..., Vi, €)). Letv e N*(vg, {(Wa: A C M}, ). For everyA C M and for each € A
we denote by, ;: Y — X a Borel selection of the mapping such thats4 ;(W4) C V.
Let o, i € A, be non-negative numbers such the}_, o/t = 1 and o vo(W4) >
wo(f~X(Wy) N V;) for every A ¢ M. Let so:Y — X be a Borel selection of the
mappingf. Let u be a measure ok such that for any Borel s&t C X we have

u(C):v(f(sg(Y\ U WA>> mc) 2 Yatv(flsaiwane)).

By analogy with the proof of Proposition 2.15 we can show that Ur(X) and
Ur(f)(p) =v. We will prove thatu € N* (o, V1, ..., Vi, €'). Indeed,
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(Vi)=Y e v(f(saiWa)N Vi) = af v(Wa)

i€A i€eA
> Z%A(VO(WA) —8) > ZaiAvo(WA) - 25
i€A i€A
> (W nv) — 278 = uo<f1< U WA> N Vi> _omg
i€A i€eA
= Mo(f_1< U WA) N w) - uo(f_l<U WA\ U WA>> — 23
i€eA i€A i€A
= uo(Vi) — 2m8 — VO(U W,g\ U WA>.
i€eA i€A

By definition of the set$V, we havel J;., W, = W/. Then

u0<U wi\J WA> - vo<Wi’\ U WA>

icA icA i€A

— vo(iLEJA (W/g\ U Wé)\ U WA)

B<A icA

SNV

i€A B<A
< 2™M5.

Henceu(V;) > uo(V;) — 2718 = uo(V;) — ¢’. Theorem 2.17 is proved.o
By analogy with [4, Proposition 4.1] we can prove

Proposition 2.18. Let f: X — Y be a continuous mapping. fg (f) : Ur(X) — Ug(Y)
is an open mapping, then the mappifigs open too.

By analogy with [15, Theorem 3.7] we get

Proposition 2.19. The functorUg preserves density, i.ed(Ugr(X)) < d(X) for any
infinite spaceX.

From [15, Theorems 3.8 and 3.11], [16, II, 84, Theorem 13] and Lemma 2.11 we obtain

Theorem 2.20. The functotUg preserves weight, i.ewy(Ug (X)) = w(X) for any infinite
spaceX.

Theorem 2.21. The functorUy preserves the class of metrizable spaces.

Theorem 2.22. The functorU preserves the class @fech-complete spaces.
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We recall that a spac# is said to be gp-space if there exists a countable fanify
of open covers of the spacé by sets which are open ifX such that\{y (x): y €
P} C X for any pointx € X, wherey(x) = J{V € y: x € V}. Arhangel'ski proved
in [1] that paracompagb-spaces and only them are perfectly mapped onto metric spaces.
Theorems 2.6 and 2.21 yield

Theorem 2.23. The functorUr preserves the class of paracompaespaces.
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