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Genetics and embryological mechanisms of
congenital heart diseases

Génétique et mécanismes embryologiques des cardiopathies congénitales

Fanny Bajollea, Stéphane Zaffranb, Damien Bonneta,∗

a Malformations cardiaques congénitales complexes (M3C), Reference Centre, Department of
Paediatric Cardiology, hôpital Necker—Enfants-Malades, AP—HP, université Paris-V, 149, rue
de Sèvres, 75015 Paris, France
b CNRS UMR 6216, institut de biologie du développement de Marseille-Luminy, campus de
Luminy, 13009 Marseille, France

Received 30 April 2008; received in revised form 10 June 2008; accepted 19 June 2008
Available online 4 December 2008

KEYWORDS
Congenital heart
diseases;
Genetics;
Cardiogenesis

Summary Developmental genetics of congenital heart diseases has evolved from analysis of
embryo sections towards molecular genetics of cardiac morphogenesis with a dynamic view
of cardiac development. Lineage analysis, transgenic animal models and retrospective clonal
analysis of the developing heart led to identification of different cardiac lineages and their
respective roles. Genetics of congenital heart diseases has also changed from formal genetic
analysis of familial recurrences or population based analysis to screening for mutations in can-
didates genes identified in animal models. Based on these new concepts, genetic counselling in
congenital heart diseases is based on the mechanism of a given heart defect rather than on its
anatomy. Using this approach, genetic heterogeneity or intrafamilial variability of a molecular
anomaly can at least be partially explained. Close cooperation between molecular embryol-
ogists, pathologists involved in heart development and paediatric cardiologists is crucial for
further increase of knowledge in the field of cardiac morphogenesis and genetics of cardiac
defects.
© 2008 Elsevier Masson SAS. All rights reserved.

Résumé La connaissance de l’embryologie des cardiopathies congénitales a évolué depuis
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l’anatomie segmentaire sur coupes d’embryons. Aujourd’hui, nous disposons de réelles données
d’embryologie moléculaire permettant d’avoir une vision dynamique du cœur en développe-
ment. L’utilisation de lignées de souris transgéniques, l’analyse clonale du cœur murin
et les nouvelles études de lignage cellulaires ont permis l’identification de deux lignages
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cardiaques contribuant à la formation du cœur ainsi qu’à la définition de leurs rôles respectifs.
La génétique des cardiopathies congénitales a elle aussi évolué depuis la génétique formelle
et l’analyse des récurrences familiales. Désormais, nous recherchons des mutations dans des
gènes candidats issus des modèles animaux. Le conseil génétique dans les formes isolées de
cardiopathies congénitales ou dans les formes familiales est aujourd’hui fondé sur l’appréciation
du ou des mécanismes à l’origine de la cardiopathie observée, et donc d’un ou de plusieurs
gènes. L’hétérogénéité génétique ou la variabilité d’expression intrafamiliale d’une anomalie
moléculaire peut ainsi être expliquée, au moins en partie. Une coopération entre spécialistes
de la morphogenèse cardiaque, anatomistes des cardiopathies congénitales et cardiologues
pédiatres est devenue indispensable au perfectionnement des connaissances et à l’identification
de nouveaux gènes pour les malformations cardiaques chez l’homme.
© 2008 Elsevier Masson SAS. Tous droits réservés.
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hese last two decades have seen a wealth of new
nformation concerning heart development. Previously, our
nowledge of cardiac development was essentially based
n the analysis of series of embryo sections and three-
imensional reconstructions so as to clarify the anatomy of
ertain regions that were difficult to interpret on simple
ections. The use of these techniques does not allow either
o follow the outcome of a group of cells or to accurately
istinguish the development mechanisms of a given cardiac
hamber, the atrioventricular junction or even the efferent
athway. The use of molecular techniques has revolutionised
ll these approaches. A retrospective clonal analysis of the
ardiac precursors in the mouse enabled to follow the out-
ome of a cell and all its descendants (sister cells) in the
eveloping heart [1]. This method, supported by cellular lin-
age studies [2], has helped to demonstrate that the cardiac
evelopment concept based on the ‘‘segmentation’’ of the
mbryonic heart is far from suitable. In other words, the
otion of a primitive cardiac tube cut into segments with a
redefined outcome is erroneous. Today, it is asserted that
ifferent portions of a developing heart are added sequen-
ially to the primitive linear cardiac tube. The latter derives
rom the primitive embryonic heart and exclusively supplies
he cellular contingent for the future left ventricle [3]. This
aper aims to show how the concepts of cardiogenesis have
volved and how this evolution has led to analyse certain
ongenital heart diseases differently in terms of embryolog-
cal mechanisms.

ew concepts

he origins of the heart

ata taken from the retrospective clonal mouse analysis
hows that there are two cell lineages from the areas knows
s ‘‘cardiac’’, at the gastrulation stage. The first lineage
orms the embryonic heart, formerly considered the only
tructure at the origin of the primitive cardiac tube. The
econd lineage derives from an additional ‘‘cardiac’’ area
alled the ‘‘second cardiac field’’. We now know that the

mbryonic heart exclusively provides the precursors for the
eft ventricle and the cells from both lineages contribute to
he formation of the atria and the right ventricle. The effer-
nt pathway derives exclusively from the second cardiac
eld [4].

I
w
n
o

tructure of the primitive cardiac tube

he cardiac tube, connected to the embryo by the dor-
al cardiac mesoderm, has a symmetrical structure and it
s the addition of cells to its caudal end (venous pole)
nd cranial end (arterial pole or efferent pathway) which
eads to its elongation. This cellular addition participates
o this elongation and to the curved movement of the tube
alled ‘‘looping’’. This asymmetrical curve enables to cre-
te the structure of four chambers and the arterial and
enous poles. The cardiac chambers (atria and ventricles)
hen mature through a ballooning process, symmetrically
or the atria but sequentially for the ventricles. It is this
equential phenomenon for the ventricles that produces the
rimitive interventricular foramen (the initial septum) [5].

ormation of the efferent pathway

evelopment of the efferent pathway is a complex phe-
omenon that involves the cells of the neural crest,
he endocardium and the underlying myocardium. Sev-
ral simultaneous and intricate events occur, including the
pithelio-mesenchymal transformation of the endocardium
o form the endocardial cushions, the colonisation of the
xtracellular matrix by the neural crest cells providing the
ortopulmonary septation, and finally the rotation of the
yocardium from the base of the efferent pathway to bring

he vessels in line with their respective ventricle (wedging)
6].

ow do these new concepts translate into
ractice?

o understand how this cognitive research on the cardiac
orphogenesis is integrated into paediatric cardiac practice

t all stages of life, it is necessary to briefly touch upon the
istory of cardiac genetics and embryology (Table 1).

enetic background and environment
n the 1980s, the recurrence of congenital heart diseases
ithin the same family and the different anatomical phe-
otypes in the affected individuals led to Nora’s hypothesis
f multifactorial inheritance of congenital heart diseases.
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Table 1 Conceptual evolution of the genetics of con-
genital heart diseases.

Concepts Examples

Multifactorial inheritance All heart diseases
Major role of the

environment
Teratogenic: rubella,
thalidomide

Unique mechanism of
anatomically different
heart disease: one
genetic
abnormality—several
heart diseases

Deletion of chromosome
22q1.1 and conotruncal
heart diseases

Monogenic nature of many
heart diseases

Interatrial
communication,
atrioventricular canals,
tetralogy of Fallot

Failure of strategies of
partial phenocopy:
genetically different
syndrome and
non-syndrome
associated heart
diseases

Interatrial communication
and Holt-Oram syndrome
(TBX5), tetralogy of Fallot
and deletion of
chromosome 22q1.1,
atrioventricular canals
and critical cardiac region
of trisomy 21

Notion of phenotype
continuum or gravity
spectrum

Bicuspid aortic valve,
aortic stenosis and
coarctation, Shone
syndrome, hypoplasia of
left heart

Variability of intrafamilial
expression for a same
molecular abnormality

Familial heart diseases of
deletion of chromosome
22q1.1

Genetic heterogeneity of
congenital heart
diseases: one
malformation—several
genes

Interatrial communication
and mutations in NKX2.5,
GATA4, MYH7

Heterogeneity of
mechanisms for a same
heart disease

Common arterial trunk:
septation disease of the
efferent pathway or of
myocardium rotation from
the base of the efferent
pathway

Redefinition of the Double outlet right
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phenotype in relation to
the mechanism

ventricles

The recurrence was explained by a risk related to ‘‘genetic
background’’ and the environment shared within the same
family [7].

One molecular abnormality—one
mechanism—one group of heterogeneous
heart diseases
Experiences including the ablation of the neural crest
cells in chick embryos, the use of quail-chick chimeric
models and then the use of ‘‘genetic’’ ablation models
of neural crest cells gave rise to the hypothesis that a
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isturbed embryonic mechanism in cardiac development
ould produce anatomically different cardiac phenotypes
hat were embryological related [8]. The example of
eart disease observed in the deletion of chromosome
2q1.1 confirms this concept in humans. Indeed, the
hildren with this cytogenetic abnormality have a heart
isease that still involves the efferent pathway or the
ortic arches [9]. This concept is expressed in the follow-
ng way: one molecular abnormality—one mechanism—one
roup of heart diseases that is potentially heterogeneous
natomically but homogeneous in terms of embryological
echanism.

aemodynamic mechanisms of congenital
eart diseases

he notion of a phenotype continuum is subtly different from
he previous item. The example is that of obstructive heart
iseases of the left side heart. Since Abraham Rudolph, it
s commonly admitted that the development of heart cham-
ers and resulting vessels is related to the pattern of the
ombined foetal blood flow that passes through them. Thus,
reduction in flow in the left heart may lead to coarc-

ation, at one end of the spectrum, and to hypoplasia of
he left heart, at the other end [10]. The idea that these
eart diseases belonged to a same embryological group has
een perfectly demonstrated through several arguments,
amely recurrences of different severity within the same
amily, prenatal progression of obstructive left heart dis-
ases, and finally identification of the same mutation in
OTCH1 in patients of the same family with a different
ardiac phenotype [11]. Recently, a study conducted in
ebrafish confirmed the relationship between the quality of
he intracardiac blood flow and the future morphology of
he heart [12].

echanistic classification of congenital heart
iseases

he segmental view of congenital heart diseases, while
emaining essential during echocardiography analysis, sim-
lifies the embryological and molecular approach. The use
f a mechanistic classification proposed by Clark [13] has
larified things and many attitudes are today based on
his: indication for screening of 22q1.1 the deletion in
onotruncal heart diseases, coherent analysis of recurrences
f congenital heart diseases within families, identification of
ew genes of congenital heart diseases, etc.

ne heart disease—several genes

great heterogeneity observed in each congenital heart dis-
ase group has made the situation more complex, but it
as also enabled the analysis of phenotype and genotype
elationships for these malformations. Again, the concept
s still reflected in daily practice: differential phenotype

f atrioventricular canals in relation to the karyotype
r their anatomy thereby offering a quick indication of
yndrome [14], complexity of the anatomy of pulmonary
evascularisation in pulmonary atresia with interventricular
ommunication in relation to their association with deletion
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Figure 1. One heart disease—several mechanisms—several genes. A malformation may originate from different embryology mechanisms.
A common arterial trunk may result from a participation defect of progenitors from the second cardiac field and/or a migration defect
of the neural crest cells and/or a rotation defect of the myocardium and/or a formation abnormality of the endocardial cushions. All
these mechanisms are controlled by multiple genes (Pax3, Pitx2, Tbx1, Fgf8, Bmp. . .). The result is a concept known as ‘‘one heart
disease—several mechanisms—several genes’’. In addition, impairment of these different mechanisms may generate a broad spectrum
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f heart diseases affecting the conotruncal region (TOF, IAA, DORV. .

pithelio-mesenchymal; IAA: interrupted aortic arch; TGA: transpo
f Fallot with pulmonary atresia; VSD: sub-arterial ventricular sept

f chromosome 22q1.1 or mutations in Jagged1 [15,16], etc.
e may therefore state one heart disease—several genes.

ne heart disease—several
echanisms—several genes

ontinuing with these new developments, the identification
f a second cardiac field and the use of transgenic mice have
elped to demonstrate that the transposition of the great
essels is a heart disease located in the conotruncal region,
ut not belonging to this group in the strict sense. Indeed,
urine models and the identification in humans of laterality

ene mutations in this heart disease are proof that there may
e a segmental defect in the left—right laterality [6,17—19].

his would explain why this heart disease is not associ-
ted with 22q1.1 deletion, which is common in other types
f conotruncal heart diseases. If we develop this concept
urther, we can see that other heart diseases involving the
fferent pathway such as the double outlet right ventricles

d
a
i
a
t

T: common arterial trunk; DORV: double outlet right ventricle; EM:
of the great arteries; TOF: tetralogy of Fallot; TOF&PA: tetralogy

fect.

r even the common arterial trunk are observed in these
nimal models with laterality abnormalities. We may there-
ore conclude that these malformations may originate from
ifferent embryological mechanisms, namely a septation
efect of the conotruncal region related to a neural crest
bnormality, or a rotation and alignment defect of the effer-
nt pathway on the ventricles corresponding to a segmental
efect of laterality [6]. These observations lead to the
oncept of one heart disease—several mechanisms—several
enes (Fig. 1). They explain the genetic heterogeneity of
ertain malformative heart diseases, not by chance but by
he heterogeneity of mechanisms.

The ‘‘clinical translation’’ of this cognitive progress is
ignificant. It can be summarised in several points. The

escription of the cardiac phenotype must be anatomically
ccurate. It must use the segmental classification, while
ndicating every anatomical detail that would offer guid-
nce on the mechanism of the heart disease. It is only at
his price that a suitable genetic advice may be given.
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Certain cardiac malformations are development
sequences or algorithms with a highly complex anatomical
outcome (cardiac isomerisms), but they are actually simple
since all elements of the heart disease derive from a same
morphogenetic defect. The role of the clinician is to recog-
nise these sequences so as to describe each step. Certain
heart diseases fall within a gravity spectrum such as coarc-
tation of the aorta and hypoplastic left heart syndrome.
Knowing how to look for staggered abnormalities of the left
track in this group and understanding the progressive nature
of these heart diseases that are dependent at least in part
upon foetal cardiac flow is essential for screening prenatal
and postnatal worsening conditions. Certain heart diseases
may be considered as ‘‘lures’’ on the embryological front
since they correspond to the anatomical expression of
another abnormality. We can cite here the example of the
coarctation associated with the persistent left upper vena
cava which disturbs the mitral flow during the foetal life.
The coarctation here is only the translation of a congenital
abnormality to the systemic venous return and not an actual
disease of the aorta.

Conclusion

We deliberately chose not to list the many genes known
in congenital heart diseases. This type of information was
recently published [20,21]. Far from being esoteric, knowl-
edge of normal cardiac development and the mechanisms
of congenital heart diseases are essential to daily practice,
as much for the daily examination of heart diseases as for
genetic counselling before birth or in the case of familial
forms.

References

[1] Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME.
The clonal origin of myocardial cells in different regions of the
embryonic mouse heart. Dev Cell 2004;6:685—98.

[2] Cai CL, Liang X, Shi Y, Chu PH, et al. Isl1 identifies a cardiac
progenitor population that proliferates prior to differentia-
tion and contributes a majority of cells to the heart. Dev Cell
2003;5:877—89.

[3] Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA.

Right ventricular myocardium derives from the anterior heart
field. Circ Res 2004;95:261—8.

[4] Buckingham M, Meilhac S, Zaffran S. Building the mammalian
heart from two sources of myocardial cells. Nat Rev Genet
2005;6:826—35.

[

[

ases 63

[5] Christoffels VM, Habets PE, Franco D, et al. Chamber formation
and morphogenesis in the developing mammalian heart. Dev
Biol 2000;223:266—78.

[6] Bajolle F, Zaffran S, Kelly RG, et al. Rotation of the myocardial
wall of the outflow tract is implicated in the normal positioning
of the great arteries. Circ Res 2006;98:421—8.

[7] Nora JJ. Multifactorial inheritance hypothesis for the etiol-
ogy of congenital heart diseases. The genetic-environmental
interaction. Circulation 1968;38:604—17.

[8] Kirby ML, Turnage KL, Hays BM. Characterization of conotruncal
malformations following ablation of ‘‘cardiac’’ neural crest.
Anat Rec 1985;213:87—93.

[9] Boudjemline Y, Fermont L, Le Bidois J, Lyonnet S, Sidi D, Bonnet
D. Prevalence of 22q11 deletion in fetuses with conotrun-
cal cardiac defects: a 6-year prospective study. J Pediatr
2001;138:520—4.

10] Heymann MA, Rudolph AM. Effects of congenital heart dis-
ease on fetal and neonatal circulations. Prog Cardiovasc Dis
1972;15:115—43.

11] Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause
aortic valve disease. Nature 2005;437:270—4.

12] Auman HJ, Coleman H, Riley HE, Olale F, Tsai HJ, Yelon D. Func-
tional modulation of cardiac form through regionally confined
cell shape changes. PLoS Biol 2007;5:604—15.

13] Clark EB. Pathogenetic mechanisms of congenital cardio-
vascular malformations revisited. Semin Perinatol 1996;20:
465—72.

14] Marino B, Vairo U, Corno A, et al. Atrioventricular canal in
Down syndrome. Prevalence of associated cardiac malforma-
tions compared with patients without Down syndrome. Am J
Dis Child 1990;144:1120—2.

15] Boudjemline Y, Fermont L, Le Bidois J, Villain E, Sidi D, Bonnet
D. Can we predict 22q11 status of fetuses with tetralogy of
Fallot? Prenat Diagn 2002;22:231—4.

16] Kamath BM, Spinner NB, Emerick KM, et al. Vascular anoma-
lies in Alagille syndrome: a significant cause of morbidity and
mortality. Circulation 2004;109:1354—8.

17] Goldmuntz E, Bamford R, Karkera JD, dela Cruz J, Roessler E,
Muenke M. CFC1 mutations in patients with transposition of
the great arteries and double-outlet right ventricle. Am J Hum
Genet 2002;70:776—80.

18] Muncke N, Jung C, Rudiger H, et al. Missense mutations and
gene interruption in PROSIT240, a novel TRAP240-like gene,
in patients with congenital heart defect (transposition of the
great arteries). Circulation 2003;108:2843—50.

19] Megarbane A, Salem N, Stephan E, et al. X-linked transposi-
tion of the great arteries and incomplete penetrance among
males with a nonsense mutation in ZIC3. Eur J Hum Genet

2000;8:704—8.

20] Bajolle F, Bonnet D. Left heart defects and genetics. Arch Mal
Coeur 2006;99:494—6.

21] Bajolle F, Zaffran S, Bonnet D. Molecular aspects of congenital
heart diseases. Arch Mal Coeur 2007;100:484—9.


	Genetics and embryological mechanisms of congenital heart diseases
	New concepts
	The origins of the heart
	Structure of the primitive cardiac tube
	Formation of the efferent pathway

	How do these new concepts translate into practice?
	Genetic background and environment
	One molecular abnormality-one mechanism-one group of heterogeneous heart diseases
	Haemodynamic mechanisms of congenital heart diseases
	Mechanistic classification of congenital heart diseases
	One heart disease-several genes
	One heart disease-several mechanisms-several genes

	Conclusion
	References


