Note
A multiplicative inequality for vertex Folkman numbers

Nikolay Rangelov Kolev
Department of Algebra, Faculty of Mathematics and Informatics, “St. Kl. Ohridski”, University of Sofia, 5 J. Bourchier blvd, 1164 Sofia, Bulgaria
Received 9 October 2006; received in revised form 3 August 2007; accepted 3 August 2007
Available online 14 September 2007

Abstract
Let G be a graph and a_1, \ldots, a_r be positive integers. The symbol $G \rightarrow (a_1, \ldots, a_r)$ denotes that in every r-coloring of the vertex set $V(G)$ there exists a monochromatic a_i-clique of color i for some $i \in \{1, \ldots, r\}$. The vertex Folkman numbers $F(a_1, \ldots, a_r; q) = \min\{|V(G)| : G \rightarrow (a_1, \ldots, a_r) \text{ and } K_q \not\subseteq G\}$ are considered. Let $a_i, b_i, c_i, i \in \{1, \ldots, r\}, s, t$ be positive integers and $c_i = a_i b_i, 1 \leq a_i \leq s, 1 \leq b_i \leq t$. Then we prove that

$$F(c_1, c_2, \ldots, c_r; st + 1) \leq F(a_1, a_2, \ldots, a_r; s + 1) F(b_1, b_2, \ldots, b_r; t + 1).$$

© 2007 Elsevier B.V. All rights reserved.

MSC: 05C55

Keywords: Vertex Folkman numbers

We consider only finite, undirected graphs without loops and multiple edges. We call a p-clique of the graph G a set of p vertices, each two of which are adjacent. The largest positive integer p, such that the graph G contains a p-clique is called a clique number of G and is denoted by $\text{cl}(G)$. We denote by $V(G)$ and $E(G)$ the vertex set and the edge set of the graph G, respectively. The symbol K_n denotes the complete graph on n vertices. Let G_1, \ldots, G_k be graphs with pairwise disjoint vertex sets. The Zykov sum $G_1 + \cdots + G_k$ is the graph which is obtained from the union of the graphs G_1, \ldots, G_k, by connecting each vertex of G_i with each vertex of G_j, for every $i \neq j$.

Definition. Let a_1, \ldots, a_r be positive integers. We say that the r-coloring

$$V(G) = V_1 \cup \cdots \cup V_r, \quad V_i \cap V_j = \emptyset, \quad i \neq j$$

of the vertices of the graph G is (a_1, \ldots, a_r)-free, if V_i does not contain an a_i-clique for each $i \in \{1, \ldots, r\}$. The symbol $G \rightarrow (a_1, \ldots, a_r)$ means that there is no (a_1, \ldots, a_r)-free coloring of the vertices of G.

For arbitrary positive integers a_1, \ldots, a_r and q define

$$H(a_1, \ldots, a_r; q) = \{G : G \rightarrow (a_1, \ldots, a_r) \text{ and } \text{cl}(G) < q\}.$$
The vertex Folkman numbers are defined by the equality

\[F(a_1, \ldots, a_r; q) = \min \{|V(G)| : G \in H(a_1, \ldots, a_r; q)\}. \]

It is clear that \(G \rightarrow (a_1, \ldots, a_r) \) implies \(\text{cl}(G) \geq \max\{a_1, \ldots, a_r\} \). Folkman [1] proved that there exists a graph \(G \) such that \(G \rightarrow (a_1, \ldots, a_r) \) and \(\text{cl}(G) = \max\{a_1, \ldots, a_r\} \). Therefore

\[F(a_1, \ldots, a_r; q) \text{ exists if and only if } q > \max\{a_1, \ldots, a_r\}. \] (1)

Some basic important properties of Folkman numbers are obtained in [5]. Some latest results and a detailed bibliography can be found in [7]. However, in order to understand this paper the given above definition of vertex Folkman numbers is enough.

Our goal is to prove the following:

Theorem. Let \(a_1, b_1, c_1, i \in \{1, \ldots, r\}, s, t \) be positive integers such that \(c_i = a_i b_i, 1 \leq a_i \leq s, 1 \leq b_i \leq t \). Then

\[F(c_1, c_2, \ldots, c_r; st + 1) \leq F(a_1, a_2, \ldots, a_r; s + 1)F(b_1, b_2, \ldots, b_r; t + 1). \]

Remark. The Folkman numbers in the theorem exist according to (1).

In order to prove the theorem we shall need the operation composition of graphs (see [2]) which is defined as follows. Let \(A \) and \(B \) be two graphs without common vertices and \(V(A) = \{u_1, \ldots, u_n\} \) and \(V(B) = \{v_1, \ldots, v_m\} \). Define a new graph \(A[B] \) on \(nm \) vertices in the following way. The vertex set is

\[V(A[B]) = \{w_{ij} : i = 1, \ldots, n; j = 1, \ldots, m\}. \]

The edge set \(E(A[B]) \) is defined as follows:

If \(i \neq k \) then \(\{w_{ij}, w_{ks}\} \in E(A[B]) \iff \{u_i, u_k\} \in E(A) \). \hspace{1cm} (2)

If \(i = k \) then \(\{w_{ij}, w_{ks}\} \in E(A[B]) \iff \{v_j, v_k\} \in E(B) \). \hspace{1cm} (3)

We shall say that the graph \(A[B] \) is a composition of the graphs \(A \) and \(B \).

We consider the subgraph \(B_j \) of the graph \(A[B] \) induced by the vertices \(\{w_{j1}, w_{j2}, \ldots, w_{jm}\} \). It is straightforward from (3) that

\[B_j \text{ is isomorphic to } B, \quad j \in \{1, \ldots, n\}. \] (4)

It is clear from (4) that the graph \(A[B] \) is obtained from the graphs \(A \) and \(B \) in the following way. We take \(n \) isomorphic copies \(B_1, \ldots, B_n \) of the graph \(B \), where \(n = |V(A)| \). According to (2) if the vertices \(u_i \) and \(u_j, i, j \in \{1, \ldots, n\} \) are adjacent in \(A \) then we connect each vertex from \(B_i \) with each vertex from \(B_j \) and if the vertices \(u_i \) and \(u_j \) are not adjacent in \(A \) then we connect no vertex from \(B_i \) with any vertex from \(B_j \).

We know from [2] that

\[\text{cl}(A[B]) = \text{cl}(A)\text{cl}(B). \] (5)

Proof of Theorem. Consider the graphs

\[A \in H(a_1, a_2, \ldots, a_r; s + 1) \quad \text{and} \quad B \in H(b_1, b_2, \ldots, b_r; t + 1), \] (6)

where \(|V(A)| = F(a_1, a_2, \ldots, a_r; s + 1) \) and \(|V(B)| = F(b_1, b_2, \ldots, b_r; t + 1) \). Let us denote \(V(A) = \{u_1, \ldots, u_n\}, V(B) = \{v_1, \ldots, v_m\}, C = A[B], V(C) = V(A[B]) = \{w_{ij} : i = 1, \ldots, n; j = 1, \ldots, m\} \). We shall prove that \(C \rightarrow (c_1, \ldots, c_r) \). Again we shall denote by \(B_j \) the subgraph of the graph \(A[B] \) induced by the vertices \(\{w_{j1}, w_{j2}, \ldots, w_{jm}\} \). Let us take an arbitrary \(r \)-coloring \(W_1 \cup \cdots \cup W_r \) of \(V(C) \). Consider the sets

\[V_i^{(j)} = W_i \cap V(B_j), \quad i \in \{1, \ldots, r\}, \quad j \in \{1, \ldots, n\}. \]
Since $V(B_j) = V_1^{(j)} \cup \cdots \cup V_r^{(j)}$ we obtain from (4) and $B \in H(b_1, b_2, \ldots, b_r; t + 1)$ that

$$V_1^{(j)} \cup \cdots \cup V_r^{(j)} \text{ is not a } (b_1, b_2, \ldots, b_r)\text{-free coloring of } V(B_j).$$ \hfill (7)

We define an r-coloring of $V(A)$ in the following way. We color the vertex $u_j \in V(A)$, $j \in \{1, \ldots, n\}$ in color k, if $V_k^{(j)}$ contains a b_k-clique of the graph B_j (and hence of C). We know from (7) that such k exists. If there are several indices k such that $V_k^{(j)}$ contains a b_k-clique, we choose just one of them (for example, we may chose the smallest k among them). According to (6), $A \to (a_1, \ldots, a_r)$. Thus for some $i \in \{1, \ldots, r\}$ there is a monochromatic a_i-clique Q of A in the ith color of the just now defined r-coloring of $V(A)$. Without loss of generality we can assume that the clique Q consists of the vertices $\{u_1, u_2, \ldots, u_{a_i}\}$. Now it is straightforward from (2) that

the graph $C = A[B]$ contains $B_1 + \cdots + B_{a_i}$. \hfill (8)

According to the definition of the given above r-coloring of $V(A)$ we have

$$V_i^{(j)} \text{ contains a monochromatic } b_i\text{-clique } Q_j \text{ for } j \in \{1, \ldots, a_i\}.$$ \hfill (9)

Since $V_1^{(j)} \subseteq W_i$, (8) and (9) give that $Q_1 \cup \cdots \cup Q_{a_i}$ is an $a_i b_i$-clique of C in W_i. As $a_i b_i = c_i$ this gives that $W_1 \cup \cdots \cup W_r$ is not a (c_1, \ldots, c_r)-free coloring of $V(C)$ and thus $C \to (c_1, \ldots, c_r)$ is proved. On the other hand, it follows from (5) and (6) that $cl(C) = cl(A) cl(B) \leq s t$. Thus we have $C \in H(c_1, c_2, \ldots, c_r; s t + 1)$ and $F(c_1, c_2, \ldots, c_r; s t + 1) \leq |V(C)|$. As $|V(C)| = |V(A)||V(B)|$ and $|V(A)| = F(a_1, a_2, \ldots, a_r; s + 1)$, $|V(B)| = F(b_1, b_2, \ldots, b_r; t + 1)$ the Theorem is proved. \hfill \Box

Corollary 1. We have

$$F(kl, kl, \ldots, kl; kl + 1) \leq F(k, k, \ldots, k; k + 1) F(l, l, \ldots, l; l + 1).$$

Proof. We put $a_1 = \cdots a_r = k, b_1 = \cdots b_r = l, s = k, t = l$ in the Theorem. \hfill \Box

Let C_5 denote the simple cycle on five vertices. From $C_5 \to (2, 2)$ we have $F(2, 2; 3) \leq 5$. It is easy to see that in fact $F(2, 2; 3) = 5$. By putting $k = l = 2, r = 2$ in Corollary 1 and taking into consideration the equality $F(2, 2; 3) = 5$ we obtain:

Corollary 2. $F(4, 4; 5) \leq 25$, [3].

Remark. The proof of Corollary 2 given in [3] is based on the fact that $C_5 \cdot C_5 \to (4, 4)$.

This upper bound improves the bound 26 on this number from [4]. The best known lower bound for this number is $F(4, 4; 5) \geq 16$, [6].

In [6] (see also [4]) Nenov proved the following recurrent inequality:

$$F(p + 1, p + 1; p + 2) \leq (p + 1) F(p, p; p + 1).$$

From this inequality and Corollary 2 we trivially obtain

$$F(p, p; p + 1) \leq \frac{25}{24} p!, \quad p \geq 4.$$

This improves the bound $F(p, p; p + 1) \leq \lfloor 2p!(e - 1) \rfloor - 1$ given in [5].

I am very grateful to the anonymous reviewers whose important recommendations improved the presentation a lot. I am also indebted to Prof. N. Nenov whose comments also improved the paper.
References