Characteristic polynomials of some graph coverings

Hirobumi Mizuno, Iwao Sato

* Department of Computer Science and Information Mathematics, University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo 182, Japan
b Department of Mechanical Engineering, The Tsuruoka Technical College, Tsuruoka, Yamagata 997, Japan

Received 14 September 1992; revised 12 April 1993

Abstract

We give a formula for the characteristic polynomial of the derived graph covering of a graph with voltages in any finite group.

Graphs treated here are finite simple graphs. Let G be a graph and A(G) its adjacency matrix. Then the characteristic polynomial \(\Phi(G; \lambda) \) of G is defined by \(\Phi(G; \lambda) = \det(\lambda I - A(G)) \). The eigenvalues of A(G) are called the eigenvalues of G.

Schwenk [6] studied relations between the characteristic polynomials of some related graphs. Kitamura and Nihei [4] discussed the structure of regular double coverings of graphs by using their eigenvalues. Chae et al. [2] gave the complete computations of the characteristic polynomials of \(K_2 \) (or \(K_2 \))-bundles over graphs. Kwak and Lee [5] computed the characteristic polynomial of a graph bundle when its voltage assignment takes in an abelian group. Sohn and Lee [7] introduced weighted graph bundles and showed that the characteristic polynomial of a weighted \(K_2(K_2) \)-bundles over a weighted graph \(G_w \) can be expressed as a product of characteristic polynomials of two weighted graphs whose underlying graphs are G. Furthermore, they gave the signature of a link whose corresponding weighted graph is a double covering of that of a given link. In this paper, we establish an explicit decomposition formula for the characteristic polynomial of the derived graph covering of a graph with voltages in any finite group.

Let \(D(G) \) be the arc set of the symmetric digraph corresponding to G and \(\Gamma \) a finite group. Then a mapping \(\alpha: D(G) \to \Gamma \) is called an ordinary voltage assignment if \(\alpha(v, u) = \alpha(u, v)^{-1} \) for each \((u, v) \in D(G)\). The pair \((G, \alpha)\) is called an ordinary voltage assignment.

*Corresponding author.
The derived graph \(G^* \) of the ordinary voltage graph \((G, \alpha)\) is defined as follows:

\[
V(G^*) = V(G) \times \Gamma, \quad E(G^*) \subseteq E(G) \times \Gamma,
\]

and \((u, g, v, h)\) are adjacent in \(G^* \) if and only if \(uv \in E(G) \) and \(h = g\alpha(u, v) \). The graph \(G^* \) is called a derived graph covering of \(G \) with voltages in \(\Gamma \).

For propositions concerning the representation of groups the reader is referred to \([1]\). For a square matrix \(B \), we define \(\Phi(B; \lambda) := \det(\lambda I - B) \).

The block diagonal sum \(M_1 + \cdots + M_s \) of square matrices \(M_1, \ldots, M_s \) is defined as the square matrix

\[
\begin{pmatrix}
M_1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & M_s
\end{pmatrix}
\]

If \(M_1 = \cdots = M_{a_1} = N_1, \quad M_{a_1+1} = \cdots = M_{a_1+a_2} = N_2, \ldots, M_{s-a_1+1} = \cdots = M_s = N_s \),

we write \(M_1 + M_2 + \cdots + M_s = a_1 \circ N_1 + a_2 \circ N_2 + \cdots + a_s \circ N_s \).

Theorem 1. Let \(G \) be a graph, \(\Gamma \) a finite group and \(\alpha : D(G) \to \Gamma \) an ordinary voltage assignment. Furthermore, let \(\rho_1 = 1, \rho_2, \ldots, \rho_s \) be the irreducible representations of \(\Gamma \), and \(f_i \) the degree of \(\rho_i \) for each \(i \), where \(f_1 = 1 \). For \(g \in \Gamma \), the matrix \(A_g \) is defined as follows:

\[
A_g = (a_{uv}^{(g)}), \quad a_{uv}^{(g)} = \begin{cases} 1 & \text{if } \alpha(u, v) = g \text{ and } (u, v) \in D(G), \\ 0 & \text{otherwise}. \end{cases}
\]

Then one has

\[
\Phi(G^*; \lambda) = \Phi(G; \lambda) \prod_{j=2}^h \left\{ \Phi \left(\sum_{g \in \Gamma} \rho_j(g) \otimes A_g; \lambda \right) \right\}^{f_j},
\]

where \(\otimes \) is the Kronecker product of matrices.

Proof. Set \(V(G) = \{v_1, \ldots, v_n\} \) and \(\Gamma = \{g_1 = 1, g_2, \ldots, g_m\} \). Arrange the vertices of \(G^* \) in \(m \) blocks;

\[
(v_1, 1), \ldots, (v_n, 1); (v_1, g_2), \ldots, (v_n, g_2); \ldots; (v_1, g_m), \ldots, (v_n, g_m).
\]

For \(g \in \Gamma \), the matrix \(P_g = (p_{ij}) \) is defined as follows:

\[
p_{ij} = \begin{cases} 1 & \text{if } g \circ g = g_j, \\ 0 & \text{otherwise}. \end{cases}
\]

Then we have

\[
A(G^*) = \sum_{g \in \Gamma} P_g \otimes A_g.
\]
Let ρ be the right regular representation of Γ. Then we have $\rho(g) = P_g$ for $g \in \Gamma$. Furthermore there exists a regular matrix P such that

$$P^{-1} \rho(g)P = (1 + f_2 \circ \rho_2(g) + \cdots + f_h \circ \rho_h(g)) \quad \text{for each } g \in \Gamma.$$

Putting

$$B = (P^{-1} \otimes I_n)A(G^*) (P \otimes I_n)$$

we have

$$B = \sum_{\mu \in \Gamma} \{ (1 + f_2 \circ \rho_2(g) + \cdots + f_h \circ \rho_h(g)) \otimes A_g \}.$$

Therefore it follows that

$$\Phi(G^*; \lambda) = \Phi(B; \lambda) = \Phi(G; \lambda) \prod_{j=2}^{h} \left\{ \Phi \left(\sum_{\mu \in \Gamma} \rho_j(g) \otimes A_g; \lambda \right) \right\}^{f_j}. \quad \square$$

Corollary 2. $\Phi(G; \lambda) = \Phi(G^*; \lambda)$.

Let G be a graph, Γ a finite abelian group and Γ^* the character group of Γ. For the mapping $f: D(G) \rightarrow \Gamma^*$, a pair $G_f = (G, f)$ is called a weighted graph. Given any weighted graph G_f, the adjacency matrix $A(G_f) = (a_{f_{uv}})$ of G_f is the square matrix of order $|V(G)|$ defined by

$$a_{f_{uv}} = a_{uv} \cdot f(u, v).$$

The characteristic polynomial of G_f is that of its adjacency matrix, and is denoted $\Phi(G_f; \lambda)$ [7]

Corollary 3. Let α be an ordinary voltage assignment on a graph G in a finite abelian group Γ. Then

$$\Phi(G^*; \lambda) = \prod_{\chi \in \Gamma^*} \Phi(G_{\chi}; \lambda).$$

Proof. Each irreducible representation of Γ is a linear representation, and these constitute the character group Γ^*. By Theorem 1, we have

$$\Phi(G^*; \lambda) = \Phi(G; \lambda) \prod_{\chi \in \Gamma^* \setminus \{1\}} \Phi \left(\sum_{\mu \in \Gamma} \chi(g) A_g; \lambda \right).$$

Since $\sum_{\mu \chi(g)} A_g = A(G_{\chi})$, it follows that

$$\Phi(G^*; \lambda) = \prod_{\chi \in \Gamma^*} \Phi(G_{\chi}; \lambda). \quad \square$$

Corollary 4 (Chae et al. [2, Theorem 4]; Kitamura and Nihei [4, Theorem 1]). Let α be an ordinary voltage assignment on a graph G in the group $Z_2 = \{1, -1\}$. Then

$$\Phi(G^*; \lambda) = \Phi(G; \lambda) \Phi(G_{\alpha}; \lambda).$$
Proof. By Corollary 3, we have
\[\Phi(G^*; \lambda) = \Phi(G; \lambda) \Phi(G_{\chi \circ \alpha}; \lambda), \]
where \(\chi(1) = 1 \) and \(\chi(-1) = -1 \). Since \((\chi \circ \alpha)(u, v) = \alpha(u, v) \) for each \((u, v) \in D(G) \), it follows that \(\chi \circ \alpha = \alpha \). \(\square \)

Acknowledgment
The authors would like to thank the referee for many helpful comments and suggestions.

References