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1. INTRODUCTION 

In recent years, many papers have appeared in which error bounds for 
interpolating splines have been obtained. We shall present a survey of the 
results of these papers. We show that by expressing the error bound for the 
interpolation of a function f in terms of the norm off in a Sobolev or a 
Besov space, we are able to give a common setting to these results. Further- 
more, by applying the theory of intermediate spaces, we obtain new error 
bounds which fill gaps between the bounds previously established. 

We remark that Besov spaces and the theory of intermediate spaces have 
found fruitful applications in other areas of approximation theory (cf. Butzer 
and Berens [9] and Liifstriim [19]). While our paper is perhaps the first 
application of these techniques to the theory of splines, Besov spaces and the 
theory of intermediate spaces have found important applications in numerical 
analysis in the study of initial-value problems (cf. Peetre and Thomte [28], 
Hedstrom [14], LijfstrSm [19], and Widlund [37]). 

To briefly describe the contents of this paper, we first define in Section 2 
Besov spaces and state results needed from the theory of intermediate spaces. 
We then apply these theorems in Section 3 to error bounds for interpolation 
by Lg-splines (cf. Jerome and Varga [17]). In Section 4, we apply these 
techniques to the special cases of splines, Hermite splines, and periodic 
splines on a uniform mesh. Finally, in Section 5 we discuss error bounds for 
splines of best approximation, thereby generalizing recent results of 
de Boor [7]. 

* This research was supported in part by AEC Grant (ll-l)-2075. 
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2. BESOV SPACES 

The Besov spaces arose from attempts to unify the various definitions of 
fractional-order Sobolev spaces (see Taibleson [35] and the survey article by 
Nikol’skii [21]). Since the Besov spaces are most easily described from the 
point of view of the theory of interpolation between Banach spaces, we begin 
with a brief description of that theory. For a more complete discussion of 
interpolation of Banach spaces, see Butzer and Berens [9], Grisvard [12], 
Lions [ 181, and Peetre [24] and [25]. 

Let X0 and X, be two Banach spaces with norms 11 . /I,, and Ij . 111, 
respectively, which are contained in a linear Hausdorff space X, such that the 
identity mapping of Xi in X is continuous, for i = 0, 1. If X,, + X1 = 
{fEX :.f=fo +fi > where fi E Xi, i = 0, l}, then (cf. Butzer and Berens 
[9, p. 1651) X0 + X, and A’, n X, are Banach spaces with respect to the 
norms 

llf II x0x1 = maxW% , IlfllJ, 

llf II xo+xl = Wlfo Ilo + llfi 1111~ 

the infimum being taken over all decompositions f = f0 + fi with fi E Xi , 
i = 0, 1. Moreover, it follows that 

xOnx,CxiCxO+x,C.!E, i = 0, 1, (2.1) 

where inclusion throughout this paper is understood to mean that the identity 
mapping is continuous. We say that a Banach space XC 37 is an intermediate 
space of X,, and A’, if it satisfies the inclusion 

X,nX,CxCX,+X,C~, (2.2) 

analogous to (2.1). 
We now give Peetre’s real-variable method (cf. Butzer and Berens 19, p. 1671 

and Peetre [25]) for constructing intermediate spaces of X,, and X1 . For each 
positive t, and each f E (X0 + X,), define 

mf) = $, {IIf0 II0 + t llh III). (2.3) 
0 1 

Then, for any 6 with 0 < 0 < 1 and any q with 1 < q < co, let (X,, , X1),,, 
be the set of all elements f E (X,, + X1) for which the norm 

(2.4) 
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is finite. The following result is known (cf. Butzer and Berens [9, p. 1681 and 
Peetre [25]). 

THEOREM 2.1. For 0 < 0 < 1, 1 < q < 00, (X0 , X&,p is a Banach space 
which is an intermediate space of X,, and Xl , and, thus, satisjies (2.2). In 
particular, (X, X)B,, = X. 

Next, let Y. and Y1 be two Banach spaces continuously contained (with 
respect to the identity mapping)in a linear Hausdorff spaceg, and let T denote 
any linear transformation from (X0 + X1) to (Y, + Y,) for which 

II Vlli d Mi llflli 3 VfEXi, i = O,l, 

i.e., T is a bounded linear transformation from Xi to Yi with norm at most 
Mi , i = 0, 1. Again, the following result is known (cf. Butzer and Berens 
[9, p. 1801 and Peetre [25]): 

THEOREM 2.2. For 0 < 8 < 1, 1 < q < 00, T is a bounded linear trans- 
formation from the intermediate space (X0 , Xl),,, to the intermediate space 
(Y, , Y,),,, , whose norm 

Because this paper is devoted to interpolation and approximation by splines 
on finite intervals of the real line, it is necessary to define the Sobolev spaces 
W,‘Q, b] and the Besov spaces B”dq[a, b]. For m a positive integer and 
1 < p < co, the Sobolev space W,“[u, b] is defined to be the collection of all 
real-valued functions f(x) defined on the finite interval [a, b] for which the 
generalized derivatives Djf, (Di = dj/dxj), j = 0, l,..., m, are all in L,[a, b]. 
Equivalently, BJ’,~[LZ, b] is the collection of all real-valued functions f(x) 
defined on [a, b] for which f E C”-l[a, b], Dm-lf is absolutely continuous, and 
D”f E L,[a, b]. It is well known that W,‘$z, b] is a Banach space with respect 
to the norm 

Ilf II WP;“[a,bl = F. II Djf lIG.bl * 

To define the Besov space B”iq[a, b], let ogm(t,f) where m is a positive 
integer and 1 < p < co, be the m-th modulus of continuity off E L,[a, b], i.e., 
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where for y fixed, the &-norm is taken over the set of x in [a, b] such that 
x + vy E [a, b] for all v = 0, l,..., m. The Besov space B:g[a, b], 0 < 0 < m, 
1 < q < co, 1 < p < co, consists of all functionsfE L&z, b] for which the 
norm 

llfllL,h,bl + (11 w%“(LfNg y*, 1 < 4 -=c a, 
llfll ~ , = B@**[a b] - (2.6) 

lIfllL&,b1 + =lJ ~-“%“kf), 4 = 00, 

is finite, and B;q[a, b] is a Banach space. 
It would appear from (2.6) that B”aq[a, b] depends on m, but actually it does 

not, and we have the following equivalent norms (cf. Grisvard [12], Butzer 
and Berens [9, p. 2501, and Peetre [26]): 

Cl Ilf II B;*“[a,b] 

i 
llf II w$l[,,b, + (1, (~[“l-“~D1(~, wf>)” yq, 1 G 4 

< 

Ilf Ii+][a,b] + s>“op t[ol-ow,l(t, D[“lf>, 4 = a, 

d ‘2 Ilf IIB;.‘[a,b] 

for noninteger (T (where [u] denotes the integral part of 0) and 

< *, 

(2.7) 

for integral (T. Note that (2.7) imposes a generalized Holder condition on 
Wlf for f E B”dg[a, b], while (2.8) imposes analogously a Zygmund condition 
(cf. Zygmund [38, p. 431) on D-If. 

As we shall see in Sections 4 and 5, many error bounds for spline approxi- 
mation have been obtained in terms of the Holder classes C”I~[~, b]. A 
function f is said to be in C”+[a, b], v = 0, l,..., 0 < 01 < 1, if f E cV[u, b] 
and the following norm is finite: 

llf II I fY4 - f”‘(Y) I 
C”n’=[a,b] = ,$a”%, Ifcx)l + 5 $gxb, * . Ix-Yl” . 
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It is clear from (2.7) that if 0 < 01 < 1, then 

cyu, b] = Bpqz, b]. (2.9) 

For 01 = 1, we see from the definitions of the norms that 

w:+l[u, b] c cvqu, b] c B?“[a, b], (2.10) 

where the inclusions of (2.10) are again to be interpreted in the sense of 
continuous imbeddings, i.e., for anyfG WL+‘[a, b], 

Ilf II B&+,fl@[,,b] G ‘1 Ilfll@[a,b] < ‘2 llfll,V’$:‘[a,b] * 

We now characterize the spaces intermediate between Sobolev spaces 
U .“[a, b] and Besov spaces B”dg[a, b]. (Cf. Grisvard [12] and Peetre [24]. 
Although these results of [12] and [24] were proved for Rn, it follows from 
the extension and imbedding theorems of Besov [3,4] that they hold for 
finite intervals as well.) 

THEOREM 2.3. If 1 <pO, p1 , < co, and 0 < 6 < 1 are such that 
l/p = (1 - WP + e/p1 , then 

ZfO -=C ~9 < 1, 1 < p, q < co, then 

&[a, bl, wp%, ~1)tJ.q = B;m,“.gb, bl. (2.13) 

Furthermore, if u0 f ul, 0 < 0 < 1, 1 < qO, q1 < 00, and 1 <p < co, 
then identlyying equivalent norms, we have 

(Byyu, b], Bpg’[u, b])o,* = Byyu, b], u = eu, + (1 - e) uo, 
(2.14) 

(Byqu, b], B;~~g+.7, b])Q = Byy[u, b], u = eul + (1 - e) uo, 
(2.15) 

11~ = wpd + [(I - wpoi9 

andfor integer values of ui , either of the spaces Bzvq’[u, b] in (2.14), (2.15) may 
be replaced by W?[u, b]. 

To conclude this section, we state some important imbedding results due 
to Besov [3,4] and Peetre [24, 261, which will be used in the next sections. 
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THEOREM 2.4. If 1 < p < 0~) and m is a positive integer, then 

BF*l[a, b] C WP”[a, b] C B~sm[a, b]. 

If 1 < q1 < q2 < 03, 1 < p < co, and 0 < u, then 

B;“[a, b] C Bi’qe[a, b]. 

Zf 0 < u2 < o, , 1 < q1 , q2 < co, and 1 < p < co, then 

B:“‘[a, b] C BzsqL[a, b]. 

Furthermore, if 1 < p1 < p2 < 00, 1 d q1 < q2 < co, and 

then 

1 1 
q---- -- 

Pl u2 P2 ’ 

(2.16) 

(2.17) 

(2.18) 

B~ql[a, b] C Bzqe[a, b], 

and if u1 = l/p, - l/pz > 0, then 

(2.19) 

Bcl[a, b] C L,Ja, b]. (2.20) 

A proof of (2.19) for u1 - (l/p,) > u2 - (I/p,) and of (2.20) for 
u1 > (l/p3 - (l/pz> is given in Besov [4]. For the embeddings (2.19) and 
(2.20) under the weaker hypotheses of Theorem 2.4 the only proof we know 
of is in Peetre [26] which is in Swedish. We, therefore, present a proof in the 
Appendix. 

3. INTERPOLATING SPLINES 

In this section, we first review results on error bounds for interpolating 
Lg-splines in a single variable, and then apply the theory of interpolation 
spaces of Section 2 to these results. 

For n a positive integer, let M be a linear differential operator of the form 

A4 = 5 a,(x) Di, 
i=O 

where for some positive constant 7, a,(x) > T > 0 for all x E [a, b], and 
where ai E Cj[a, b], j = 0, l,..., n. Next, let /1 = (hd}FC1 be any set of linearly 
independent, bounded linear functionals on the Sobolev space Wsn[a, b], 
and let r = (rl , r2 ,..., rk) denote any vector of real Euclidean k-space, Ek. 
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A function s E Wzn[a, b] is called an Lg-spline (cf. Jerome and Schumaker 
1161 and Jerome and Varga [17]) interpolating r with respect to .4, provided 
that it solves the following minimization problem: 

where 

II MS lIL,[a,a~ = Wll ~fll~,bd :f E Uk>>, (3.1) 

U,(r) = {f~ Wz”[a, b] : x,(f) = ri , i = 1, 2 ,..., k}. 

The class of all Lg-splines s satisfying (3.1) for some r E Ek is denoted by 
SP@f, 4. 

Based on the results of Golomb [lo], Jerome and Schumaker [16] have 
proved 

THEOREM 3.1. Given any r E E”, there exists an s E WSn[a, b] satisfying (3.1). 
A function s E U*(r) satisfies (3.1) if and only if 

b 

MS * Mg dx = 0 for all g E U,(O). 
a 

Moreover, any two solutions of (3.1) corresponding to a fixed r E EL, difSer 
by a function in the null space J#‘” of M, and (3.1) possesses a unique solution if 
and only if JV n U,(O) = (0). Finally, Sp(A4, A) is a linear subspace of 
Wz”[a, b] of dimension k + dim{N n U,(O)}. 

In order to obtain error estimates for interpolating Lg-splines, we place 
extra restrictions on (1 = {hi}FX1 . Let Lil (possibly empty), called the partition 
of [a, b], be the set of all x E [a, b] for which there exists a h E (1 such that 
X(f) = f(x). If d . is not empty, we define, as in Jerome and Varga [17], 
d as the maximum length of the subintervals into which [a, b] is decomposed 
by points of d, and we similarly define 0 as the corresponding minimum 
length. If d is not empty, and x E d n (a, b), let i(x) be defined as the maximal 
positive integer such that there exists a h, E (1 for which 

xk(f) = Dkf(x) (3.2) 

for each k = 0, l,..., i(x) - 1. In other words, i(x) is the number of conse- 
cutive derivative point functionals of (1 associated with the point 
x E d n (a, b). If x is a or b, define i(x) as the total number of values of k, 
not necessarily consecutive, for which (3.2) is valid. With this notation, we 
define r(A) by 

A4 = C i(x) 
XEA 

if d is not empty, and we define r(A) = 0 if d is empty. 
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Based on arguments used in Schultz and Varga [30], the following inter- 
polation error bounds extend slightly the results of Jerome and Varga [17]. 

THEOREM 3.2. Let A = {hi}:=, be such that r(A) 2 n and such that 
JV” n U,(O) = (0). Iffy Wzn[a, b], and s E Sp(M, /.I) is the unique Lg-spline 
which interpolates f with respect to A, i.e., hi(s) = x,(f) for i = 1, 2,..., k, 
then, for d sujiciently small, 

II Wf - S&&b] G q4n-j-1’2 Ilfllw2ya,q 9 j = 0, I,...) n - 1) 

and 

II Wf - S)llLT[a,b] < Jqw lIfllw~nr,,,] 2 j = 0, 1). ..) n, 1<7<2, 

where Kj and Kj’ are independent of A and f. 
(3.3) 

We remark that Theorem 3.2 remains valid with the hypothesis 
&” n U,(O) = (0) deleted. In this case, the Lg-spline s E Sp(M, (1) which 
satisfies (3.1) is not uniquely defined. However, with the hypothesis 
&” n U,(O) = (O}, the bounded linear operator T : W2n[a, b] + L,[a, b] 
defined by Tf = f - s is then well defined, and this fact is needed in 
subsequent discussions. 

We now assume that /l is such that the following second integral relation 
(cf. Ahlberg, Nilson and Walsh [l, p. 2051) is valid: 

jb (Mf - A~s)~ dx = j” (f - s) M*Mf dx, (3.4) 
n a 

where f E WF[a, b] and s is an Lg-spline which interpolates f with respect to /l. 
The relation (3.4) is known to be valid (cf. Schultz and Varga [30, Theorem 51) 
if a and b are points of d with i(a) = i(b) = n. 

Again, the following result slightly extends the results of Jerome and 
Varga [17]. 

THEOREM 3.3. Let A = {/l,}F, be such that r(A) > n, JV n U,(O) = (01, 
and such that the second integral relation (3.4) is valid. If f E Wp[a, b] and if 
s E Sp(M, A) is the unique Lg-spline which interpolates f with respect to A, 
then for ii suficiently small, 

/I Oi(f - S)II&&,b] < Kj@)2n-‘-1’2 Iif $“f”[a,b] 3 j = 0, l,..., 12 - 1, (3.5) 

and 

11 D%f - ‘$+,b] < Kj’(6)2n-’ Ilf jiWl”[a,b] 9 j = 0, 1,. .., n, 1<7<2, 

where Ki and Kj’ are independent of A andf. 
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Theorem 3.3 can be extended if the exact continuity class of Sp(M, A), 
which depends on A, is known. For example, if i(x) < 1 for every 
x E A n (a, b), where 1 < 1 < n, then it is known (Jerome and Varga 
[17, Corollary 2.41) that 

Sp(M, A) c C2+-2-‘~-l)[u, b]. 

Based on the results of Perrin [29], one can further extend the result of [17] 
to obtain 

THEOREM 3.4. Let {Ai},El be such that y(&) >, n, JV n U,JO) = {0}, 
and such that the second integral relation (3.4) is validfor all i. Further, assume 
that zJOi < p for all i = 1,2,..., and that Sp(A4, Ai) C Cm-l[a, b] for all 
i = 1, 2,..., where n < m < 2n. If f E Win[a, b] and if si E Sp(M, Ai) is the 
unique Lg-spline which interpolates f  with respect to Ai , then there exists an i, 
such that for all i 3 i,, , 

II Nf - S&&b] < qJi)2n--j-1’2 Ilf Ilwpp$] , j = 0, 1 ,.. ., m, 

and 

II Wf - Si)llLL,La,bl G Kj’(Ji)2n-’ llf IIW~~,,bl , j = 0, I,-.., m, 1 G 7 G 2, 

where Kj and Kj’ are independent of the Ai andf. 

We now apply the theory of interpolation spaces of Section 2 to 
the results of Theorems 3.2-3.4. If A = {hi}:==, is such that y(A) 3 n 
and .A’” n U,(O) = (O}, define the linear transformation Ton W2”[a, b] by 

Tf = f - s, 

where s is the unique Lg-spline in Sp(M, A) which interpolates f with respect 
to A. From (3.3) of Theorem 3.2, we have that 

II Nf - s)II~~[,,~~ G y.@Yi llf IlwzfiLa,bI , j = 0, 1,. .., n, 1<7<2. 

From the definition of the Sobolev norm 11 . IIw n[,,bl in Section 2, and the fact 
that d < b - a, the above inequalities give ui 

llf - s IIw,nLa,bI G Kllfllw,~~a,~, 9 1<7<2, 

as well as 

Ilf - s IIL,[a,b] G K’m Ilf IIwy[,,b] 9 1<7<2. 

Thus, by choosing X,, = W2”[a, b] = X1 = E, Y,, = g = L,[u, b], and 
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Y, = W7”[a, b], we see from the above inequalities that T is a bounded linear 
mapping from Xi to Yi , i = 0, 1, with norms bounded above by 

MO = K’(J)“, M1 = K, respectively. 

Clearly, since, from (2.13) of Theorem 2.3, the Besov space B:s*[a, b] is the 
intermediate space (L&z, b], WT”[a, b])8,a, where 0 < u = &z < n and 
1 < q < co, a direct application of Theorem 2.2 yields that 

Ilf- s llBo,*rp,q < K(u, q)(~Y= lIfllw2nI,,,I > O<a<n, 1<7<2, 

for any 1 < q < co, where K(a, q) is independent offand A. In a completely 
similar way, we deduce 

PROPOSITION 3.1. Let A = {&}ik,, be such that r(A) > n, N n U,(O) = 
{0}, and such that the second integral relation of (3.4) is valid. Iff e Wzn[a, b] 
and ifs E Sp(A4, A) is the unique Lg-spline which interpolatesf with respect to A, 
then for d suflciently small, 

Ilf - s IIBg’P[a,q d K(u, q)(if)“-” Ilf IIw2nc,,bI 2 0 < u < n, (3.6) 

for all q, 1 < q < 00, where 1 < T < 2, and where K(a, q) is independent 
of z. If, moreover, f E Wp[u, b], then 

Ilf - s IIBp”[a,q G K'(o, qm2n-o llf IIW:“[a,*] > 0 < u < n, (3.7) 

for all q and 7, 1 < q < 00, 1 < T < 2, where K’(o, q) is independent off 
and A. 

The next result, however, is of more interest, in that we interpolate between 
the spaces on the right sides of (3.6) and (3.7), using the fact from (2.14) that 

(W,“[u, b], W,~“[U, b]),,, = B;“[a, b], u = On + (1 - 0) 2n, 1 < q < co. 

More precisely, let X,, = Wz”[a, b] = 5?“, X, = Wp[u, b], and g = Y, = 
Y, = e*“[a, b] = Y. Then, applying Theorem 2.2 to the inequalities of 
Proposition 3.1, gives 

THEOREM 3.5. Let A = {Ai}el be such that &I) > n, JV n U,(O) = (O}, 
and such that the second integral relation of (3.4) is valid. If f E m*‘[a, b], 
n < crz -=c 2n, and ifs E Sp(M, A) is the unique Lg-spline which interpolates f 
with respect to A, then for d suficiently small, 
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where 1 < T < 2, 0 < q < n, and 1 < q, r < 00, and where K(q, crl , 02) 
is independent off and A. Moreover, in the limiting cases f c Wzn[a, b], 
f E Wp[a, b], the inequalities (3.6) and (3.7) are valid. 

We remark that the results of Theorem 3.5 extend those of Jerome and 
Varga [17] and Schultz and Varga [30], in that the error bounds for Lg-spline 
interpolation are obtained for functions which are in Wzn[aa, b], but not in 
W~[CZ, b]. In particular, these error bounds apply to functions in FYzz[a, b], 
where I is any positive integer satisfying n < 1 < 2n, since, from (2.16) of 
Theorem 2.4, we have 

W2’[a, b] C &“[a, b]. 

We state this as 

COROLLARY 3.1. With the hypotheses of Theorem 3.5, let f e Wzz[a, b], 
n < I < 2n. Then, 

where 0 < o < n and 1 < q < co. In particular, 

For another result of interest which can be obtained as a special case of 
Theorem 3.5, we utilize (2.9), (2.10) and (2.19). We have 

COROLLARY 3.2. With the hypothesis of Theorem 3.5, let f E (?+[a, b], 
where 1 is a positive integer, 0 < 01 < 1, and n ,< I+ cy < 2n. Then 

for all j = 0, l,..., n, 1 < -r < 2. 

It is also worth noting that the exponents of d obtained in Theorem 3.5 
are, in general, best possible. This follows from the results of Birkhoff, Schultz 
and Varga [6] concerning Hermite piecewise polynomial interpolation, i.e. 
the special case in which A4 = D” and A consists only of point functionals of 
the form 

h(f) = WW, j = 0, I ,.. ., n - 1, 

for all i = 0, l,..., N+l,wherea=x,,<x,<---<x,+,=6. 
To extend further the results of Theorem 3.5, we use the embedding results 
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of (2.19) and (2.20) of Theorem 2.4. Specifically, from (2.20), we know that 

By[u, b] c L&l, b], for 2 <p, 
1 1 

“‘-T-,* 

Hence, it follows that there exists a positive constant C such that 

Ilf- s llLp[a,n] < c Ilf- s IIBpl[a,bl * 

Thus, from (3.8) with crI = l/2 - l/p, we have 

PROPOSITION 3.2. With the hypotheses of Theorem 3.5, let f E B2*r[u, b], 
n < (Jo < 2n. Then, 

llf - s IlqJq G m, '32 9 P)(JY1’2+1’2, Ilf llBpr[,,q 2 

2<p<qwherel <r<a. 

Similarly, using (2.19) of Theorem 2.4, we have that 

llf - s IIBy7p$] G c llf - s IIBgppJq where 

2 < p < co. From Theorem 3.5, it follows that 

llf- s Ile;4[a,b] G m-1 Ilf l18pr[,,bl * 

Consequently, since ‘Jo = (T + 4 - l/p, we have 

THEOREM 3.6. With the hypotheses of Theorem 3.5, letf 6 Bp*‘[a, b], where 
n < u2 < 2n. Then, in addition to (3.9), 

llf - s lle;*qa,al < w)aa--“-l’P+l’s llf Ilsga.r[a,b] (3.10) 

for any 0 < u < n - 4 + l/p, where 2 < p < co. 

Thus far, the results based on interpolation spaces involve bounds for 
Ilf - s IIB~~[a.b] for 0 < u < n, and one would desire similar results for 
u > n. Thus can, in fact, be achieved, based on the results of Perrin [29] in 
Theorem 3.4. 

THEOREM 3.7. With the hypotheses of Theorems 3.4 and 3.5, let 
f E m*‘[a, b], where n < g2 < 2n. Then, if 2 < p < co, there exists an i0 
such that for i > i,, , 
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for any positive 

a < (n - 1 + f)( 2n ; a2 ) + ; (a2 - 4. 

Moreover, in the limiting cases f E Wzn[a, b], f E Wp[a, b], we have, 
respectively, 

llf - si Ile;.a[a,bl < MJ”-“-1’2+1’p Ilf l/W2n[a,b] , o<u<n-1+;, 

All the results of this section basically depend upon the error estimates for 
Lg-spline interpolation of Theorems 3.2-3.4. These same error bounds have 
been extended to more general operators A4 and linear functionals fl 
(cf. Lucas [20], Varga [36], and Jerome and Pierce [15]), so that our inter- 
polation results, Theorems 3.6-3.7, remain valid for these more general M 
and /I, with no change in the arguments. We have presented the simplest error 
bounds for Lg-spline interpolation so as to make the discussion as brief and 
clear as possible. 

4. SPECIAL TYPES OF INTERPOLATING SPLINES 

In the previous section, the emphasis was on the L,-theory. Here we shall 
present L,-estimates, which may be obtained by applying the theory of 
Section 2 to estimates known for certain special types of splines. We begin 
with Hermite L-spline interpolation, where L,-error bounds are known for all 
p with 2 < p < co. We then turn to interpolation by cubic and quintic splines 
and to interpolation of periodic functions by polynomial splines on a uniform 
mesh. In these cases, we obtain L,-error bounds, 2 < p < co, from known 
L,- and L,-error bounds. 

For Hermite L-spline interpolation, let d : a = x,, < x1 < *.a < x~+~ = b 
be any partition of [a, b], and let the Hermite L-spline space H(M, A) be 
specifically the Lg-spline space (cf. Section 3) Sp(M, il) in which the set fl 
of linearly independent bounded linear functions on Wz”[a, b] is given by 
A = {hi,i}f??~;E;l, where 

h,,j = Ds(x,), i = 0, 1 ,..., N + 1, j = 0, 1 ,..., n - 1. 

The following is a known result of Swartz and Varga [34, Corollary 7.51. 
(For special cases, see Birkhoff, Schultz, and Varga [6], and Hall [13]). 

THEOREM 4.1. For any f E Wgk[a, b], 1 < k < 2n, 1 < p < co, and any 
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partition A of [a, b] for which J//o < B, let s be the unique interpolant off in 
H(M, A) in the sense that 

w4 = w%n,if)(Xi~, j = 0,l ,..., n - 1, i = 0, 1,. . ., N + 1, 

where, for each i, i = 0, l,..., N + 1, there exist 2n speczjied consecutive knots 
xj. , xii+1 ,..., xj +2n--1 with xi E [xj. , x~.+~~-J, and where Zzn if is the Lagrange 
p;Iynomial (of’ degree 2n - 1)’ intirpolating to f at these knots, i.e., 
($P2n,if)(~1) = f(xJ, 1 = ji , ji + l,..., ji + 2n - 1. Then, for r and j with 
max(p, 2) < r < co, j = 0, I ,..., min(k - 1, n - I), we have 

We can immediately apply Theorems 2.2 and 2.3 to obtain 

COROLLARY 4.1. For any f E B;‘[a, b], 1 < G < 2n, 1 < q < co, and 
any partition A of [a, b] for which A/d < B, let s be the unique interpolant in 
H(M, A) in the sense of Theorem 4.1. Then, if max(p, 2) < r .< co, 

for any nonnegative integer j with j < min(k - 1, n). Furthermore, 

llf - s llepd[a,bl < m”-T-l/p+llr /l f Ile;,e[a,al 

(4.2) 

(4.3) 

$0 < T < min(k - 1, n), 1 < q’ < co. 

One goal of this study of error estimates for piecewise-polynomial inter- 
polants is to establish inequalities of the type (4.1)-(4.3) for spline functions. 
Theorem 3.6 is a step in this direction. For cubic and quintic splines, we can 
go beyond Theorem 3.6. In analogy with the Hermite L-spline space H(M, A), 
we now define the spZine space Sp(“)(A) (which corresponds (cf. Section 3) 
to the Lg-spline space Sp(M, A) with M = D”, and A particularly chosen). If 
A : a = x0 < x1 < ... < x~+~ = b is a partition of [a, b], then Sp(“)(A) is 
the collection of all real-valued functions s on [a, b] such that s is a polynomial 
of degree at most 2n - 1 on each subinterval (xi , x~+~), i = 0, l,..., N, and 
such that s E C2n-2[a, b]. In the case of interpolation by a cubic (n = 2) or 
quintic (n = 3) spline without any restriction on a/d, we have de Boor’s 
result [8]: 

THEOREM 4.2. For any f s Ck[a, b], n < k < 2n - 1, where n = 2 or 3, 
let s be the unique interpolant off in Spi”)(A), i.e., 

s(xi) = fCxi), i = 0, 1 ,..., N + 1, 
Djs(a) = Djf(a), D%(b) = Djf(b), j = l,...,n - 1. (4.4) 
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Then, 

Ilf- s lIw,q,,b] < K(A)k-j w,yd, D”f), j = 0, I)...) n. 

Sharma and Meir [32] obtained Theorem 4.2 for the case n = 2, as well as 
for that of a periodic quintic spline, n = 3, with every knot a double knot. 
Special cases of Theorem 4.2 for cubic splines were obtained earlier by 
Atkinson [2] and Birkhoff and de Boor [5]. 

We shall not apply the theory of Section 2 directly to Theorem 4.2, but 
rather to its weaker form, Corollary 4.2. For our purposes, it is more 
convenient to have estimates in terms of the Holder classes C@[a, b], rather 
than in terms of the moduli of continuity w,l(z, Pf). As a direct 
consequence of Theorem 4.2, we have 

COROLLARY 4.2. For any f E cY+[u, b], v = n, n + l,..., 2n - 1, n = 2 
or 3, 0 < (II < 1, lets be its unique interpolant in Sp(“‘(A). Then 

llf- s Ilw,qa,al < Gvfa-~ Ilfll~“*or[O,l] 9 j = 0, l,..., n. 

Furthermore, for any f E W,“[a, b], 

llf- s llW&,b] < WY Ilfllw,n[,,b] 9 j = 0, l,..., n. 

Because the space Sp(“)(A) is a special Lg-spline space Sp(M, (1) with 
M = P and because of (4.4), it follows that the hypotheses of Theorem 3.5 
are fulfilled, i.e., &l) 3 n, JV n U,(O) = {0}, and the second integral 
relation (3.4) is valid. Consequently, Corollaries 3.1 and 3.2 are applicable. 
Thus, we may couple Corollary 4.2 with Corollaries 3.1 and 3.2, via 
Theorems 2.2 and 2.3. The result is 

THEOREM 4.3. For f E P-l[a, b] and n = 2 or 3, let s be its unique inter- 
polant in Sp(“)(A) (cJ (4.4)). Then, for f in WDk[u, b], k = n, n + l,..., 2n, 
2 < p < co, we have 

llf - s Ilwp,[a,a] G Wk-j If IIWDya,b] 3 j = 0, l,..., n, 

andfor f e Bz’[a, b], n < r < 2n, 1 < r < co, 2 < p < 00, we have 

llf- s llB;.qa,b, < @Y-u Ilfllag.rc,,b, , O<a<n, l<q<co. 

It is worthwhile to compare Theorems 4.2 and 4.3. If f e B;“[a, b] where 
n < r < 2n and T is not an integer, then Theorem 4.3 and the imbedding 
Bs’[u, b] C Wooj[a, b] of (2.16) give 

Ilf - s llW&,b] G WY-’ Ilf IIB~~[q] 3 j = 0, l,..., n. 

6401413-6 
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This, however, is, in general, less sharp than the result k = [T] of Theorem 4.2, 
viz., 

since, from (2.7), the ratio ~,r(t, DUTlf)/tT-tT1 ~jfj~B;~ta,aI is bounded for all t, 
and this ratio may in fact tend to zero as t -+ 0. On the other hand, if 
f E Bk+- [a, b], k + 1 = n + 1, II + 2 ,..., 2n - 1, the imbedding (2.16) 
applied to the second inequality of Theorem 4.3 gives 

[If- s llw,i[a,a] < mk+l-j IlfllB~+lF[a,b] 3 j = 0, 1)‘. .) y1, (4.5) 

and this inequality is not implied by the analogous inequality 

Ilf- s Ilwmi[a,aI < @y-j w&f, pf) 

of Theorem 4.2. To show this, consider the function 

f(x) = xk+l In x, O<x<l, 

where k is a positive integer with n < k < 2n - 2. ThenfE Ck[O, l] and 

co,l(t, Pf) - k! t ln(l/t) as t + 0. 

But, becausefis an element of Bk+‘srn [0, 11, it follows that the upper bound of 
(4.5) is asymptotically better than that of (4.6) by the factor ln(l/J). 

We now define the Besov space B:‘[O] of periodic functions. Given a 
function fin LJO, 2n], we extend it periodically to (- co, + co), and say that 
its extension is in L,[O]. Then, the m-th modulus of continuity is defined 
(cf. (2.5)) by 

%?WYf) = ,p$Jt Ig)“(;)f(x + v) 1 
&W~l 

where the &-norm is taken over all x E [0,277]. The Besov space B:4[0], 
0 < (T < m, 1 < q < co, 1 < p < co, consists of all such periodicyE L,[O] 
for which the norm of (2.6), with the above definition of mDm(t, f), is finite. 
We remark that C[O], P+[O], and W,j[O] denote, respectively, the space 
of continuous 2r-periodic functions, the Holder spaces of 2n-periodic 
functions, and the Sobolev spaces of 27r-periodic functions. 

For a partition 0 < x1 < xZ < a** < xN < 27r, N 3 1, of the interval 
[0, 2~1, let d denote the periodic extension of this partition to (-co, + co), 
with d and 4 denoting, respectively, the maximum and minimum lengths of 
the subintervals (xi , x~+~) (with x~+~ = x1 + 2~). Then SpF’[O] is defined 
as the collection of all s E C2n-2(- cc, + a) which are of period 2~ and which 
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coincide with a polynomial of degree at most 2n - 1 on each subinterval 
(Xi 7 %+A* 

For periodic cubic splines, we have the following result: 

THEOREM 4.4. Let {O,}~?l be periodic partitions of (-CO, +a) such that 
iii/hi < p for i = 1,2,... . For f 6 C[O], let si E SpLy [O] be its unique cubic 
spline interpolant, i.e., 

(4.7) 

j = 0, 1,2, 3, (4.8) 

(4.9) 

j = 0, 1,2, 3. (4.10) 

The estimates (4.8) and (4.10) are due to Birkhoff and de Boor [5], and (4.9) 
is due to Sharma and Meir [32]. Nord [22] has improved the constant in (4.9). 
Clearly, (4.7) follows directly from (4.9). 

If we apply the theorems of Section 2 to the estimates of Theorem 4.4, we 
obtain the following 

THEOREM 4.5. Let {A<}~=~ be periodic partitions of (- CO, + co) such that 
iii/Ai < p for i = 1, 2,... . For f E C[O], let si E Sp~‘[O] be its unique cubic 
spline interpolant. Then if 2 < p < r < co, we have, respectively, for f in 
Ws4[01 or B”d*[Ol, 

llf - ‘i IlW,l[o] G K(di)4--j-1’D+1’T Ilf llW$[O] 2 j=O,l,2,3, i= 1,2 ,.... 

(4.11) 

llf - si ll&C0,2n, G wJ”-l’p+l’r Ilf llegqo, 9 i = 1, 2,... . (4.12) 

where either 4/p < 0 < 4 and 1 < q < 00, or cr = 4/p and 1 < q <p. 
Moreover, for f e q*“[ 01, 

Ilf- ‘i IlW,3[C)] < K(q-3-1'p+1'T llf Iley.[ol , (4.13) 
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where either 3 + (2/p) < u < 4 and 1 < q < 00, or (J = 3 + (2/p) and 
I < q < p. Furthermore, if 2 < p < r < a and f is in Wg4[O] or in 
B;q[O], we have, respectively, 

llf - si llqd[ol G 

Ilf - ‘i Il~:aP’[C)] G 

where either (i) 

K(iji)4--‘-11T+1/p /If Ilw,“[ol , 0<7<3, l<q’<oo, 
(4.14) 

wii)a-T-l’T+l’P Ilf II*y[o] I (4.15) 

u = 4/p, q = p, 0 < 7 < (3/p) + (l/r), 1 < 9’ < 00, 
(ii) u = 4/p, q = p, 7 = (3/p) + (l/r), p d 4’ < 00, (iii) 4/p < g < 4, 
1 < q, q’ < co, 0 < T < p(u)), where (see Fig. 1) 

FIGURE 1 

or (iv) 4/p < u < 3 + (2/p), T = p(u), 1 < q, q’ < a. 

Proof. Because Theorem 3.4 is applicable in the periodic case, (4.11) is a 
direct consequence of Theorem 2.2, (2.11) and (2.12) repeatedly applied to 
(4.8), and both inequalities of Theorem 3.4. Similarly, (4.14) follows from 
(2.13) of Theorem 2.3 applied to the cases j = 0 and j = 3 of (4.11). The 
special case of (4.12), 
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follows from an application of Theorem 2.2 and (2.15) to (4.7) and to the 
case T = 2, j = 0, and n = 2 of (3.3). The case of (4.12), 

2 < p < co, 4/p < u < 4, 1 < q < 00, is obtained by applying Theorem 2.2 
and (2.15) to (4.16) and to (4.11) with j = 0 and I = p. The other cases of 
(4.12) follow directly from (4.17) and Theorem 2.4. 

We conclude directly from (4.10) that 

(4.18) 

By Theorem 2.2, (2.12) and (2.15), the estimate intermediate between (4.18) 
and the case j = 3 in Theorem 3.4 is 

2 < p < r < co, 0 = 3 + (2/p). Inequality (4.19) is a special case of (4.13); 
the case of (4.13) with 2 < p < r ,< co, 1 < q < p, (T = 3 + (2/p) follows 
from (4.19) and (2.17). The other cases of (4.13) are proved by an application 
of Theorem 2.2 and (2.14) to (4.19) and to (4.11) with j = 3. 

We still have to prove (4.15). By Theorem 2.2 and (2.15) the result inter- 
mediate between (4.7) and (3.3) with n = j = 2, T = 2 is 

Case (ii) of (4.15) follows from (4.20), (2.17) and (2.19). Case (i) of (4.15) 
is the estimate intermediate between case (ii) of (4.15) and the case u = 4/p 
of (4.12). We obtain case (iv) of (4.15) by an application of Theorem 2.2 and 
(2.14) to case (ii) of (4.15) and to (4.13) with u = 3 + (2/p). Finally, case (iii) 
of (4.15) is obtained by writing either the estimate intermediate between case 
(iv) of (4.15) and case (i) of (4.15) or the one intermediate between case (iv) 
of (4.15) and (4.14). This completes the proof of Theorem 4.5. 

If the partition d of [a, b] is uniform, it is possible to obtain error bounds 
of the type given in Theorems 4.14.5 for polynomial splines (A4 = P) of 
arbitrary order. We first consider, as in Theorem 4.1, the case where the 
derivatives off at the end-points of [a, b] are approximated via Lagrange 
interpolation polynomials. Then, we turn to the case of periodic splines on a 
uniform partition. Swartz and Varga [34], using results of Swartz [33], have 
obtained the following result. 

THEOREM 4.6. Given f E WDk[a, b] with 1 < k < 2n, 1 < p < GO, and a 
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uniform partition A of [a, b], let s be the unique interpolant off in Sp(“)(A) in 
the sense that 

SW = f(xA i = 0,l ,..., N + 1, 

DWa> = W-Kn.of>(4, j = l,..., n - 1, 

where P&,J is the Lagrange polynomial (of degree 2n - 1) interpolating to f 
at the knots x0, x1 ,..., xznMI , and similar relations hold at x = b. Then, if 
max(p, 2) < r < cn, 0 <j < k - 1, we have 

As the extension of this result to Besov spaces is clear, we omit its details. 
When a periodic function is interpolated on a uniform mesh by a periodic 

polynomial spline, we can prove stronger results than those of Theorem 4.5. 
The basic estimates are due to Golomb [l l] and Ahlberg, Nilson, and 
Walsh [l]. The error bounds in [l] involve the Holder classes P+[O] and 
are given in the following theorem. Similar estimates, but in less generality, 
are contained in Golomb [l I] and Schurer [31]. 

THEOREM 4.7. Let A be a uniform partition of (- co, + a~). For f E C[O], 
let s E SpF’[O] be its unique interpolant. Then, for f E P+[O], 0 < m < 2n, 
0 < 01 < 1, we have the estimate 

II Wf - s)llL,[o,2?r] G mm+a-i lIfllCm.a[~, 3 j = 0, l,..., m, (4.21) 

and, for f E C[ 01, we have 

IIf - s IIL,[0,2a] G Kllf lII.m[0,28] . (4.22) 

The other result on which we base our study of periodic splines is due to 
Golomb [ll]. Golomb’s estimates are in terms of the Hilbert space H”[O], 
u > 0, of periodic functions 

f(x) = C cjeijx 

for which the norm 

llf IIHoIol E I Co I + (T l i lzO I Cj 12)lj2 

is finite. It is clear from (2.6) that HOIO] = Bg*“[O], with equivalence of 
norms. Stated in terms of Besov spaces, Golomb’s result is as follows. 
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THEOREM 4.8. Forf E B;‘[O], u > l/2, let s E SpF’[ O] be its unique spline 
interpolant, where A is a uniform partition of (- CO, + co), and 2n 2 u. Then, 
we have 

0 < j < u - l/2, (4.23) 

II Nf - S)llt,[0,2711 d mY1’2 Ilfll~g.z~o] 9 0 < j < u - l/2. (4.24) 

The restriction u > l/2 in Theorems 4.8 is necessary for two reasons. On 
the one hand, the conditionfE B,“*‘[O], 0 > l/2, implies thatfis continuous, 
while there exist functions in B$‘[O], 0 < u < l/2, which are not even 
bounded (cf. Golomb [ll]). On the other hand, for a fixed uniform periodic 
partition A of (- co, + co), there exists a sequence of trigonometric poly- 
nomials {J;} such that 

IIJj lIB1,/2.2[0] < K, (4.25) 

while the corresponding interpolating periodic sj E Spl;“’ [ 01 satisfy 

11 sj I!L&2n] - co. (4.26) 

In fact, we may assume without loss of generality that A = {j/27rN}, 
j = 0, fl, *2 )... . Then, sj E Spp’[ 01 which interpolates 

is the constant function 

Clearly, h and sj satisfy (4.25) and (4.26), respectively. 
We collect the results intermediate between Theorems 4.7, 4.8, and the 

periodic version of Theorem 3.2. 

THEOREM 4.9. Forf E C[ 01, let s E Spy’[ 01 be its unique spline interpolant, 
where A is a uniform partition of (-co, + m). Then, for f E WF[O], 
2 < p < co, we have 

Ilf - s Ilt,Ic,,z,I G K@Ys Ilf Ilwpn[ol > (4.27) 

llf- s Ilw~~-qo] 1 < K. 2 Ilf Ilw~~ol > (4.28) 

IIf- s l/~7,.4[o] L < K@Y- llf lIwp;nIoI 9 (4.29) 
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where 0<7<2n-I, l<q<co. Furthermore, if 2<p<a3 and 
f E q’[O], 1 < r < co, we have 

IV- s Ilw~-q~, --. < ~m”-2n+1 llfll*;.9’[o] 9 2n-l+$<o<2n, 
(4.3 1) 

where h(u) is given by (see Fig. 2) 

( 1+ &)(u-;,, j <u <$, 

2n 
h(u) = 

u-- 

IT - (p - 1)(2f: - 1) ’ 
2n 
F<o<Zn-l+i, 

P 

2n - 1, 2n - 1 + i -=C u < 2n. 

FIGURE 2 

Proof. Inequalities (4.27) and (4.28) both follow from (4.21) and 
Theorem 3.4 by means of Theorem 2.2, (2.11), and (2.12). By (2.13) of 
Theorem 2.3, the estimate (4.29) is a direct consequence of (4.27) and (4.28). 
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By (2.15) of Theorem 2.3, the estimate intermediate between (4.22) and (4.23) 
withj= Ok 

Inequality (4.30) now follows from (4.27) and (4.34) by (2.14) and 
Theorem 2.2. Inequality (4.31) is a direct consequence of (2.15) and 
Theorem 2.2 applied to (4.23), (4.21), and Theorem 3.4. The estimate 
(4.32) is proved by an application of Theorem 2.2 and (2.15) to (4.22) 
and (3.3). 

In order to prove (4.33), we apply Theorem 2.2 and (2.14) to (4.30) and 
(4.32) if l/p < (T < 2n/p, to (4.31) and (4.32) if 2n/p < cr < 2n - 1 + l/p, 
and to (4.29) and (4.30) if 2n - 1 + (l/p) < u < 2n. Q.E.D. 

In Theorem 4.9 we considered the operator Tf = f - s, wherefe WF[ CJ] 
or f E B$‘[O], 2 < p < co, and Tf E L,[O, 25~1 or Tf E B:*[o]. It is also 
possible to consider T as an operator from I+$,“[ 01 or B”d,r[ 0],2 < p1 < co, 
to &JO, 2~1 or B;Z’[O], p1 < pz < co. The easiest way to obtain such a 
generalization is to combine the inequalities of Theorem 4.9 with the following 
inequalities : 

The estimates (4.35) and (4.36) are merely restatements of the imbeddings 
(2.19) and (2.20) of Theorem 2.4. 

We would find, though, that we would not be able to derive all cases of 
(4.24) in this manner. Therefore, we give the estimates intermediate 
between (4.24) and those obtained from Theorem 4.8 by using (4.35) and 
(4.36). In the following theorem, we write out only the generalization of 
(4.33). 

THEOREM 4.10. For f E C[O], let s E SpT)[O] be its unique spline inter- 
polant, where A is a uniform partition of (- 03, + co). Then, for f E B:l’[O], 
l/p, < u < 2n, 2 < p1 < 00, 1 < r < 00, we have 

llf- s llsqo, < wr-r-1’z11+1’9* Ilfllag;r[ol 9 



318 HEDSTROM AND VARGA 

where p1 e p2 < w, 1 < q < ~0, and 0 < 7 < g(a); g(u) is given by 
(see Fig. 3) 

d4 = ZfL+L& 
I 2n- 1, 2n 

A 

gP1 

C( p1 l + p2(2n - 1) )(+-), ;<c&, 

l- 
( p2(p1 4(2n - 1) KJ - :I? 

2n 

P, 
<a<2n-1+f, 

PI 

-1+;<0<2n. 

(2”~1+$,.2n-1) 

(2n,2n-1) 

____j/ 

(yy+ $A 

FIGURE 3 

5. SPLINES OF BEST APPROXIMATION 

For a family 9 of splines, we introduce the functional 

J%(f) = j&g llf- s Ilqa,*] 9 l<P<W, 

on &[a, b]. In this section, we discuss the behavior of E,(f) as d + 0, for f 
in a Besov space. We begin by stating a result of de Boor [7] in this direction. 

THEOREM 5.1. Let A : a = x,, < x1 < .*. < x~+~ = b be a k-extended 
partition of [a, b], i.e., for SOme integer k >, 2, xj < xj+keI for all 
j = 0, l,..., N - k + 2. Consider the family F = SLk’ of all real functions s 
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on [a, b] which coincide with a polynomial of degree at most k - 1 on each 
subinterval (xj , ~~+~),j = 0, l,..., N, and such that ifxi has multiplicity vj with 
respect to A, then s E Ckc-yj-l in a neighborhood of xj . Then for any f E CQ[a, b], 
j = 0, l,..., k-l,O<ol<l,wehave 

where K is a constant, independent off and A. 

It is interesting to remark that de Boor’s error estimate (5.1) was obtained 
by linear projections of C+[O, l] onto SL”. 

If the family 9 is one of the classes previously considered, viz., sp(“)(~I), 
H(“)(A), or Sp(M, A), then it is easy to obtain upper bounds for E,(f) from 
the results of Sections 3-4, since 

where f is a spline interpolant off. If the functional E, were linear, we could 
immediately apply the intermediate-space theory of Section 2. However, E, , 
for p # 2, is a nonlinear functional. But, we can make use of the fact that E, 
is semilinear, i.e., 

As we shall see in the following lemma, some of the theory of intermediate 
spaces may be applied to E, . Although this lemma may be regarded as a 
folk-theorem, we include its proof for completeness. 

LEMMA 5.1. Let X be a Banach space, and let T : L,[a, b] + X be any 
nonlinear mapping such that there exist constants j3, AI,, , MI , and some positive 
integer m for which 

and 

II TN +fi)llx < Bill Tfl l/x + II Tfz 11x>, ‘6 E &[a, bl, (5.2) 

II Tf /Ix G W, Ilf IlL,[a,r,, vf E L&a, bl, 
(5.3) 

II Tfll, G Ml Ilfllwpmr,,~, ‘df E WPm[a, b]. 

Then, for any f E B:q[a, b], 0 < u < m, 1 < q < co, we have 

0 = a/m. (5.4) 
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Similarly, if(5.2) holds and iffor some r, r with 0 < r < m, 1 < r < co, one 
has 

II ?If l/x G Ml llf llB;.l[a,q , 

II Tf /lx G MI Ilf llw,m[a,a] , 

then for any f E B:P[a, b], T < cr < m, 1 < q < 00, we have 

(5.5) 

11 Tfllx G cl@9 4) MpM,e Ilf l!B;.~[a,bI , fj = Co - T> 
(ii-q- (5.6) 

Proof. Since the proofs of the inequalities (5.4) and (5.6) are similar, 
we shall only establish (5.4). Our basic tool is the inequality 

mt, m < 2~oK2wltI~o ,f>, O<t<q (5.7) 

where, as in (2.3), KI and K, are defined for t > 0 by 

and 

m, m = Tfj$+*l (II vo /Ix + t II fJ1 IIA (5.8) 

WJ) = &$$ (IIf IlqaJq + t llfi IlW,~[,,,]>. (5.9) 1 
Suppose we have secured (5.7). Then, if 1 < q < co and 0 < 8 < 1, 

(j,* (tPFcl(t, Tf)yJ +)‘I’ < a40 (j,* (t-eaw/~o ,f))P -yg 
(5.10) 

= 2lVf,1-%Q (jr (t-e&(t,f))q yq, 

andforq=coandO<e<l, 

sup t-eKl(r, Tf) < 2M,-%~0 sup t-eKz(t,f)* 
t>o t>o 

(5.11) 

From the definition (5.8), it is readily verified that 

mt, m = If ‘g-j: ’ O<t<l, 
t > 1, 

(5.12) 

so that the left sides of (5.10) and (5.11) are equal to C(& q) 11 Tf IIx, where 

c(e, q) E 1: (A + i)I”*p 
I 

1 G 4 < a, 
1. q= co. 
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Furthermore, it follows from (2.4) that the expressions on the right sides of 
(5.10) and (5.11) are simply 

2q-944; llfll (L,[a,bl,w,mla,bl)e,a * 

Consequently, (5.10) and (5.11) become 

‘te, d 11 Tfll, G 2M;-“M; Ilfll(L,[a,b],W,~“[a,b,~~ p ’ 

Next, using (2.13) of Theorem 2.4, we have 

(5.13) 

@DE& bl, WD%, blhp. = e%, bl, 0<8<1, l<q<co. 

Thus, using equivalence of norms, i.e., 

q4 4) Ilfll@,~.c[,,*] < llf II (L,[a,bl,W,“[a,bl)e,q < ‘,te, d lkf-ll@W+qb] 3 

(5.13) can be expressed as 

qe, d ii vi& < 2MyM~c2(e~ d iifiiB$m.q[a,bl ? ’ < e < ‘, ’ < 4 d co9 

i.e., the desired result of (5.4). Thus, (5.7) implies Lemma 5.1. 
It remains to prove (5.7). Assumefe L&z, b]. From the definition (5.9) it is 

clear that for each fixed positive t, there exist f0 E &,[a, b] and fi E FVVm[a, b] 
with f = f0 + fi such that 

Therefore, using the hypotheses (5.2) and (5.3), and the relation (5.12), 
we find for t > 1 that 

Kdt, TO = II V-L = II Wo +h)llx G ,‘W 73, Ilx + II Vi llx> 

< fl{ll T.f, IIx + t 11 Tfi II,> < k%&, IIf0 IIL&,] + t& iifi liWpm[,,b,) 

G 2BJW,W,tI~o 9 f 1, (5.15) 

the last inequality following from (5.14). Similarly, for 0 < t < 1, we have 

Kdt, Tf> = t II T(fo +A)ll G Bill Tfo Ilx + t II Vi lid 

The desired inequality (5.7) now follows directly from (5.15) and (5.16). 
Q.E.D. 

We now present our main theorem on best approximation by splines. 
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THEOREM 5.2. Let 1 < p < r < co, and let 9 be a collection of splines 
defined on the interval [a, b]. Suppose that for some positive integer m, 
m > l/p - l/r, andfor all f E WDm[a, b], the following inequality is valid: 

Then, for allf E B:‘[a, b], 0 < l/p - l/r < u < m, 1 < q < 00, we have 

Proof. First, suppose that p = r. From the trivial estimate 

qf) G llf llqz,b] 

and the assumed inequality (5.17), the desired result (5.18) follows imme- 
diately by Lemma 5.1 with 

Tf = KU) and X = R. (5.19) 

If r > p, we use (2.20) of Theorem 2.4 to deduce that 

q(f) G IlfliL9[a,b] G c lIflle~I*l[a,q 3 
1 1 

u1=---' P r 
(5.20) 

But then, inequality (5.18) for r > p follows from Lemma 5.1, using (5.19) 
and the inequalities (5.17) and (5.20). Q.E.D. 

Since the theorems of Sections 334 provide estimates of the type (5.17), 
we can, of course, apply Theorem 5.2 to each of them. We give two such 
applications to illustrate the method. 

As a consequence of Theorem 5.2 and (3.9), we have 

COROLLARY 5.1. Let F be the collection Sp(M, A) of Lg-splines on [a, b] 
with respect to a family A = {hi};=, of bounded linear functionals on Wzn[a, b] 
such that r(A) > n, Jlr n U,(O) = {0}, and such that the second integral 
relation (3.4) is valid. If f E &rq[a, b], 0 < u < 2n, 1 < q < 00, and tf 
2 < p < co, then 

(5.21) 

We remark that the inequality (3.9) of Proposition 3.2 directly implies 
(5.21) if n < (T < 2n, since trivially E,(f) < Ilf - s IIL,ta,al where 
s E Sp(M, II) is the unique Lg-spline interpolant off. On the other hand, if 
0 < 0 < n, the inequality (5.21) extends Proposition 3.2. 

As a consequence of Theorem 5.2 and (4.27), we obtain 
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COROLLARY 5.2. Let S be the collection Sp(“)[O] ofperiodic 2n-splines on 
a uniform mesh. If f E B:*[ 01, 0 < a<2n,2~p~oo,l~q~oo,then 

Finally, we state a corollary which extends Theorem 5.1 of de Boor [7]. 
From the special case j = k - 1, 01 = 1 of Theorem 5.1 and from 
Theorem 5.2, we obtain (cf. (2.10)) 

COROLLARY 5.3. Let A be a k-extended partition of [a, b]. Then, for 
f E B2g[a, b], 0 < cr < k, 1 < q < 03, 

(5.22) 

We remark that if u is not an integer, (5.22) is not an extension of (5.1), 
but is equivalent to it since 

Bzq[a, b] C Bz”[a, b] = C[“l~u-[ul[a, b]. 

However, if (5 is an integer j, then (5.21) is stronger than (5.1) in the sense that 
it is valid for a larger class of functions since (cf. (2.10)) 

B2m[u, b] Q d-‘,‘[a, b] and C’-lsl[a, b] C B?m[a, b]. 

APPENDIX. PROOF OF (2.19) AND (2.20) 

The proof is based on Peetre’s characterization [27] of Besov spaces. This 
characterization is in terms of functions F(X) and Y(x), -co < x < co, 
whose Fourier transforms @, 9 are Cm(- co, + co) functions such that the 
support of 4(c) is the set {e : l/2 < I t 1 < 2) and the support of !&$) is 
the set (4 : 1 5 1 ,< 2). For every positive integer k, we define the function 
am by the relation 

so that 
91k(X) = 2”&“4, (A.11 

ciikc9 = qv-“t). 

The support of +&$) is thus the set {.$ : 2”-l < ) 5 I < 2”fl). Further, the 
functions IJJ, Y are chosen so that 

k=l 
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It follows from (A.l) that 

I/ qk /~L&-m.m) d c, I/ P)k ii&.,(-o&m) d cf2”. 

Consequently, from Holder’s inequality, we have that 

II p7c II+m.m) < C”2k(1-1’r), l<r<:. (A.3) 

We shall also use a special case of a continuation theorem for Besov spaces. 
It is clear that if f~ B”aq(- co, co), then the restriction off to [a, b] is in 
B:q[a, b]. Conversely, Besov [3] has shown that if fe B”aq[a, b], then there 
exists an FE B>q(- co, co) such that 

I;(x) = f(x), adx<b, 

IIf llB;*Q[a,b] G C II Flls;.a(-m,m) . 

Consequently, we may restrict our attention to the space B”aq(- co, a). 
This restriction is made in order to enable us to take the Fourier transform 
off. 

Peetre [26,27] has shown that if u > 0, 1 < p < co, and 1 d q < 00, 
then the norm in B;q(- co, + co) is equivalent to 

N;‘“(f) = 11 y *fliL,(-m.d + 1 f (zko I/ vk *fliLpb,d)q/l’q, l<q<a, 
k=l 

II If/ *fllL&m,m) + “YP Zko II 92% *fllL,c-m,m, , 4 = CQ, 

where Y *f denotes the convolution of Y and f. Hence, there exist constants 
C, and C, such that 

WTYf) d Ilfllgy-co,m) d GGP(f)> f!sB;'(-a, co). (A.4) 

We may therefore use N:“(j) as the norm in B”aq(- co, a). 
By (2.17), it is sufficient to prove the imbedding (2.19) only in the case 

q1 = q2 = q, We begin by estimating II y * f /IL (-m,m) and /I 9)k *f/IL (-m,m) . 
After taking the Fourier transform of Y *f andDBnoting (A.2) and the%cation 
of the supports of ‘fi and $k , we find that 

Similarly, 

Y*f = Y*(Y*f)+ vl*(Y*f). 

n*f= Y*(,,*f)+ i P)l+Y*(?Jl*f)Y 
P-0 

P)k *f = i g)k+v * (?k *.f>, k > 2. 
v--l 

(A. 5) 

G4.6) 
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We now apply Young’s inequality (cf. O’Neil [22]), 

II g * h llL&rn,ao) < II g IIL,(--m,d II h IIL,lbvm) , l/h = l/r + lh - 1, 

and inequality (A.3) to deduce that 

11 P)ktv * (Fk *f)llL,&m.m) G c 2- (k+v)(l’sa-l’pl) (I P)k *f~I+qc,,) , 

II y * P *fk+,m) G c II !JJ *fllL,,(-mm, 7 64.7) 

II y * (9% *f)ll1+m,~, < c II 93 *fllLpl(-m.m) * 

Consequently, if crl - (l/p,) = u2 - (l/p& it follows from (A.4) through 
(A.7) that for 1 < q < co, 

+ “2 ( f !  (2kozt1 vk *&,,(-m,m,,n) 

l/Q 

k=l 

G c’ 11 y *:fllL.pl(-d + c’ ( f (2k01 11 P)k *fllL,,,(-m&y) 

l/Q 

k=l 

This proves (2.19) for the case 1 < q < co; the proof in the case q = 00 is 
analogous. 

We now turn to the proof of (2.20). If i?“dg(- co, co), (T < 0,l < p < co, 
1 < q < co, is defined to be the collection of tempered distributions f with 
finite norm N:Q(f), then it is easy to show that B”aQ(--co, co) is a Banach 
space (cf. Peetre [26, 271). Furthermore, the above argument shows that the 
imbedding (2.19) is valid even when g1 or u2 is nonpositive. In particular, 
if p1 < pz and u1 = l/p, - l/p2 , then 

qy- co, Cm) c lq- co, co). (A.81 

However, we also have (cf. Peetre [26, 271) 

By(- co, co) c L,, c B;,"(-cq co). 64.9) 

The imbedding (2.20) now follows from (A.8) and (A.9). Q.E.D. 

6401413-7 
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