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Abstract

It is shown that the extra supersymmetry of tensionless superstring and superp-brane is accompanied by the presence
new bosonic gauge symmetries. It permits to use composed coordinates encoding all physical degrees of freedom of
and invariant under these gauge symmetries and the enhancedκ-symmetry. It is proved that the composed gauge invar
coordinates coincide with the components of symplectic supertwistor realizing a linear representation of the hiddenOSp(1,2M)

symmetry of the superp-brane Lagrangian. A connection of the presented gauge symmetries with massless higher sp
theories and a symmetric phase of M/string-theory is discussed.
 2003 Elsevier B.V.

1. Introduction

Tensionless (super)strings have recently been discussed in the frame of massless higher spin field th
AdS/CFT correspondence [1–3]. The point is the relationg2

YMN = (R2/α′)2 between the ’t Hooft coupling
constantg2

YMN and the rescaled string tensionR2/α′, whereR is the radius ofAdS5 × S5.1 This relation shows
that the zero limit for the string tensionT = 1/α′ leads to a free gauge theory. The conjecture was adva
that conformalN = 4 SYM theory has to be dual to the theory of massless higher spin fields whenN is large.
Symplectic (super)symmetriesOSp(1,2p) play an important role in the formulation of the massless higher
field dynamics and may be linearly realized in the generalized spacetime described by the real symmetr
Yab (a, b = 1, . . . ,2p) and its superpartner [3,5]. Ifa, b are identified with the Majorana spinor indices theYab

components can be treated as spacetime coordinates added by tensor central charge (TCC) coordinates
by antisymmetric spacetime tensors contracted with appropriate antisymmetrized products ofγ -matrices.

It was assumed in [3] that higher spin gauge theory may be treated as a symmetric phase of M
This assumption is supported by the observation [6] on a nonlinear character of theOSp(1,64) supersymmetry
realization inD = 11 supergravity which is the low-energy limit of M/string-theory, where higher spin excita
are massive. The consideration of superstring theory as a spontaneously broken phase of higher spin gau

E-mail address: aaz@physto.se (A.A. Zheltukhin).
1 The rescaled string tension as a perturbative parameter of string dynamics in curved spaces was previously considered in [4].
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promises a new basis for understanding the microscopic structure of superbranes in terms of the spo
breaking parameters of higher spin gauge theory which correlates with the topological approach [7].

Thus, it is important to find the right kind of string/M-theory in terms of the new dynamical variables asso
with orthosymplectic (super)symmetries and higher spins. This problem stimulates investigation of the sup
and superbrane dynamics in generalized spacetimes extended by the addition of TCC coordinates [8–10]

Using the twistor-like approach [10,11] the exactly solvable model of tensionless superp-brane preserving 3/4
of theD = 4N = 1 supersymmetry was proposed in [12], which generalizes the superparticle model [13],
preserving 3/4 supersymmetry was earlier noted. This superp-brane saturates the exotic BPS state with the s
symmetry whose existence has been proved in [14] applying the model independent analysis of theD = 4N = 1
superalgebra enlarged by tensor central charges. The model [12] preserves all its properties in theD-dimensional
Minkowski space withD = 2,3,4 mod(8), where the supersymmetric Cartan form and an auxiliary twistor
Majorana spinor, defining the superbrane Lagrangian, are the same modulo the spinor’s dimension. As
the tensionless superp-brane will saturate the exotic BPS state spontaneously breaking only one fromM global
supersymmetries, whereM is the Majorana spinor dimension. An interpretation of this tensionless superp-brane
as the BPS state of M-theory was recently discussed in [15]. An important property of the tensionless sp-
brane [12] and the appropriate BPS state is the linear character of theOSp(1,2M) symmetry realization. The linea
realization is a result of the transition to a new supertwistor variable previously considered in the super
dynamics [13,16,17]. The symplectic supertwistorYΛ [12] encodes all physical degrees of freedom containe
Yab and the Majorana spinorθa which describe the original formulation of the model. This reduction of the in
variable number points out on the presence of hidden bosonic gauge symmetries strongly correlating with
κ-symmetry. A fine tuning of these symmetries results in the minimal spontaneous breaking of theN = 1 global
supersymmetry and manifests itself by theOSp(1,2M) symmetry appearance similarly to the superparticle c
[13,18], where the first class constraints have signaled about the hidden bosonic symmetry presence.

Therefore, the problem appears to find hidden gauge symmetries responsible for the reduction of the
degrees of freedom described by the spacetime and TCC coordinates. Let us remind that the reducti
fermionic degrees of freedom of the model is provided by its enhancedκ-symmetry [12]. The required boson
symmetries should match the enhancedκ-symmetry and their description is important for understanding
structure of a symmetric phase of string/M-theory [3] and local symmetries compatible with the BPS
characterized by extra supersymmetry [19].

In this Letter we present a set of new bosonic gauge symmetries matched with the enhancedκ-symmetry of the
tensionless superp-brane. We show that these gauge symmetries result in the invariant reduction of the b
gauge degrees of freedom described by the original symplectic spin-tensorYab. The invariant character of th
reduction means that the symplectic supertwistorYΛ encoding all physical degrees of freedom and providing
OSp(1,2M) symmetry of the superbrane Lagrangian is gauge invariant under the transformations of the
and enhancedκ-symmetries. It should be noted that the bosonic symmetries include the Weyl gauge sym
which correlates with a global spacetime conformal symmetry of the tensionless string action as it was n
[20].

2. Tensionless super p-brane with enhanced supersymmetry

The inclusion of TCC in the algebra ofN = 1 supersymmetry generalizes anticommutator of the Majo
superchargesQa to the form [21,22]

(1){Qa,Qb} = (
γm C−1)

ab
Pm + i

(
γmn C−1)

ab
Zmn + (

γmnl C−1)
ab
Zmnl + · · · .

The r.h.s. of Eq. (1) contains antisymmetrized products ofγ -matrices multiplied by the TCCZmn... which
are antisymmetric Lorentz tensors in the Minkowski spacetime commuting withQa . The real antisymmetri
parameterszmn... corresponding toZmn... are known as TCC coordinates which may be presented in the equiv
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(2)zab = izmn

(
γmnC−1)

ab
+ zmnl

(
γmnlC−1)

ab
+ · · ·

by analogy with the spinor representation of the spacetime coordinatesxm

(3)xab = xm
(
γmC−1)

ab
.

The coordinateszab andxab may be treated as the components of the real symmetric spin-tensor

(4)Yab ≡ xab + zab

which can be identified with the symmetric matrix of generalized symplectic coordinates considered in [3,
pairs(Yab, θa) unifying Yab and the Majorana spinorθa form a generalized superspace invariant under theN = 1
global supersymmetry

(5)δεθa = εa, δεYab = 2i(θaεb + θbεa).

The differential one-formsWa andWab of the generalized superspace

(6)Wa = dθa, Wab = dYab − 2i(dθa θb + dθb θa)

are the Cartan forms invariant under (5) which have been used to construct the exactly solvable model [12

(7)Sp = 1

2

∫
dτ dpσ ρµ

(
UaW

ab
µ Ub

)
,

of tensionless superp-brane (p = 1,2,3, . . .) with extraκ-symmetry. The actionSp includes an auxiliary Majoran
spinorUa [23] and the world-volume densityρµ [24] which are invariants of theN = 1 supersymmetry. Th
spinorUa parametrizes the light-like density of the brane momentum. The actionSp is also invariant under th
transformations of the enhancedκ-symmetry

δκθa = κa, δκYab = −2i(θaκb + θbκa),

(8)δκUa = 0, δκρ
µ = 0,

where the parameterκ is restricted by the only one real condition

(9)κaUa = 0.

As a result, this model preserves(M−1
M

) fraction of theN = 1 supersymmetry, whereM is the dimension of the
correspondent Majorana spinor. The model yields a pure static general solution for the Goldstone fermionη̃ defined
by the Lorentz invariant projection

(10)η̃ = −2i
(
Uaθa

)
encoding the spontaneously broken component of the supersymmetry. The exact solvability of the mode
the presence of hidden local symmetries which is revealed by the change of variables

(11)iỸa = YabU
b − η̃θa

introducing the Majorana spinor̃Ya as a new variable substituted forYab. In terms of the new spinor variable th
action (7) transforms to the form

(12)Sp = i

2

∫
dτ dpσ ρµ

{[(
Ua∂µỸa

) − (
∂µU

aỸa

)] − η̃∂µη̃
}
.
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The action (12) is the component representation of theOSp(1,2M) invariant action

(13)Sp = 1

2

∫
dτ dpσ ρµ∂µY

ΛGΛΞYΞ

in which the realOSp(1,2M) supertwistorYΛ = (iUa, Ỹa, η̃) and invariant supersymplectic metricGΛΞ =
(−1)ΛΞ+1GΞΛ have been used. The transition from the representation (7) to the supertwistor representa
(or (13)) is accompanied by the reduction of some original variables both in the fermionic and bosonic se
means that the superp-brane Lagrangian is singular due to the presence of hidden gauge symmetries. The e
κ-symmetry (8) is responsible for the reduction of the(M −1) of theM components of the Majorana spinorθa and
one remaining fermionic variablẽη (10) proved to be invariant under theκ-symmetry transformations (8), (9). Th
invariance of the Goldstone fermionη̃ proves that(M − 1) fermionic gauge degrees of freedom have been red
without gauge fixing. The question then appears about hidden gauge symmetries responsible for the red
the bosonic gauge degrees of freedom contained inYab. We shall define these symmetries in the next section.

3. Gauge symmetries matched with extra κ-symmetry

First of all we note that both of the representations (7) and (12) are invariant under the local Weyl sym
including one real parameterΛ(τ, �σ )

(14)ρ′µ = e−2Λρµ, U ′
a = eΛUa, θ ′a = θa, Y ′

ab = Yab.

The transformations (14) imply thatx ′
ab = xab, z′

ab = zab, but Ỹa and the supertwistorY ′Λ are not invariant unde
the Weyl transformations

(15)Ỹ ′
a = eΛỸa, Y ′Σ = eΛYΣ.

The invariant character ofYab (14) means that the Weyl symmetry does not participate in the discussed red
of the bosonic coordinates and other gauge symmetries should be found. To connect the above-mention
symmetries with theOSp(1,8) symmetry of the 4d higher spin theory [3] and the results [14] we present he
detailed analysis of theD = 4 N = 1 supersymmetry. The generalization of these results to the higher dimen
D = 2,3,4 mod(8) will be clear from this analysis.

In the 4d case the actionSp (7) acquires the form

(16)Sp = 1

2

∫
dτ dpσ ρµ

(
2uαωµαα̇ū

α̇ + uαωµαβu
β + ūα̇ω̄µα̇β̇ ū

β̇
)
,

where the supersymmetric one-formsωµαα̇ andωµαβ in the Weyl basis are

ωµαα̇ = ∂µxαα̇ + 2i
(
∂µθαθ̄α̇ + ∂µθ̄α̇θα

)
,

ωµαβ = −∂µzαβ − 2i
(
∂µθαθβ + ∂µθβθα

)
,

(17)ω̄µα̇β̇ = −∂µz̄α̇β̇ − 2i
(
∂µθ̄α̇ θ̄β̇ + ∂µθ̄β̇ θ̄α̇

)
.

For the search of hidden gauge symmetries it is efficient to introduce a basis in the spinor space of the m
this end a linearly independent local Weyl spinorvα may be added touα . Then, without loss of generality, the We
spinorsuα andvα attached to the brane worldvolume may be identified with the local Neumann–Penrose dy
defined by the well-known relations

(18)uαuα = 0, vαvα = 0, uαvα ≡ uαεαβv
β = 1
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and their complex conjugate. The scalar products (18) will be invariants of the Weyl transformations (14
transformationV ′

a = e−ΛVa is taken into account. The Majorana bispinorsUa(τ, �σ) = (uα

ūα̇

)
, Va(τ, �σ ) = (vα

v̄α̇

)
,

(γ 5U)a and(γ 5V )a [12] will respectively form a basis in the Majorana bispinor space.
The first of the desired gauge symmetries which transforms onlyxm is defined as

(19)δXxαα̇ = εXuαūα̇

and it is a local symmetry of the actionSp (16), due to the relationuαuα = 0. We shall call this one-parametric re
transformation asX-shift. It shiftsxm by the light-like 4-vector(uσmū)

(20)δXxm = −1

2
εX

(
uσmū

)
.

The change(uσmū) → (�UγmU) in (20) lifts theX-shift to the bispinor representation and shows that it is also
symmetry of the high dimensional action (7) due to the relation(UaUa) = 0 satisfiable for the Majorana bispinor

The next gauge symmetry ofSp (16) transforms only the TCC coordinateszαβ

(21)δT zαβ = εT uαuβ, δT z̄α̇β̇ = ε̄T ūα̇ ūβ̇ .

It includes one complex parameterεT and we shall call it asT -shift. Note that the local spin-tensoruαuβ in (21)
has zero norm, i.e.,(uαuβ)(u

αuβ) = 0, and defines a set of local null planes attached to the superp-brane world-
volume. Therefore, theT -shifts are a generalization of theX-shifts (19), described by the field of null vectors,
the shifts defined by the field of null bivectors, as it can be seen from the representation (21) in the tensor

(22)δT zmn = − i

4

[
ε
(R)
T

(
uσmnu + ūσ̃mnū

) + ε
(I )
T

(
uσmnu − ūσ̃mnū

)]
,

whereε(R) andε(I ) are real parameters

(23)ε
(R)
T = 1

2

(
εT + ε̄T

)
, ε

(I )
T = 1

2i

(
εT − ε̄T

)
.

In terms of the Majorana bispinorUa the transformation (22) is presented as

(24)δT zmn = i

8

[
ε
(R)
T

(�UγmnU
) + ε

(I )
T

(�Uγmnγ5U
)]
,

where the bivectors(�UγmnU) and(�Uγmnγ5U) belong to the field of null or isotropic bivectors [11] defined by
conditions

(25)
(�UγmnU

)2 = 0,
(�Uγmnγ5U

)2 = 0,

and are interpreted as the egenvalues of the generalized TCCZmn (1). We see that the local translations of t
TCC coordinateszmn by the null bivectors (25) produce a new type of gauge symmetry due to which the
coordinateszmn proved to be defined modulo the shift by the null bivectors. In the higher-dimensional Minko
spacetimes additional multivector translations presented by the bilinear covariants similar to(�Uγmn...lU) will
appear as admissible gauge symmetries of the action (7).

To continue the description of the next gauge symmetries we note that the dyad space (18) is symmet
theu ↔ v spinor permutation which transforms the null spin-tensorsuαuβ (21) to the null spin-tensorsvαvβ . But,
it is not a symmetry of the action (16). However, the local shift ofzαβ by the null tensorvαvβ similar to the null
shift (21) may be compensated if simultaneous shift ofxαα̇ by the correspondent null vectorvαv̄α̇ similar to (19)
will be added. As a result, we find a new one-parametric gauge symmetry ofSp (16)

(26)δT̃R
xαα̇ = εT̃R

vαv̄α̇ , δT̃R
zαβ = εT̃R

vαvβ, δT̃R
z̄α̇β̇ = εT̃R

v̄α̇ v̄β̇ ,
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because the correspondent variation ofSp (16)

(27)δT̃R
Sp =

∫
dτ dpσ ρµ∂µεT̃R

[(
uαvα

)2 − 1
] = 0

equals to zero due to (18). Let us call the transformation (26) asT̃R-shift.
The local space-like vectorsm(+)

αα̇ andm(−)
αα̇

(28)m
(+)
αα̇ = uαv̄α̇ + vαūα̇, m

(−)
αα̇ = i

(
uαv̄α̇ − vαūα̇

)
, n

(+)
αα̇ = uαūα̇, n

(−)
αα̇ = vαv̄α̇,

orthogonal to the real local null vectorsuαūα̇ (19) andvαv̄α̇ (26), form the local tetrade attached to the superbr
worldvolume.

The local shifts of thex-coordinates in the transverse directionsm
(±)
αα̇

(29)δΦ(+)xαα̇ = εΦ(+)m
(+)
αα̇ , δΦ(−)xαα̇ = εΦ(−)m

(−)
αα̇ ,

which we shall callΦ(±)-shifts, changeSp (16)

δΦ(+)S =
∫

dτ dpσ ρµεΦ(+)

(
uα∂µuα + ūα̇∂µūα̇

)
,

(30)δΦ(−)S = i

∫
dτ dpσ ρµεΦ(−)

(
uα∂µuα − ūα̇∂µūα̇

)
.

However, just as in the previous case the variations (30) are exactly compensated by the correspondent sh
TCC coordinateszαβ

δΦ(+)zαβ = 2εΦ(+)u{αvβ}, δΦ(+) z̄α̇β̇ = 2εΦ(+) ū{α̇ v̄β̇},
(31)δΦ(−)zαβ = 2iεΦ(−)u{αvβ}, δΦ(−) z̄α̇β̇ = −2iεΦ(−) ū{α̇ v̄β̇},

where the symmetrized productionu{αvβ} ≡ 1
2(uαvβ + uβvα) was introduced.

Thus, we found six real bosonic gauge symmetries of the action (7) in the 4d Minkowski spacetime generate
by theX,T ,�T , T̃R,Φ

(+) andΦ(−) which form six parametric Abelian group of translations in the 10d symplectic
subspace of the 11d symplectic superspace. In the next section we shall show that these gauge symmet
responsible for the invariant reduction of six bosonic gauge degrees of freedom contained inYab (4).

4. The gauge invariance of the supertwistor YΛ

Here we show that the supertwistorYΛ is invariant under the above presented bosonic gauge symmetries a
enhancedκ-symmetry. The invariance ofYΛ will prove the gauge invariant character of the considered reduc
of bosonic and fermionic degrees of freedom. To this end let us consider the transformation propertie
supertwistorYΛ = (iUa, Ỹa, η̃) under the fermionicκ-symmetry (8), (9) and bosonic symmetries described by
X-shifts (19),T -shifts (21),T̃R-shifts (26) and theΦ(±)-shifts (29), (31).

Then we find that invariant character of theUa andη̃ follows from the definitions of the transformation rules
the enhancedκ-symmetry and the bosonic symmetries.

Using this observation one can present the gauge transformations of the remaining supertwistor compoiỸa

as

(32)iδỸa = δYabU
b − η̃δθa.

The substitution of theκ-symmetry transformations (8) in (32) together with using the relations (9) and (10) y
the required result

(33)δκ Ỹa = 0.
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Taking into account the invariance ofθa under the bosonic gauge symmetries one can simplify the variation
to the form

(34)iδỸa = δYabU
b =

(−δzαβu
β + δxαα̇ū

α̇

δx̃α̇αuα − δz̄α̇β̇ ūβ̇

)
.

The substitution of theX-shifts (19) andT -shifts (21) into (34) results in the relations

(35)δXxαα̇ū
α̇ = εXuα

(
ūα̇ ū

α̇
) = 0, δT zαβu

β = εT uα

(
uβu

β
) = 0

and their complex conjugate which prove the invariance ofỸa under these shifts.
The invariancẽYa under thẽTR-shifts (26) follows from the cancellation ofx andz contributions given by

(36)δT̃R
xαα̇ū

α̇ − δT̃R
zαβu

β = εT̃R
vα − εT̃R

vα = 0.

The analogous cancellations take place between thex andz contributions

δΦ(+)xαα̇ū
α̇ − δΦ(+)zαβu

β = εΦ(+)

[
m

(+)
αα̇ ūα̇ − 2u{αvβ}uβ

] = 0,

(37)δΦ(−)xαα̇ū
α̇ − δΦ(−)zαβu

β = εΦ(−)

[
m

(−)
αα̇ ūα̇ − 2iu{αvβ}uβ

] = 0

and their complex conjugate generated by theΦ(±)-shifts (29), (31).
It completes the proof of the invariance ofYΛ under the discussed six bosonic and three fermionic ga

symmetries.

5. Conclusion

Symmetries of tensionless superstring and superbrane with extra supersymmetry were studied. It was s
theκ-symmetry enhancement is accompanied by the appearance of bosonic gauge symmetries including
transformation and the local Abelian translations of the spacetime and TCC coordinates. In the case ofD = 4N = 1
supersymmetry the translations are presented by the local vectors and bivectors constructed from the co
of an auxiliary spinor field parametrizing the momentum density of the brane. In the high dimensional
gauge multivector translations of TCC coordinates will appear. Due to these gauge symmetries the origina
coordinates are defined modulo these gauge translations resulting in the appearance of new composed c
encoding the physical degrees of freedom contained in the original coordinates. The new variables ar
in the components of a symplectic supertwistor realizing linear representation of theOSp(1,2M) symmetry. We
proved that this supertwistor is an invariant of the gauge translations and the enhancedκ-symmetry. So, the linearl
realizable symplectic supersymmetries describing massless higher spin gauge theories appear as a resu
tuning of the set of local and global symmetries of the Lagrangians of tensionless superstring and sup
The tensionless objects are connected with the high energy limitE � MPlanckof the string theory, where mass
of all particles are negligible and a hidden large symmetry takes shape [26]. It hints that symplectic supe
describing tensionless strings and branes may be found relevant variable for the description of a symmet
of M-theory and quantum field string theory at the high energy scale.
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