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Abstract

It is shown that the extra supersymmetry of tensionless superstring andstypane is accompanied by the presence of
new bosonic gauge symmetries. It permits to use composed coordinates encoding all physical degrees of freedom of the model
and invariant under these gauge symmetries and the enharegdmetry. It is proved that the composed gauge invariant
coordinates coincide with the components of symplectic supertwistor realizing a linear representation of thefidtiezns)
symmetry of the supep-brane Lagrangian. A connection of the presented gauge symmetries with massless higher spin gauge
theories and a symmetric phase of M/string-theory is discussed.
0 2003 Elsevier B.V. Open access under CC BY license,

1. Introduction

Tensionless (super)strings have recently been discussed in the frame of massless higher spin field theory and
AdS/CFT correspondence [1-3]. The point is the relatiggy N = (R?/a’)? between the 't Hooft coupling
constantg?,, N and the rescaled string tensi®?/«’, whereRr is the radius 0AdSs x $°. This relation shows
that the zero limit for the string tensiofi = 1/a’ leads to a free gauge theory. The conjecture was advanced
that conformalV = 4 SYM theory has to be dual to the theory of massless higher spin fields Wherarge.
Symplectic (super)symmetri€3p(1, 27) play an important role in the formulation of the massless higher spin
field dynamics and may be linearly realized in the generalized spacetime described by the real symmetric matrix
Yap (a,b=1,...,2P) and its superpartner [3,5]. If, b are identified with the Majorana spinor indices thg
components can be treated as spacetime coordinates added by tensor central charge (TCC) coordinates presentse
by antisymmetric spacetime tensors contracted with appropriate antisymmetrized proguctatfces.

It was assumed in [3] that higher spin gauge theory may be treated as a symmetric phase of M-theory.
This assumption is supported by the observation [6] on a nonlinear character @§bE 64) supersymmetry
realization inD = 11 supergravity which is the low-energy limit of M/string-theory, where higher spin excitations
are massive. The consideration of superstring theory as a spontaneously broken phase of higher spin gauge theon
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promises a new basis for understanding the microscopic structure of superbranes in terms of the spontaneous
breaking parameters of higher spin gauge theory which correlates with the topological approach [7].

Thus, itis important to find the right kind of string/M-theory in terms of the new dynamical variables associated
with orthosymplectic (super)symmetries and higher spins. This problem stimulates investigation of the superstring
and superbrane dynamics in generalized spacetimes extended by the addition of TCC coordinates [8-10].

Using the twistor-like approach [10,11] the exactly solvable model of tensionless gtipane preserving/3l
of the D =4 N = 1 supersymmetry was proposed in [12], which generalizes the superparticle model [13], where
preserving 34 supersymmetry was earlier noted. This supdirane saturates the exotic BPS state with the same
symmetry whose existence has been proved in [14] applying the model independent analysi® ef =1
superalgebra enlarged by tensor central charges. The model [12] preserves all its properti€sdintieasional
Minkowski space withD = 2, 3,4 mod8), where the supersymmetric Cartan form and an auxiliary twistor-like
Majorana spinor, defining the superbrane Lagrangian, are the same modulo the spinor’s dimension. As a result,
the tensionless superbrane will saturate the exotic BPS state spontaneously breaking only onéfrghabal
supersymmetries, whe is the Majorana spinor dimension. An interpretation of this tensionless gupeane
as the BPS state of M-theory was recently discussed in [15]. An important property of the tensionlegs- super
brane [12] and the appropriate BPS state is the linear character©&iié, 2M) symmetry realization. The linear
realization is a result of the transition to a new supertwistor variable previously considered in the superparticle
dynamics [13,16,17]. The symplectic supertwistat [12] encodes all physical degrees of freedom contained in
Y,» and the Majorana spin@¥ which describe the original formulation of the model. This reduction of the initial
variable number points out on the presence of hidden bosonic gauge symmetries strongly correlating with the extra
rk-symmetry. A fine tuning of these symmetries results in the minimal spontaneous breaking\o&tiieglobal
supersymmetry and manifests itself by 8p(1, 2M) symmetry appearance similarly to the superparticle case
[13,18], where the first class constraints have signaled about the hidden bosonic symmetry presence.

Therefore, the problem appears to find hidden gauge symmetries responsible for the reduction of the bosonic
degrees of freedom described by the spacetime and TCC coordinates. Let us remind that the reduction of the
fermionic degrees of freedom of the model is provided by its enhanegdnmetry [12]. The required bosonic
symmetries should match the enhaneedymmetry and their description is important for understanding the
structure of a symmetric phase of string/M-theory [3] and local symmetries compatible with the BPS states
characterized by extra supersymmetry [19].

In this Letter we present a set of new bosonic gauge symmetries matched with the enhagpedetry of the
tensionless super-brane. We show that these gauge symmetries result in the invariant reduction of the bosonic
gauge degrees of freedom described by the original symplectic spin-tEpsofhe invariant character of the
reduction means that the symplectic supertwigtrencoding all physical degrees of freedom and providing the
O$(1, 2M) symmetry of the superbrane Lagrangian is gauge invariant under the transformations of the bosonic
and enhanced-symmetries. It should be noted that the bosonic symmetries include the Weyl gauge symmetry
which correlates with a global spacetime conformal symmetry of the tensionless string action as it was noted in
[20].

2. Tensionless super p-branewith enhanced super symmetry

The inclusion of TCC in the algebra &f = 1 supersymmetry generalizes anticommutator of the Majorana
supercharge@, to the form [21,22]

(Qa. Qv} = (" C74) P +i (™€) Zonn + (Y™ C73) gy Zonmt + -+ (1)

The r.h.s. of Eq. (1) contains antisymmetrized products ehatrices multiplied by the TC(&,,,.. which
are antisymmetric Lorentz tensors in the Minkowski spacetime commuting @jthThe real antisymmetric
parameters,,,... corresponding t&,,,... are known as TCC coordinates which may be presented in the equivalent
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spinor form

Zab = iZmn (anC_l)ab + Zmni (anlc_l)ab + e (2)
by analogy with the spinor representation of the spacetime coordinates

Xab =X (y"C7Y) . ®)

The coordinates,;, andx,, may be treated as the components of the real symmetric spin-tensor

Yab = Xap + Zab (4)

which can be identified with the symmetric matrix of generalized symplectic coordinates considered in [3,5]. The
pairs(Y,p, 6,) unifying Y,;, and the Majorana spin@y, form a generalized superspace invariant undenthe 1
global supersymmetry

8:04 = &4, 8¢ Yap = 2i(Bap + Opea). (5)
The differential one-form&, andW,,, of the generalized superspace
W =db,, Wap =dYap _Zi(dga Op + dOp 6,) (6)

are the Cartan forms invariant under (5) which have been used to construct the exactly solvable model [12]
1
széfdrdpap“(UaW/ibUb), 7

of tensionless supegr-brane p =1, 2, 3, . ..) with extrax-symmetry. The actiof§,, includes an auxiliary Majorana
spinor U, [23] and the world-volume density* [24] which are invariants of th&v = 1 supersymmetry. The
spinor U, parametrizes the light-like density of the brane momentum. The asijde also invariant under the
transformations of the enhanceegsymmetry

8c0a = Ka, S Yap = —2i (Bakp + Opka),

85U, =0, Sep" =0, (8)
where the parameteris restricted by the only one real condition

kU, =0. 9)

As a result, this model preserve%’M;l) fraction of theN = 1 supersymmetry, wher# is the dimension of the
correspondent Majorana spinor. The model yields a pure static general solution for the Goldstone/felafiioed
by the Lorentz invariant projection

n=-=2i(U%L,) (10)

encoding the spontaneously broken component of the supersymmetry. The exact solvability of the model implies
the presence of hidden local symmetries which is revealed by the change of variables

iY, =YupU" — 76, (11)

introducing the Majorana spinévra as a new variable substituted figg,. In terms of the new spinor variable the
action (7) transforms to the form

$p= 5 [ dearo p{[©“850) ~ (u0°F)] ~ i) ¢
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The action (12) is the component representation ofd8e(1, 2M) invariant action
1 4 " A =
S”ZE drdPo p"9, Y GazY (13)

in which the realOSp(1, 2M) supertwistory4 = (iU, Y., 7) and invariant supersymplectic metr€,z =
(—1)4%+1G 5 4 have been used. The transition from the representation (7) to the supertwistor representation (12)
(or (13)) is accompanied by the reduction of some original variables both in the fermionic and bosonic sectors. It
means that the supgrbrane Lagrangian is singular due to the presence of hidden gauge symmetries. The enhanced
k-symmetry (8) is responsible for the reduction of { — 1) of the M components of the Majorana spirdgrand

one remaining fermionic variabk(10) proved to be invariant under tkesymmetry transformations (8), (9). The
invariance of the Goldstone fermigiproves that M — 1) fermionic gauge degrees of freedom have been reduced
without gauge fixing. The question then appears about hidden gauge symmetries responsible for the reduction of
the bosonic gauge degrees of freedom containéginWe shall define these symmetries in the next section.

3. Gauge symmetries matched with extra k-symmetry

First of all we note that both of the representations (7) and (12) are invariant under the local Weyl symmetry
including one real paramete(z, o)
P/t =" pH, U, =etU,, 6’ =64, Y.y =Y. (14)
The transformations (14) imply thagb = Xub, z;b = zq4p, DUt )7a and the supertwistar’4 are not invariant under
the Weyl transformations
Vi=er¥,, YT =eAyT (15)

The invariant character df,;, (14) means that the Weyl symmetry does not participate in the discussed reduction
of the bosonic coordinates and other gauge symmetries should be found. To connect the above-mentioned gauge
symmetries with th®©Sp(1, 8) symmetry of the 4 higher spin theory [3] and the results [14] we present here a
detailed analysis of th® = 4 N = 1 supersymmetry. The generalization of these results to the higher dimensions
D = 2, 3, 4 mod8) will be clear from this analysis.

In the 4/ case the actio, (7) acquires the form

1 » o
Sy, = > / dtdPo p“(Zu"‘a)lwdu“ + u"‘wwﬁuﬁ + u"‘a)lm/;uﬂ), (16)
where the supersymmetric one-formg,; andw,qs in the Weyl basis are
Wpad = duXas + 2i (800 + 810604
‘Uuaﬁ = —8uzaﬁ — 2l (8/1«90!9/3 + 8H9/59a)’
@5 = —uZap — 20(9u0605 + 8,0405). (17)

For the search of hidden gauge symmetries it is efficient to introduce a basis in the spinor space of the model. To
this end a linearly independent local Weyl spinémay be added te*. Then, without loss of generality, the Weyl
spinorsu® andv® attached to the brane worldvolume may be identified with the local Neumann—Penrose dyad [25]
defined by the well-known relations

u®uy =0, v¥v, =0, u®vy = u‘)‘sa/gv’S =1 (18)
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and their complex conjugate. The scalar products (18) will be invariants of the Weyl transformations (14) if the
transformationV, = ¢~“V,, is taken into account. The Majorana bispindfs(t, ) = (5%), Va(r.5) = (%),
(y°U), and(y°V), [12] will respectively form a basis in the Majorana bispinor space.

The first of the desired gauge symmetries which transforms.gnig defined as

SxXaq = ExUglly (19)

and itis a local symmetry of the actidh (16), due to the relation“u, = 0. We shall call this one-parametric real
transformation ax -shift. It shiftsx,, by the light-like 4-vecto(uo,,it)

1
SxXm = —EEX(MUmﬁ)~ (20)

The changéuo,ii) — (Uy,U) in (20) lifts the X-shift to the bispinor representation and shows that it is also the
symmetry of the high dimensional action (7) due to the relatiéfU,) = 0 satisfiable for the Majorana bispinors.
The next gauge symmetry 6f, (16) transforms only the TCC coordinateg

O7Zap = €TUGUE, STZW; =ETIZ(5(IZB. (22)
It includes one complex parametgr and we shall call it ag'-shift. Note that the local spin-tensegug in (21)
has zero norm, i.e(uauﬁ)(u“uﬁ) =0, and defines a set of local null planes attached to the supeane world-
volume. Therefore, th&-shifts are a generalization of thé-shifts (19), described by the field of null vectors, to
the shifts defined by the field of null bivectors, as it can be seen from the representation (21) in the tensor form

8T Zmn = —%[G;R)(uomnu + ﬁ&mnﬁ) + e(TI)(uamnu - ﬁ&mnﬁ)], (22)

wheree® ande!) are real parameters

1 1
E;R) = E(GT + ET), G(TI) = E(ET — G_T). (23)

In terms of the Majorana bispin@f, the transformation (22) is presented as
i _ _
87 Zmn = é[G;R)(UanU) +€;~1)(U7/mny5U)], (24)
where the bivector/ y,,,U) and(U y,., ysU) belong to the field of null or isotropic bivectors [11] defined by the
conditions

(TymnU)? =0, (TymnysU)* =0, (25)

and are interpreted as the egenvalues of the generalizedZ,(;G1). We see that the local translations of the
TCC coordinates,,, by the null bivectors (25) produce a new type of gauge symmetry due to which the TCC
coordinates,,, proved to be defined modulo the shift by the null bivectors. In the higher-dimensional Minkowski
spacetimes additional multivector translations presented by the bilinear covariants similag,to. ;U) will
appear as admissible gauge symmetries of the action (7).

To continue the description of the next gauge symmetries we note that the dyad space (18) is symmetric under
theu <> v spinor permutation which transforms the null spin-tensgusg (21) to the null spin-tensons, vg. But,
it is not a symmetry of the action (16). However, the local shiftgf by the null tensow,vg similar to the null
shift (21) may be compensated if simultaneous shiftQf by the correspondent null vectog v, similar to (19)
will be added. As a result, we find a new one-parametric gauge symmesgy(a6)

87, Yot = €7, VoV, 87, Zaf = €7, Va VB, (STRZdB = €7, Va Vg, (26)
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because the correspondent variatior§ pf(16)
SfRszfdrdpa pMHMEfR[(u“va)Z—l] =0 (27)

equals to zero due to (18). Let us call the transformation (28%ashift.

The local space-like vectomfxg) andm;;)

'

(+)
ad Ny

oo

= Ug Vg + Vgllg, m(()[;) = i(uaﬁd - vaﬁd), = Uy, n;;) = Uy Vg, (28)
orthogonal to the real local null vectatsig (19) andv, v4 (26), form the local tetrade attached to the superbrane
worldvolume.

The local shifts of the:-coordinates in the transverse directimn%)

+ —
Sp(hXai = €pnmly, 8ep-)Xais = €gm’y (29)

which we shall calkp (®)-shifts, changes, (16)
SpmS = / drdPo ptepmn (u"‘aﬂua + 12‘&8“12(5[),

SprS =i / dtdPo plep (u® dutte — 1%y ity ). (30)

However, just as in the previous case the variations (30) are exactly compensated by the correspondent shifts of the
TCC coordinatesqs

8o+ Zap = 26 U{aVp), 5¢(+)Zd/§ = 2€¢(+)ﬁ{df)f;},
8p(-)2ap = 2i€p()U{aVB), (Sq)(—)ZdB = —2i€¢(_)ﬁ{d1_)5}, (31)

where the symmetrized productiog,vg), = %(uav/g +ugvy) was introduced.

Thus, we found six real bosonic gauge symmetries of the action (7) indthdirkowski spacetime generated
by theX, T, T, Tz, @) and® () which form six parametric Abelian group of translations in the $9mplectic
subspace of the lsymplectic superspace. In the next section we shall show that these gauge symmetries are
responsible for the invariant reduction of six bosonic gauge degrees of freedom contaipgin

4. The gaugeinvariance of the supertwistor Y4

Here we show that the supertwistof is invariant under the above presented bosonic gauge symmetries and the
enhanced-symmetry. The invariance df* will prove the gauge invariant character of the considered reduction
of bosonic and fermionic degrees of freedom. To this end let us consider the transformation properties of the
supertwisto 4 = (iU“, Yo, n) under the fermionie -symmetry (8), (9) and bosonic symmetries described by the
X-shifts (19),T-shifts (21),Tk-shifts (26) and the & -shifts (29), (31).

Then we find that invariant character of ttié and7 follows from the definitions of the transformation rules of
the enhanced-symmetry and the bosonic symmetries.

Using this observation one can present the gauge transformations of the remaining supertwistor carfiponent
as

i8Y, = 8YapUP — 7i86,. (32)

The substitution of the-symmetry transformations (8) in (32) together with using the relations (9) and (10) yields
the required result

8 Y, =0. (33)
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Taking into account the invariance &f under the bosonic gauge symmetries one can simplify the variation (32)
to the form

~ —8zqpuP + Sxyqit®
187, = 8YapU" = ( apt Ot ) (34)
SX%yy — (Sz‘wuf;
The substitution of the-shifts (19) andr'-shifts (21) into (34) results in the relations
(Sxxadlzd =€xly (ﬁdﬁd‘) =0, STza;;uﬁ = €Ty (u;;uﬁ) =0 (35)

and their complex conjugate which prove the invariancEafinder these shifts.
The invariance’, under theTz-shifts (26) follows from the cancellation afandz contributions given by

(kaxadﬁd‘ - 3TRZa,3uﬁ = €7, Va — €7, Va = 0. (36)
The analogous cancellations take place between el z contributions

B —

S Xl — S zapu? = €pn [m, (+ % — 2uy Uﬁ}uﬁ] =0,

(S(p(_)xadﬁd‘ —8¢(_)Zaﬁuﬂ =€p- )[ ( —2luqy vﬂ}uﬂ] 0 (37)

and their complex conjugate generated by@Hé)-shifts (29), (31).
It completes the proof of the invariance Bf' under the discussed six bosonic and three fermionic gauge
symmetries.

5. Conclusion

Symmetries of tensionless superstring and superbrane with extra supersymmetry were studied. It was shown that
thex-symmetry enhancement is accompanied by the appearance of bosonic gauge symmetries including the Weyl
transformation and the local Abelian translations of the spacetime and TCC coordinates. In thdrasénf= 1
supersymmetry the translations are presented by the local vectors and bivectors constructed from the components
of an auxiliary spinor field parametrizing the momentum density of the brane. In the high dimensional spaces
gauge multivector translations of TCC coordinates will appear. Due to these gauge symmetries the original brane’s
coordinates are defined modulo these gauge translations resulting in the appearance of new composed coordinate
encoding the physical degrees of freedom contained in the original coordinates. The new variables are unified
in the components of a symplectic supertwistor realizing linear representation O&ig, 2M) symmetry. We
proved that this supertwistor is an invariant of the gauge translations and the enkayethetry. So, the linearly
realizable symplectic supersymmetries describing massless higher spin gauge theories appear as a result of a fint
tuning of the set of local and global symmetries of the Lagrangians of tensionless superstring and superbrane.
The tensionless objects are connected with the high energyingit Mpjanck Of the string theory, where masses
of all particles are negligible and a hidden large symmetry takes shape [26]. It hints that symplectic supertwistor
describing tensionless strings and branes may be found relevant variable for the description of a symmetric phase
of M-theory and quantum field string theory at the high energy scale.
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