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A RANK 2 VECTOR BUNDLE ON i?’ WITH 15,000 
SYMMETRIES 

G. HORROCKS and D. &iUMFORD 

(Receiced I Jrrne 1972) 

THE MOTIVATION for this paper was to look for rank 2 vector bundes % on IFP” for 11 2 4 

which are not direct sums of lines bundles. Schwarzenberg [14], found many such bundles 

on lP2 and one of us [I] found quite a few on p3 although already they seem to be “rarer”. 

In this paper, we construct one on IFD’. It seems quite plausible that there are none on P” if 

II is large enough. The question is closely related to the existence of non-singular subvarieties 

,Y”-’ c ip” of dimension n - 2 which are not complete intersections: 

X=H,.N,. 

If % is an indecomposable rank 2 vector bundle and n 2 3 then fork > 0, a general section 

s E I-(%(k)) will vanish on a non-singular _Xne2 which is not a complete intersection; con- 

versely, if X”-’ c ip” is non-singular and n 2 6, a recent result of Barth and Larsen ([I] 

and [9]) shows that the line bundle !X-’ is isomorphic to B,Y(k) for some k, from which it 

follows readily that X is the zero-set of a section of a rank 2 bundle 9. And if X is not a 

complete intersection, then 9 is indecomposable. Now interestingly enough, it seems as far 

as we know that classical procedures and classical examples yield non-singular X”-“s in 

$“, which are not complete intersections, only zfn I 5. 

The vector bundle constructed here has a 4-dimensional space of sections almost all of 

which vanish on a non-singular X, c IP’ which is an abelian surface. We first found the 

bundle by establishing that such Xs’s had to exist and then constructing % from X, as an 

extension. However by then applying the general “ Postnikov” construction of [3], we 

found a much more direct description of %. The theory of the bundle % and of the 

surfaces X, is united by the fact that both are acted on by the Heisenberg group H (an irre- 

ducible Z-step nilpotent subgroup of Z,(C) of order 125: cf. $1) which is well known from 

the theory of theta functions; % is acted on also by the normalizer iV’ of I-I, of order 15,000. 

We have developed all our results by keeping track of the action of N at every stage and 

using the character table of N where necessary. This is a quick efficient method although 

unfortunately not very illuminating. Our main results are as follows: we construct the bundle 

% in $2 and note immediately by examining its Chern classes that it is indecomposable; in 

$4 we find the cohomology of %(n) for every n; in $5, we prove that the zero-sets X, of its 

general sections are abelian and that conversely all abelian surfaces in !F” arise in this way; 

in $6, we show that as a corollary we get an explicit birational map between a certain 
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moduli space of abelian surfaces and P3. U’e have put the character table of S&(Z,) in an 

appendix for easy reference. 

II. THE HEISENBERG GROUP IN DIMENSIOS F1k-E 

The purpose of this section is to review in a special case a configuration of groups 

studied recently by Weil [ 161 (cf. also Igusa [7, Chap. I]; blumford [12, $11) and closely 

related to the theory of theta functions and abelian varieties. Weil’s construction starts 

from an arbitrary locally compact abelian group ji, but we take A = Z5, the cyclic group 

of order 5, and proceed as follows: 

Let 

cr = Map@, , C), 

be the vector-space of complex-valued functions on Z, Note that V has a natural Q-rational 

structure given by the Q-subspace Map@!, , Q). Let E = eznii5 E ps, the group of 5th roots 

of 1. The Heisenberg group 

H c X5(@) 

is the subgroup generated by 0 and T, given by 

ax(i) = x(i + 1) 

n(i) = 2x(i) 

for all .Y E V. Explicitly, H is the set of matrices 

Aij = (&Oiib. 6,, j+c) 

and has order 125. An an algebraic group, H is defined over Q, but it only splits over Q(E). 

The Galois group 0 of Q(E) over Q acts on H. Let 0 E 0 be the generator given by O(E) = E” 

(so that 0’ = complex conjugation). We shall sometimes use the notation ’ to indicate the 

action of 0. The group H has center C equal to pj. I, and is a central extension: 

l+pj-+H+Z, xZ,+l, (1.1) 

where 0, r in H are mapped to (1, 0), (0, 1). The action of 0 preserves this sequence and 0 

acts on Z, x 72, by (n, m) --t (n, 2m). 

V is clearly an irreducible H-module, and it gives rise to three more by the action of 

0: let Vi be the representation obtained from Y by composing H--f Aut V with 0’. The trace 

(12, Vi) of an element h E H on Vi is given by: 

(&rly, Vi) = 5. E2”, (/I, Vi) = 0 (/I E H - C). (1.2) 

It follows that the four representations Vi are inequivaient. These plus the 25 characters of 

Z, x Z, exhaust the irreducible representations of H since the sum of squares of their 

degrees is 125, the order of H. 

Let 4: Z, x Z, 4 H be the section of (1.1) given by: 

$(nz, n) = &2mnG”‘7n, 

anddefineo:~,x(Z,xZ,)-+Hby: 

w(a, 2) = CL. c+(I). 
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Then o is bijective and the group law on H goes over to the law of composition: 

where 
(a, z) . (a’, z’) = (aa’B(z, z’), z i- Y) 

B(m, n; m’, n’) = .$m”‘-m’“) 

is a ps-valued skew-symmetric form on Z j x Zj . Note that all automorphisms of H pre- 

serve the sequence (1.1) and since B(z, z’)~ . I, is the commutator of (a, Z) and (n’, z’), they 

preserve the form B. 

Let N be the normalizer of H in Z,(c). Each element of N induces by conjugation an 

automorphism of H, hence an automorphism of Z, x Zj preserving B. But the group of 

such automorphisms is isomorphic to SL,(Z,), hence we get a homomorphism: 

cx: N-t SL,(Zj). 

The kernel of z is just H itself because (a) any automorphism of H which is the identity on 

C and on H/C is in fact inner, and (b) since the representation V is irreducible, C is the 

centralizer of H in SL,(Z,). Moreover CL is surjective. If x E SL2(Z,), define y,: H + H by 

yX O(Q, Z) = U(U, X(Z)). 

Since x preserves B, the mapping y, is an automorphism. The new representation of H on 

Y obtained by composing with ys is equivalent to V since yx is the identity on C and so 

leaves the character fixed. So x is induced by an element of N, in fact an element of N n SL, 

(Q(E)). Thus c( is surjective and N c SL5(Q(&)), h ence 0 acts on N and the action of N on V 

induces actions on each V,. 

Since yX. y,, = yxy and y, is induced by a member of N determined up to multiplication 

by elements of C, it follows that N/C is a semi-direct product (H/C). SL,(iZ,). Let X be the 

inverse image in N of the factor SL,(Z,). Then X is a central extension of SL,(Z,) by C. 

But the group of Schur multipliers H’(SL,(Z,), @*) is zero [j, p. 6451, hence X is a product 

C. SL,(Z,) and the full group N is a semi-direct product He SL,(Z,). 

Next, look at the dual representation Vi* of Vi: since N acts on each Vi by unitary 

representations, Vi* is isomorphic as N-module to the complex conjugate vi, i.e. to Vi+ 2 . 

Finally, look at the representation of N in Vi @ Vi*. C acts trivially here so we have a 
representation of N/C. For all x E Vi, I E Vi*, put 

F, a 0) = 0~). 
This gives a map 

F: Vi @ Vi* --t Map(H, UZ) 

which is easily seen to be injective, with image the space W, of functions f on H such that 

f(A) = 2’ * f(h), UEkIv. 

Moreover, for every n EN, let n induce by conjugation the automorphism n* of H. Then 

F .~,cw~(~) = Fnxw- 0) 

= 1. n-‘(hnx) 

= I(n*(h)x) 

= f’,dn*h) 
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SO F transforms the cation of II on Vi @I Vi* to the cation_&+/‘. II* on Sv,alued functions on 

H. Now it is easy to check that if 

J(cJ(r. z)) = P’ f‘(W(%, 12)). 

then f ++ f is an isomorphism of [Vi and It’; _ I commuting with the action of 1%‘: therefore 

the four representations Vi @ Vi* are all equivalent. so vve may as neil vvork with V@ V*. 

This space has a decomposition @ @Z a-here Z is the subspace of trace zero. One sees 

immediately that as an H C-module Z is the sum of the 2-l non-trivial (linear) characters 

of H/C. Since A’ acts transitively on these, Z is irreducible as ,V:C-module. Its character [ 

has values in Q since Z is equivalent to all its conjugates. 

To summarize our conclusions, we hav,e found groups: 

order 5 order 125 order 15,000 

C cHc N c SLj(QP(E)) 

?II HIC Ill 

P5 ?II H. .SL,(Z,) 

z5 x G 

(1.3.) 

It is not hard to work out the explicit matrices representing elements of N. They turn 
out to be of two types: 

E”i’+bij+cjLidiI~,jrj 

A,= 2 

,I5 

(a. ,f‘~ H,, b # 0) 

and 

Aij zx * saiz+bi+c(ii,dj+e (a. , e 6 2il,, cl i: 0) 

(the sign being adjusted to make the determinant + I). It will be necessary to identify some 

special elements of N of the second type for the purpose of computation. Look at the 

elements I, I(, v E SLS(Q(&)) given by 

IX(i) = x(-i) 

,U_u(i) = -s(X) 

u(i) = Ei' x(i) 

(I, Vi) = 1 

(14, Vi) = - 1, (A?, Vi) = I 

(L’, Vi) = e’(q - Y/‘). (3, Vi) = 8’(1y’ - q) 

where n = E + E’, 17’ = E’ + c3. Conjugating G and 7, we find 

I 
-1 

GL = G-l, 1 
-1 

Tl = T-’ 

P -lap = G2, I’-I T/L = T3 

V -IGV = ~7’ mod C, \‘-I 5V = 5. 

(1.4) 
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Thus I, I: E X and their 

pr0jectik.e space g the one-dimensional 

canonically isomorphic to P’* the dual of V. Regard V as a sheaf over Spec @. The external 

tensor product 8(l) Oc P’ is a sheaf on P and I-( C(1) oc V) is isomorphic to Hom,(T/, V). 

Let d in I-(8(1) Oc V) correspond to I,, . The Koszul complex X is the exterior algebra 

A*(ol(l) ac V) with multiplication by d as differential: 

O-r8-r8(l)~T/~G(2)~A’V-t6(3)~A31/-t8(4)~A~V--t~(5)~A~V~0. 

(2.1) 

Note also that z a symmetric pairing 

Xi 0 .P-‘+ O(5) Oc AjT/r 

Y)~, that this induces the natural pairing AiF o(5) 

is compatible with the Note that with respect 

The H-modules and isomorphic 10~~ by (1.2) 

21/, is only representation of degree for which this is possible. and 
other such spaces the reader should use the general observation: 

Let Y, Z be representation spaces for and K be a normal subgroup of 

G. Suppose that Y is irreducible and that then Horn,,, 

the evaluation mapping Y@ Horn,,, 

and Z is irreducible and only 
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In the present case. put IV = Hom,(VI, A’V). It is a representation of ,V H of degree 2, 

and the trace of v (the image of Y in *‘v/H) is 

(V. rv> = (3 + E f EJ) ‘( 1 + 3;’ + p) = q’. 

It follows that It’has character x2 (cf. character table in Appendix). 

Since N;‘H is perfect. LV is unimodular. So IC’ has an invariant skew symmetric pairing 

defined over Q and this form is unique up to a scale factor. Let 

f’: Vi + A2V@ TP’ 

be the N-homomorphism determined by this form. and let 

9: i\jlJ~@ IV-+ V,(= VI>“, 

be the dual offcomposed with the canonical mapping A3 V@ IV r A3 V@ W*. Combining 

these with (2.1) gives the sequence of sheaf homomorphisms 

be the composites of the first two and last two morphisms in 2.3. Note that 4 g:*(5). We 

shall prove that qp = 0 and p, 4 are locally split. From this it follows that 9 = Ker qXm p is 

locally free of rank 2 and defined over 62. The bundle 9 is our goal. 

To prove that qp = 0 it is sufficient, since 0 @ C; is generated by its sections, to show 

that T(qp( - 2)) = 0 and to prove that p, q are locally split it is suficient that p is - for then 

c] is locally split by duality. The first assertion follows immediately from 

LEMMA 2.4. Let U be the symmetric square represerltatiotl S’ W of degree 3, and let W’ 

be the representation obtained by acting on W with the Galois autovlorphism 0. 

(i) JI(A’5(-2))E A’Vr VI @ W, r(A”F(-2)@ W)r V,@(V,@ U),and I&7(-2)) 

is equivalent to the inclusion VI + k; @ (V, @ U). 

(ii) I-(9(1) 0 V,) z (V, 0 U) 8 (VI 0 W’) and lI(q(-2)) is equicalent to the honlomor- 

phism V, 0 (V, @ U) --t ( L’l @ U)O (VI 0 W’) d In aced by the identity on V, 0 U. 

Proof. (i) The first isomorphism follows from (2. l), and the second is just the evaluation 

mapping. The third isomorphism now follows from the decomposition rV@ E’ = @ @ U. 

Finally, since r(A’S(-2)) E A’V, the mappin g T(p(-2)) is equivalent to f which is just 

the mapping induced by Ic +c @I U. 

(ii) First note that r(G(1) @ V,) z’ V* @ V, . The character of V* z V, as an H-module 

is given by 

(/I, V* @ V3) = 0(/z E H - C), (~~1, I” @ V3) = 25E”‘. 
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So I’* 0 V, z 5V, as an H-module. Put X = Hom,(V,, V* 0 I’,). The formulas (1.4) show 

that 

(fi, X) = - 1, (ii’, X) = 1. (?, X) = q - f/‘. 

The first of these shows that X must have an irreducible component X’ of degree 3, the 

second that the remaining component X’ is irreducible of degree 2, and the third that 

X1, X2 have characters z,, x2’. Since ,Y?’ = l3 + x, and z2’ = Oxz it follows that X’ z C. 

and X2 z W’. 

To prove the statement about Iq( -2) it is sufficient to show that Tq(-2) + 0, for 

Vi, Vi @ U, Vi @ Ware irreducible. Butq z p*(5) andp # 0 by(i). Soq # 0, and rq(-2) # 0 

since I-( 0( 1) Q V,) generates 0( 1) @ V, Q.E.D. 

It remains to be proven that p( -2) and hence p splits locally. Let o be a non-zero element 

of V and write B for the corresponding point of [Fp. We must show that the induced map on 

the vector bundle fibres: 

p(-2),:V, +A2T,@ 8(-2),@ W 

is injective (To = tangent space to P at 0). But via p, 

A’T, @ 8(-2), g A2 ‘/c A V, 

so in view of (2.3), the injectivity of p( - 2), is equivalent to: 

LEMMA 2.5. For all nonzero v E V and t E VI, the element f(f) 6 (v A V) @ W. 

Proof. Let ui be the element of V defined by vi(j) = 6,, and put 

=0 
+ 

= u2 A c, ) z1 + = L’, A vq, z2 + =C~AL’O,Z~+=L’OAt.~,Z~+ = VI A c’z 

_ 

Zo = LII A VA, Z, - = ti2 A PO, Z2- = U3 A Cl, Z3 - = ti4 A V2 7 z.t - = Co A G3 

The linear mappings 1.0~ : VI --f A2V, we : VI + A2V defined by wc(ui) = ii+, M?-(c~) = zi- 

are H-homomorphisms, and form a base for W. \Ve wish to show that for non-zero u E V, 

t E V,, the equations 

W+(t) = C A y+, bV-(t) = V A y- 

are contradictory. But these imply that 

W+(t) A W-(t) = 0, 

and if t = xaici, then one computes that 

W+(t) A W-(t) = 2 (- l)‘ai’UO A . . A Di A ’ ’ ’ A 2:~ 
i=O 

hence f= 0. Q.E.D. 

This completes the proof that 9 is a locally free sheaf of rank 2. To show that .F is 

indecomposable it is sufficient to verify that its total Chern class c(R) is irreducible. By 

definition 

c(9) = c(A~~--)~. c(B(~))-~. ~(0(3))-~. 
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Let h be the positive generator for the Chow ring of %. It follows that 

c(9) = ((1 + ‘h)iO(l f h)-‘)‘(I + 211)-‘(1 + 3il)_j 

(where the first factor comes from the resolution of A’.5 given by the Koszul complex). 

Hence 

c(9) = 1 t S/i + 10/r’ 

Applying the Riemann-Roth theorem or directly from the definition of 5, one also 

computes the Hilbert polynomial: 

x(Fjn - 5)) = A(2 - l)(G - 1-l). 

$3. THJ? IXVARMST QUISTICS 

This section is preliminary to the computation of r(F) and the proof of the non- 

singularity of the zero set of a general section. The main results are the determination of the 

X/H-module I-,{( P(5)) of H-invariants of r( E(5)) and the sheaf of ideals 2’ in 0 generated 

by the subspace IY,,(f?:(j)). In the next section vve show that this subspace is isomorphic to 

the second exterior power of T’(F), however the present section does not depend on this 

fact. 

Write cli for the character of IZ’P’ as an N-module, Ii, for the character of S’V, and 

a,*, hi* for the characters of the duals. Then 

a.* = z. = @a. 

jr;* = fi; = *qr; (3.1) 

since the representations are unitary. Also 

(r.* = ‘1._. 3 I (3.7) 

since the representation is unimodular. As in $1, decompose Ti@ V* into C @Z and let 

[ be the character of Z. It follows that lri. B’h, = Oh,. 03h, = I + (. 

LESIMA 3.3. (i) a, = /II 

(ii) 0, = x2. Oh, 

(iii) a, = l2 * H3h, 

(iv) a, = 0’11, 

(v) hz = x3’. Hz, 

(vi) 123 = (Xj + X2')' 03h, 

(vii) h, = (x4 + x4’ + x3 + z3’). 02hl 

(viii) h, = ( x3 + x3’) + [. (;c3 + x3’ - 1) 

(ix) h,Ohl = (x3 + x2’). 03h,. 

Proof. (ii) follows from Lemma (2.4) and then (i), (iii) and (iv) follows from (3.1) and 

(3.2). To prove (c), note that (2.2) implies 11~ = %. 011, for some character 1 of A/H. A 
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simple computation shows that x(r) = 3 and X(V) = -q. So since l nas degree 3, 1 = x3’. 

Now use the well-known formula: 

hi = a,h,_r - u2 hi_? + . - (- l)‘Uih,. 

plus the identity (ix) proven in (2.4) and (vi), (vii) and (viii) follow by computing characters 

via the character table in the Appendix. Q.E.D. 

The first of the main results of this section follows at once from part (viii) of this 

lemma : 

THEOREM 3.5. Tile character of lF,(c(j)) is x3 + x3’ and its dimension is 6. 

Let yi be the ith coordinate function on V, (,vi(x) = X(Q). The monomials 

Y0j,Yo3YtY4, Y03Y2Y3~Y02Y22Yl~ Y02Y12Y3aifioYi~ 

are invariants of 7, and the six forms 

S = C Yi5> Q, Q’, R R’, I’= 5 n _Yi 

obtained by summing these monomials over the powers of G are invariants of H. Since they 

are linearly independent they form a base for r,( O(5)). 

Another natural basis of lI,,(oi(j)) is obtained as follows: the group H/C has six 

proper subgroups and these subgroups are permuted triply transitively by N. The fixed 

point set in P of the subgroup {C, SC, T'C, 73C, r"C} is just the simplex of reference. The 

six simplexes determined in this way by the six subgroups we call thejkdmnentalsimplexes. 

Each of them determines, up to a scalar multiple, the quintic whose zero set consists of five 

three-dimensional faces of the simplex. The subspace of lY,( o(5)) that these quintics span is 

invariant under both N and 0. So Theorem 3.5 shows that these six quintics also form a 

base for T&B(5)). 

Now let L be the set of common zeros of the polynomials in r,(O;(j)), and let Li be its 

intersection with yi = 0. 3ut 

S(0, y,, , rJ = y15 + yz5 + yx5 4- y4j 

(2a Yl, “. 3YJ =YzY,b22Y1 +Y32YJ 

O'(Oz Yl> .">US) =YlY,h2Y3 + Y42YJ 

WA ~1, .>YJ = Y,Y,(Y,*Y, +Y‘+~Y~) 

R'(O, ~1, . . . . YJ =YlY‘LY22Y1 +E'32YJ. 

These equations define the set L, and it is straightforward to check that it consists of 

precisely the five lines 

plus the 20 points 
yz + fy3 = &2'JQ +y.$ = 0 (") 

YI = Y2 = 0, Y3 = &‘Y.i 

Yl = Y, = 0, Y2 = fY4 

Y4 = Y2 = 0, Y3 = crYI 

y4=y3=0,y2=Eryl. 
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The set of points of L, is just G’L, . the same set with “i = 0 after a cy.clic permutation of the 

coordinates. Taking the union over all i, it folio\vs that the set L consists of the 25 skew 

lines : 

.“‘i = )‘iTZ = ErviT3 = &“Ji+l f yi+.$ = 0, (0 s i. r 5 1). (3.6) 

We claim that the sclrenie O;_Y’ is this set of 25 sken lines Lvith reduced structure sheaf, 

hence is a regular scheme. If .Y E L lies on only one face of each of the fundamental simplices, 

then the ideal Y, is defined by six linear forms in the xi’s, so ,jcYs = 2’X. On the other 

hand, say x EL lies on a Z-dimensional face of at least one fundamental simplex. Then s 

is necessarily on a l-dimensional face or edge of this simplex (as you see by intersecting the 

line (3.6) with a typical ‘-dimensional face _J* ,, = y1 = 0 on the simplex of reference). But 

the edges of tvvo distinct fundamental simplices do not intersect: in fact :\- permutes the 

fundamental simplices triply transitively and one may readily calculate that the edges of 

ni yi = 0 and ni (>sO + EL)*, + &“4’J _t E3iy3 + e 
Si y4j = 0 do not intersect. Therefore s is 

singular on at most one fundamental simplex. This shovvs that Y, is generated by five 

linear forms and one of higher degree. If these five linear forms met in a plane, L \vould 

contain more than one line in this plane, i.e. L would have two components that met. 

Since this is false. 2, is generated by the five linear forms and ,/E = 44, again. 

;-I. THE SPACES H’(3(n)) 

Let $j(tr) be the character of H’(F(n)) as a representation of X. To determine these 

characters we write % for the cokernel of p (cf. $2.) and consider the exact sequences 

0 + O(2) 0 Vi -+ A2Y@ w + 9 -+ 0 

0 + 9 4 9 --t &(3) 0 V, --+ 0. 
(4.1) 

Using the well-known values for the cohomology of C(rr) and A’(Y(,)) (which is just 

Q’(5 + n), R’ being the shear of i-forms on Ip) we get 

0 -+ I-(C(n + 3)) @ Vi --t I-(AY(n)> 0 CV” + T(Y(n)) --f 0; 

H’(%?(E)) = (0); 

H’(9(rr)) = (0) if II + -5, H’(Y(-5)j z IV; (4.3) 
0 --f r(F(12)) ---t qqn)) + r(qn + 3)) @ v, + H'( SCll)) --f 0; 
rC/‘(n)=Oif12f -5,$2(-5)=;/,. ._ 

Now since A’9 z C(5) E R’(lO), Serre duality asserts that H’(9inj) and HA-'(3( - 10 

- n)) are dual. \t’e deduce using (4.2) 

t)‘(n) = 0 if Ir 2 - 4, 

$“(n) = 0 if n 2 -6. 
(4.3) 

Since I(A’Y( - 3)) = (0) vve further deduce from (4.2) 

$I(-3) = fJ3h,, I)‘(-7) = 017,. (4.4) 

From Lemma 2.4 (ii) the image of I-(9( -2)) in I’(@(l)) @ k; has dimension 15. But the 

first exact sequence of (4.3) shons that the dimension of M(-3) is 15. So from the second 

exact sequence and Serre duality vve deduce that 
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@O(n) = 0 if n 5 -3 

$‘(n)=O if tzz-8 
(4.5) 

We can now calculate I$‘(-2) from the exact sequences of (4.2) together with (3.5) and we 

find 

rc/l(-2) =x2’. Q/z,. $3(-e) =x2’. Phi. (4.6) 

Consider now the characters tj’(j) for i = 0. 1 and j = 0. - 1. The exact sequences of 

(-l.2) together with Lemma 3.3 give 

$0(-l) - I$‘(-1) = --x1” 11,. 

$0(O) - Ihi = %.$ - X7’. 
(4.7) 

and in particular it follows that 

tiO(O) L %A> $‘(O) 2 X1’. (4.8) 

where the inequality means that the difference between the tvvo sides is the character of a 

representation. Also, since I-(9(n)) is a subspace of I(g(lr)), the exact sequences show that 

(4.9) 

Since A’9 r O(5) there are homomorphisms 

;I(-l):A~r(~(-l))_tr(O(3)),L:A~r(~)-,r~(5). 

LEM~ 4.10 Let Y be a locally free sheaf of rank 2 017 P SIICII that T(Y(- 1)) = 0, let 

y: A’l-(9) -+ IA’(Y) be the canonical homomorphism, and let A be any subspace of r(9). 

Then 
dim y(A’A) 2 2 dim A - 3. 

Proof. Since the Grassman cone in A’A has dimension 2 dim A - 3 it is sufficient to 

show that the only element of this cone in Ker 7 is the zero. 

Suppose that y(s A t) = 0 for some s, t in A. Assume s, t are not both zero, then they 

generate a subsheaf 2 of Y with rank 1. Since 5? is torsion-free its bidual is an invertible 

sheaf. So s, t are contained in a subsheaf isomorphic to C(r) for some r. As lY(5“( - 1)) = 0, 

it follows that r 5 0. Hence s, t are proportional and s A t = 0. Q.E.D 

First consider %(- 1). Suppose that $O(- 1) # 0. Since the terms of the first inequality 

of (4.9) are irreducible characters with degrees at least 20, it follows that dim I’(9(- 1)) 

2 20 and so by the lemma dim I(L”(3)) 2 37. Since dim I&(3) = 35 it follows that 

$“( - 1) = 0, I/?‘(- 1) = x2’. h,. (4.11) 

Now consider i.. Take A to be the subspace lYEI(F) of H-invariant sections. From 

Theorem 3.5, dim lY,,(t(5)) = 6. So the lemma shows that dim A < 5. Together with (4.8) 

and (4.9) this shows that the character of r,,(S) is xs. Applying the lemma again shows that 

dim i.(A) 2 5. So since I,,(&(j)) has character z3 + ;c3 ’ it follows that 1. is an isomorphism 

from A2rJl(F) to I,(G(5)). 

We claim that in fact r,,(9) = I’(9). If this is not true, then as a representation of 
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H. the space I-( 3) must contain all the non-trr\~al characters of H C at least once (by- 

(1.9)). hence dim r!.?) 2 2s. Let .4. B _ _ c 2’ be tbvo hy,perplanes ~vith homogeneous equ;t- 

tions a. b and consider the esact sequence 

0 
in. b) 

-F-l) __t 
1h,-Ll, 

.F(-I)@.!?(-I) ___* .s- 9,.,-+0. 

IVe find. since r( 9( - 1)) = 0, 

dim r( 9,. B) >= dim r(3) - dim Ker[(n. 6) on H’( Y( -?))I. 

But from (4.2). H’( .Y( - 1)) is generated by H”( a( 1)) @ f/‘(.F( -2)). Note that /1r(9( -2)) = 

!O. A’(J(-- 1)) = 10 (by- (4.0). (4.11)). So if n, b are sufficiently generic the image a’ I-i’ 

(3(-Z,) + b. H’(F( -2)) in H'( F( - 1)) has dimension at least 1. Therefore dim PJ,,. u 

2 25 - 10 + 4 = 22. But let s be a non-zero section of .3. Its zero set _Y5 is a surface (since 

l-F-(- 1) = 0) and non-empty (since cZ(.F) + 0). so we can choose .-I, B so that A. B. X, 
is a non-empty finite set of points. Then .~_.,.H’~~A.D is a torsion-free rank 1 sheaf on 

A . B, and hence isomorphic to Cf. 8,. B(~r) for some sheaf of ideals 2 defining A. B. .Yy. 
Computing Chern classes we find ?I = 5. So, since .-I. B. A’, is non-empty, dim r 

(3:a.s SC,,.,) < 21. and finally 

21 2 dim r(F,4.R) - 1 5 dim lI(9,.,:~0,.~.,j < 21. 

which is a contradiction. So, taking account of (1.7), vve have 

lb”(O) = %J, $‘(O) = %J’. (4.12) 

Finally we claim II/‘(n) = 0 if II 2 I By Castelnuovo’s lemma [ 1 I], it suffices to prove 

that $‘(I) = 0. By (1.2) the cup product 2: I-(6(1)) @ H’(Y) + H’(Y(1)) is surjective. 

On the other hand N acts irreducibly on T(c(1)) @ H’(9) by (2.2). Therefore either $‘(l) = 

0 or E is an isomorphism. But r(Q I)) @ H’(.3(- 1)) + H’(3) is also surjective so for 

some u E I-( 8(l)), 0 E H'(F(- I)), it follo\vs that n u G i: 0. Since dim r(oi(l)) > dim H’ 

(F), it follows that b u G = 0 for some other non-zero b. Therefore r(b, a u G) = 0 and 

r is not injective. 

We summarize our calculations as fOllO\VS: 

TABLE OF dim M'(.F(u - 5)) 

- - 
71 2 6 

(nl l)(n’ 24) o o ” 0 
_ 12 

5 1 2 

IO 
0 0 0 

1 0 0 0 0 
3 0 IO 0 0 0 
2 0 5 0 0 0 
I 0 0 0 0 0 
0 0 0 2 0 0 

-1 0 0 0 0 0 
-2 0 0 0 - 0 
-3 0 n 0 

1; 
0 

-4 0 0 0 IO 0 

-_j 0 0 0 2 - - 21) ?I--6 0 0 0 0 (n' $2 

12 
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$5. THE ZERO SETS A’<, ss I-(3) 

THEOREM 5.1. For almost all s c r(S), the zero set of s is a non-singular surface X, c P 
of degree 10; LLhen X, is nonsingdar. it is an abelian surface. 

Proof. Let Q be the projective space associated to T(F), and let 2 be the subvariety of 

Q x P represented by pairs (s, x) (s E r(P), I E P) such that s(x) = 0. Since A’lY(F) z 

r,(G(5)) the sheaf .F is generated by T’(9) except at points of the set of 25 skew lines L 

whose ideal is generated by I-,( C(5j) (see $3). It follows that Z is a fibre-bundle over P - L, 

in particular it is non-singular over P - L. Applying Sard’s theorem [lj] to the projection 

Z -+ Q shows that the zero variety X, = {si s(x) = 0) of a general section s is a surface that 

is non-singular except possibly at points of L. 

Let x EL and let e,, eZ be a basis of the free rank two [‘,-module .F;, Each s E Ic/( 3) 

can be written 

so that ifs, t E r(9). 

s=s,e, +s?e,, Si E ~,. 

s A t = (s,t, - s2 t,)e, A e, . 

If for every s f T’(9), s,(x) = s?(x) = 0. then for every s and t, s A t would vanish to second 

order at x. Using again the fact that A’r(.F) g T,,(G(j)) and that r,( c(5)) generates the 

ideal of L, this is impossible. \ve may therefore choose e,, eZ so that e, is an element of 

r(9). Write out a basis of r(9) locally: 

s = e, 

t = fe, + ue2 

t’ = f ‘e, + de2 where f, f ‘, f “, II, 1~‘. d’ E 6, 

t” = f “e, + u”e2 

Then 

s A t = 21. e, A ez 

s A t’ = 11’. e, A e2 

s A 1” = u” c, A e2 

and t(i) A t(j) vanishes at .Y to 2nd order. 

Therefore u, u’, I(” must generate the ideal of L at x, i.e. their differentials are indepen- 

dent at x. But if 1.s + p + lit’ + ,u”t” is a general section in r(F), so that (I., ,IA, ,D’, 1~“) are 

homogeneous coordinates in Q, then 2 is described above points near x by the equations: 

1. = -(pf f /if’ + p”f”) 

0 = p + /ill’ + I*“u” 

which are easily seen to define a non-singular subvariety of Q x P. Thus Z is everywhere 

non-singular, hence by Sard’s theorem so is the set X, of zeros of a generic section s of 9. 

To prove that X(=X,) is abelian of degree 10 note that its normal bundle N in P is 

isomorphic to 9 0 0,. So the Chern class c(N) of rV (in the Chow ring of X) is just the 
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restriction to X of I + 5h + 10h’. Since P has Chern class 1 i 5/r f IOh’ + ., the Chern 

class of X is 1. So the canonical class K, is zero and the Euler characteristic c?(X) is zero. 

This characterizes abelian surfaces [5, $61. Since cz(lV) is just the self intersection of X, the 

degree of X is 10. Q.E.D 

THEOREM 5.2. Ger,v abelian surface Z c P is projectively equiralenr to the zero set of 

some section s of 9, 

Proof. Let Q = c( 1) @ 0,. Since the Chern class of Z is 1 that of its normal bundle 

is the restriction of 1 + 5/r + 10/z’. As above it follows that Z has degree 10. Choose an 

origin on 2 and let H(Q) be the subgroup 

where Tz is just the translation by z (cf. [13, $131). Since H( 2) has order (deg 2’2)’ and 

carries a non-degenerate alternating form, 

Further the Riemann-Roth theorem for abelian varieties (ibili.) shows that dim f(Q) = 5, 

and Lefschetz’s theorem implies that 2 cannot lie in a subspace of P (otherwise Z vvould be 

simply-connected). So the mapping 

(p: I-8(1) -+ r(2) 

is necessarily an isomorphism. Applyin g the results of [12, $11 it follows that when Z is 

embedded in P” by the complete linear system T(9) and a suitable isomorphism is chosen 

between P4 of $7 then Z is invariant under the action of the Heisenberg group introduced 

in $1. But since 4 is an isomorphism this is just the composition of our given embedding 

and a projective transformation, i.e. after a projective transformation we may assume that Z 

is invariant under H. Actually we can go a bit further: if we choose an origin 0 in Z with 

respect to which 9 is symmetric then the map SH --x for this origin extends to a projec- 

tive transformation r0 of R, leaving Z fixed, normalizing the action of H/C and so that 

10. tl. *o 
-1 = 

v -’ for 7 E H/C. Therefore z,, must be induced by the element I of IV intro- 

duced in $1, and Z is invariant under H and I. 

Next, look at the natural map: 

$: T,,(P, o(5)) -+ T,,(Z, 9’). 

The group H( 9) acts on the line bundle 9’. hence there is a line bundle & on Y = 

Z/H( 9) such that rP4/l E 9’ (rr: Z -+ Y the natural homomorphism). Then r( Y, ,+?) E 

Trr(Z, 9’) and deg Jl = deg Q’jjdeg rr = 5, so dim lI( Y, Jl) = 5. In fact, under the 

symmetry SH -x, the space I-( Y. _‘t) breaks up into the sum of an eigenspace of 

dimension 3 and one of dimension 2 (cf. [12, $21; note that the action of _yH --s on r( Y, J@ 

is only well determined up to sign, so we have no obvious way of labelling one eigenspace 

“even” and the other “ odd “). Since z is the identity on T&P, G(5)), the image of $ is con- 

tained in one of these eigenspaces. Therefore dim ker($) 2 3, i.e. at least three independent 

quintics of 93 contain Z. 

Consider the map 
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A’l-(3) 5 rd G(j)). 

We have proven that there is a subspace K c A’ r(S) of dim 2 3 consisting of elements that 

are mapped to zero in T(A”(% 0 8,)). It follows with a little linear algebra that there are 

two possibilities : 

for some basis s,, s2, s3, sI of r(9), either 

(a) s1 A sl, sj A s4, sI A s3 - s2 A s4 E K, or 

(b) s, A s2, sI A s3 (and a 3rd independent elt.) E K. 

Now if s A t E K, and S, f are the restrictions of s, t to Z, then S = J‘. i for some f E C(Z). 

Therefore in case (a), 
s, =f. s, s, =f. s,. 

Let D be the divisors of poles off and let ,K = O,( 0). Define 

r: A! + ,M -+ 9 8 0, by (gi, g2)++g1i1 + g&. 

Then all four sections Si of % @ 8, are images by u of sections of A + A (i.e. ~(1, 0), 

(~(0, l), CX(J 0) and cc(0, f)). But the si generate % everywhere except at the 25 lines L. Since 

Z is abelian, none of these lines is contained in Z, hence the Si generate 9 @ 0, at all but a 

finite set of points. But E is a homomorphism of rank 2 bundles, so the support of its co- 

kernel is defined by the principal ideal (det cc), and has codimension 1. Therefore x must be 

an isomorphism. But then A’r A’% @ 0, z G@‘, hence 

4( D')= 25. cl(g)' = 25. deg Z= 250, 

contradiction. 

In case (b), either s2 =f. S,, S, = g. s,,L g E C(Z) or S, = 0. In the 1st case, as above, 

we get a homomorphism: 

r: A+ %@ Bz, 

with three out of the four S,‘s in the image XT(A). Then S5 generates the cokernel except at 

a finite set of points: 

o-to, A % @ B,/cfA -+ 9 -to. 
finite Support 

By elementary homological algebra, extensions of 9 by a line bundle split. Using this twice 

we find 9 must be zero, and we have 

hence c,(% @ 0,) = Z. c2(%) = 0, which is absurd. Thus S, = 0, i.e. Z c zeroes of sI. 

Since deg 2 = 10 = deg X,, , it follows that Z = X,,. Q.E.D. 

$5. CONNECTIONS WITH MODUJJ 

The bundle % can be used to give an explicit representation of a certain moduli space 

for 2-dimensional abelian varieties. We first recall some standard results in the theory of 

moduli of abelian varieties: 
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(a) Let g 2 1 be the dimension; 

(b) Let 5g = Sizgel upper i-space ofg x g symmetric matrices R, Im R > O. 

r Sp(Zg, W)/maximum compact K; 

(c) Fix a sequence ~.5 of positive integers 2,. . d, such that (ii divides ~5~_~; 

(d) Sp (Zg, Q) acts on QZy, fixing the form 

‘+lCei. e,_jJ = 6ij, A(f?i, t;) = d-l(P,+i, e,,j) = 0. 12 i,j59; 

(e) Let Ld = the sublattice Sy x nis, 6,2! of Z:‘“. 

L,l = the lattice ni2,(l/di)Z x Zy, characterized as the set of x E #Q’” such that 

.-l(s. J) E Z, all I’ E Lg; 

(f) On L,‘-‘Lb. put the multiplicative symplectic form 

C6(,Y. ,‘) = e7niA(l, I’). 

(g) Let I-(6,, . hJo = {X E Sp(?g, Q) 1 X(L.,) = L,: ; 

I-(6,, , 5,) = {XE Sp(2g, CD)\ X(t,) = Ld and ,Y = id. on L,I.L,‘,; 

(h) Then the analytic quotient spaces hale the significance 

I 

moduli space of pairs (X, j.)* A’ a 

U,>(O) = !$r($,, , 6g)o = 
g-dimensional abelian varisty, 2: i 

drf s --$ ‘? a polarization such that 

ker(L) 2 JJirl (Z”;8,27J2. 

moduli space of triples (X, 2, cc), 

?15~f5’ili’r(jl, . . . . ay) = i;;*;;~~~&% 

a symplectic isornorphism kvith 

1 

(i) U, and 11, (‘) have natural structures of quasi-projective varieties; 

(j) Note that the finite “ symplectic” group lY(8),lr(3) acts on II, and Ll,(” is the 

quotient U,/[r(&‘r(@]. 

Now if 2 : A’+ J? is a polarization, let L, denote one of the corresponding invertible 

sheaves-all such are isomorphic after a translation. 7he result can now be stated: 

THEOREM 6.1. Let 

the Zariski-open set of points of UC5, lj 

1[*,5,1) = 

I 

corresponding to triples (X, 2.. z) mch 

that L, is very ample 

Let 

the Zariski-open subset of P( lI( 5)) of spaces 

of sections 42. s, wAose zero sets X, are non- ‘I 

singular 
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Then U*(j, 1) z p(r(.9))*, the action oflY(5. l),‘T(j. 1) E SL,(Z,) OII ?I(,, 1j corresponding ro 

rhe action of N/H 2 SL2(zs) on [2(r(F)). 

Proof. The idea is to set up a set-theoretic map from P(r(Y))* to I[(“,, 1); verify that 

it is a morphism and is bijective; and apply Zariski’s hlain Theorem. To define the map, 

start with a one-dimensional subspace @. s c r(9). This determines uniquely its zero-set 

Xs. This variety carries a line bundle, 8,,(l), and is invariant under the group H:C. Strictly 

speaking, X, is not yet an abelian variety, since it has no distinguished origin. We can either 

choose any point x E X, as origin, or if we wish to be canonical, replace X, by its “double 

dual “: 

X,’ = Pic”(PicoX,), 

(Pit’ = connected component of Grothendieck’s Picard scheme). 

In this case, X, is canonically a principal homogeneous space over X,‘. In both cases, 

O,Y,(l) induces a polarization ;C on X, (or ,U,‘). And the automorphisms induced by H/C are 

the translations by the points of ker(E.), so we get an isomorphism 

c(: ker(i) - H/C = Z, x Zj = L;j, 1,/Lcj, *). 
dcf 

This is a point of UTs,,, . The fact that this is a morphism comes from checking that the 

above construction can be carried out universally leading to an abelian scheme X over 

p(r(.q)*, plus a polarization A: _% -+ 2 plus an isomorphism of ker(A) with the constant 

group scheme Z, x 27,. This induces a morphism from ip(T(S))* to llTj, 1) by the universal 

property characterizing coarse moduli spaces (cf. [lo, p. 961). To check that this map is 

injective, say Q=. s1 and c. s2 lead to isomorphic triples (X. 2, 2). It follows that there is an 

isomorphism 

such that $* 0,Y,s2( I) is algebraically equivalent to O,Y,J, (1) and such that for all G E H/C. if 

G induces on X,, translation by xi E Xsi, then (PT,, = T._ (b. But then changing 4 by a 

translation, we can assume that 4*(S,,,2(l)) E Ox,s,(l), hence 4 is the restriction to X,, of a 

projective transformation 5. bloreover 7 satisfies cr E zc on LX”s,, all 0 E H/C, hence 7~ = GT 

in PGL,(@). But H/C is its own centralizer so T E H/C. Therefore Xs2 = 7(X,,) = ,Ysl, 

hence @. s1 = @. s2. Finally surjectivity follows from (5.2). Q.E.D. 

A natural question is to analyze how the isomorphism above goes wrong outside the 

open sets *. We have not worked this out completely, but we state without proof two pretty 

facts about this: 

(a) If the abelian variety X tends to E, x EL, Ei an elliptic curve, so that the polariza- 

tion tends to 2 = 51, + /1-? (Ji: Ei = gi th e canonical isomorphism), then 1 is not 

very ample. In fact L, has a fixed component F and defines the morphism 

X-F 
$1 

LE,-IFD 4 

where 41 is the morphism defined by L,,. Let C, = d,(E,), an elliptic quintic curve. Then 

while X approaches E, x E, , the corresponding section s of 9 has a uell-defined limit so 
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and .ysO is the singular ruled surface with C, as cuspidal doublz curv2 squal to the union 

of the tangent lines to C,. It follows that at thz points (E, x E2, SL, A j.2. z) E lIcj 1j the 

correspondence with ?(r(Y)) givsn in (6.1) is still regular, but not biregular. since the image 

does not depend on Ez. 

(b) Suppose we compactify 3, j+ ,) following Igusa [6] [i.e. take his compactification of 

11 (1.1) and normalize it in @(!lcj, r,) via any of th2 canonicalmorphisms It, 5, LJ - U,,, ,,I. 

Then at some of the points at co lying 2ven on the O-dimensional piece of Satakz’s compac- 

tification, the correspondence remains biregular. The corresponding S,‘s depend on one 

parameter z E I= - (0) and are unions of five non-singular quadric surfaces as follovvs: 

oi=(iOcuS Yi=IY?_ri Y,,it Y,+i Y~+j=O). 

The 10 lines Yi = Yj = Y, = 0 (0 5 i <j < k 5 4) are double lines on >‘;, , and the five 

points Pi given by Yj(Pi) = ijij are J-fold points of .Y,. 7he whole configuration is readily 

visualized if you form a C&‘-complex C as follovvs: 

(a) take a point ~~ (') for each point Pi; 

(b) joint Go and Go by a l-simplex alj(') corresponding to the double line Pip,, 

for each i <j; 

(c) glue in a squars Go corresponding to Qi filling in the loop 

for each 0 5 i 5 4 (read the subscripts 

Then a point or line is on a line or a quadric in iF if and only if the corresponding O-simplex 

or l-simplex is on the corresponding l-simplex or square in C. The nice thing is that the 

C you get is homeomorphic to a ?-dimensional real torus: 
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APPESDIX 

The clrtlracrer table o/‘SL2(S,) [7, p. 1601 ,._.. 
Put E = exp 2~l’ - I i5. ‘7 = E I E4, 7’ = E’ + E’, and let w be a primitive root of x6 = I over Z5. 

XI I 
X5 5 
X6 6 
X4 4 
XIX 4 
X3 3 

X3’ 3 
X2 2 
X2’ 2 

I I 
5 I 

-6 0 
4 0 

-4 0 
3 -I 
3 -_I 

-2 0 
-2 0 

-I 
0 

0 
0 

-I 
-I 

Symbols 
used in text 

for these 

I:-: -;r 
representa- 

tions 

I I 
0 

-I 
-I 

1 

-1’ u 
-1 u 

W 
-7 W’ 


