T'opoiog~Voi. 12. pp. 53-81. **Pergamon** Press, 1973. **Printed** in Great Britain

A RANK 2 VECTOR BUNDLE ON \mathbb{P}^4 WITH 15,000 SYMMETRIES

G. HORROCKS and D. **&iUMFORD**

(Receiced I *Jrrne 1972)*

THE MOTIVATION for this paper was to look for rank 2 vector bundes $\mathcal F$ on $\mathbb P^n$ for $n \geq 4$ which are not direct sums of lines bundles. Schwarzenberg [14], found many such bundles on \mathbb{P}^2 and one of us [4] found quite a few on \mathbb{P}^3 although already they seem to be "rarer". In this paper, we construct one on \mathbb{P}^4 . It seems quite plausible that there are none on \mathbb{P}^n if n is large enough. The question is closely related to the existence of non-singular subvarieties $X^{n-2} \subset \mathbb{P}^n$ of dimension $n-2$ which are not complete intersections:

$X=H_1.H_2.$

If $\mathcal F$ is an indecomposable rank 2 vector bundle and $n \geq 3$ then for $k \geq 0$, a general section $s \in \Gamma(\mathcal{F}(k))$ will vanish on a non-singular X^{n-2} which is not a complete intersection; conversely, if $X^{n-2} \subset \mathbb{P}^n$ is non-singular and $n \ge 6$, a recent result of Barth and Larsen ([1] and [9]) shows that the line bundle Ω_X^{n-2} is isomorphic to $\mathcal{O}_X(k)$ for some k, from which it follows readily that X is the zero-set of a section of a rank 2 bundle $\mathscr F$. And if X is not a complete intersection, then $\mathcal F$ is indecomposable. Now interestingly enough, it seems as far as we know that classical procedures and classical examples yield non-singular X^{n-2} 's in \mathbb{P}^n , which are not complete intersections, *only if* $n \leq 5$.

The vector bundle constructed here has a 4-dimensional space of sections almost all of which vanish on a non-singular $X_s \subset \mathbb{P}^4$ which is an abelian surface. We first found the bundle by establishing that such X_s 's had to exist and then constructing $\mathscr F$ from X_s as an extension. However by then applying the general " Postnikov" construction of [3], we found a much more direct description of $\mathscr F$. The theory of the bundle $\mathscr F$ and of the surfaces X_s is united by the fact that both are acted on by the Heisenberg group H (an irreducible 2-step nilpotent subgroup of $SL_5(\mathbb{C})$ of order 125: cf. §1) which is well known from the theory of theta functions; $\mathcal F$ is acted on also by the normalizer N of H, of order 15,000. We have developed all our results by keeping track of the action of N at every stage and using the character table of N where necessary. This is a quick efficient method although unfortunately not very illuminating. Our main results are as follows: we construct the bundle $\mathscr F$ in §2 and note immediately by examining its Chern classes that it is indecomposable; in §4 we find the cohomology of $\mathcal{F}(n)$ for every n; in §5, we prove that the zero-sets X_s of its general sections are abelian and that conversely all abelian surfaces in \mathbb{P}^4 arise in this way; in \$6, we show that as a corollary we get an explicit birational map between a certain

moduli space of abelian surfaces and \mathbb{P}^3 . We have put the character table of $SL_2(\mathbb{Z}_5)$ in an appendix for easy reference.

II. THE HEISENBERG GROUP IN DIMENSION FIVE

The purpose of this section is to review in a special case a configuration of groups studied recently by Weil $[16]$ (cf. also Igusa [7, Chap. 1]; Mumford $[12, §1]$ and closely related to the theory of theta functions and abelian varieties. Weil's construction starts from an arbitrary locally compact abelian group A, but we take $A = \mathbb{Z}_5$, the cyclic group of order 5, and proceed as follows:

Let

$$
V = \text{Map}(\mathbb{Z}_5, \mathbb{C}),
$$

be the vector-space of complex-valued functions on \mathbb{Z}_5 . Note that V has a natural Q-rational structure given by the Q-subspace Map(\mathbb{Z}_5 , Q). Let $\varepsilon = e^{2\pi i/5} \in \mu_5$, the group of 5th roots of 1. The *Heisenberg group*

$$
H \subset SL_5(\mathbb{C})
$$

is the subgroup generated by σ and τ , given by

$$
\sigma x(i) = x(i + 1)
$$

$$
\tau x(i) = \varepsilon^{i} x(i)
$$

for all $x \in V$. Explicitly, *H* is the set of matrices

$$
A_{ij} = (\varepsilon^{a i + b} \cdot \delta_{i, j + c})
$$

and has order 125. An an algebraic group, *H* is defined over \mathbb{Q} , but it only splits over $\mathbb{Q}(\varepsilon)$. The Galois group Θ of $\mathbb{Q}(\varepsilon)$ over \mathbb{Q} acts on *H*. Let $0 \in \Theta$ be the generator given by $\theta(\varepsilon) = \varepsilon^2$ (so that θ^2 = complex conjugation). We shall sometimes use the notation ' to indicate the action of θ . The group *H* has center *C* equal to $\mu_5 \cdot I_V$ and is a central extension:

$$
1 \to \mu_5 \to H \to \mathbb{Z}_5 \times \mathbb{Z}_5 \to 1,\tag{1.1}
$$

where σ , τ in *H* are mapped to (1, 0), (0, 1). The action of Θ preserves this sequence and θ acts on $\mathbb{Z}_5 \times \mathbb{Z}_5$ by $(n, m) \rightarrow (n, 2m)$.

 V is clearly an irreducible H -module, and it gives rise to three more by the action of Θ : let V_i be the representation obtained from V by composing $H \to$ Aut V with θ^i . The trace $\langle h, V_i \rangle$ of an element $h \in H$ on V_i is given by:

$$
\langle \varepsilon' I_V, V_i \rangle = 5 \cdot \varepsilon^{2t}, \qquad \langle h, V_i \rangle = 0 \qquad (h \in H - C). \tag{1.2}
$$

It follows that the four representations V_i are inequivalent. These plus the 25 characters of $\mathbb{Z}_5 \times \mathbb{Z}_5$ exhaust the irreducible representations of H since the sum of squares of their degrees is 125, the order of *H.*

Let ϕ : $\mathbb{Z}_5 \times \mathbb{Z}_5 \rightarrow H$ be the section of (1.1) given by:

$$
\phi(m,n)=\varepsilon^{2mn}\sigma^m\tau^n,
$$

and define $\omega: \mu_5 \times (\mathbb{Z}_5 \times \mathbb{Z}_5) \rightarrow H$ by:

$$
\omega(\alpha, z) = \alpha \cdot \phi(z).
$$

Then ω is bijective and the group law on H goes over to the law of composition:

$$
(a, z) \cdot (a', z') = (aa'B(z, z'), z + z')
$$

where

$$
B(m, n; m', n') = \varepsilon^{3(mn'-m'n)}
$$

is a μ_5 -valued skew-symmetric form on $\mathbb{Z}_5 \times \mathbb{Z}_5$. Note that all automorphisms of H preserve the sequence (1.1) and since $B(z, z')^2 \cdot I_V$ is the commutator of (a, z) and (a', z') , they preserve the form *B.*

Let N be the normalizer of H in $SL_5(\mathbb{C})$. Each element of N induces by conjugation an automorphism of *H*, hence an automorphism of $\mathbb{Z}_5 \times \mathbb{Z}_5$ preserving *B*. But the group of such automorphisms is isomorphic to $SL_2(\mathbb{Z}_5)$, hence we get a homomorphism:

$$
\alpha\colon N\to SL_2(\mathbb{Z}_5).
$$

The kernel of α is just *H* itself because (a) any automorphism of *H* which is the identity on C and on H/C is in fact inner, and (b) since the representation V is irreducible, C is the centralizer of *H* in $SL_2(\mathbb{Z}_5)$. Moreover α is surjective. If $x \in SL_2(\mathbb{Z}_5)$, define $\gamma_x: H \to H$ by

$$
\gamma_x \omega(a, z) = \omega(a, x(z)).
$$

Since x preserves *B*, the mapping γ_x is an automorphism. The new representation of *H* on V obtained by composing with γ_x is equivalent to V since γ_x is the identity on C and so leaves the character fixed. So x is induced by an element of N, in fact an element of $N \cap SL_5$ $(Q(\varepsilon))$. Thus α is surjective and $N \subset SL_5(Q(\varepsilon))$, hence Θ acts on N and the action of N on V induces actions on each V_i .

Since $\gamma_x \cdot \gamma_y = \gamma_{xy}$ and γ_x is induced by a member of N determined up to multiplication by elements of C, it follows that N/C is a semi-direct product $(H/C) \cdot SL_2(\mathbb{Z}_5)$. Let X be the inverse image in N of the factor $SL_2(\mathbb{Z}_5)$. Then X is a central extension of $SL_2(\mathbb{Z}_5)$ by C. But the group of Schur multipliers $H^2(SL_2(\mathbb{Z}_5), \mathbb{C}^*)$ is zero [5, p. 645], hence X is a product $C \cdot SL_2(\mathbb{Z}_5)$ and the full group N is a semi-direct product $H \cdot SL_2(\mathbb{Z}_5)$.

Next, look at the dual representation V_i^* of V_i : since N acts on each V_i by unitary representations, V_i^* is isomorphic as N-module to the complex conjugate \overline{V}_i , i.e. to V_{i+2} .

Finally, look at the representation of N in $V_i \otimes V_i^*$. C acts trivially here so we have a representation of N/C. For all $x \in V_i$, $l \in V_i^*$, put

This gives a map

$$
F_{x\otimes l}(h)=l(hx).
$$

$$
F: V_i \otimes V_i^* \to \mathrm{Map}(H, \mathbb{C})
$$

which is easily seen to be injective, with image the space W_i of functions f on H such that

$$
f(\alpha h) = \alpha^{2^1} \cdot f(h), \qquad \alpha \in \mathfrak{\mu}_5 I_V.
$$

Moreover, for every $n \in N$, let *n* induce by conjugation the automorphism n^* of *H*. Then

$$
F_{n(x\otimes l)}(h) = F_{nx\otimes l\cdot n^{-1}}(h)
$$

= $l\cdot n^{-1}(hnx)$
= $l(n^*(h)x)$
= $F_{x\otimes l}(n^*h)$

so F transforms the cation of n on $V_i \otimes V_i^*$ to the cation $f \mapsto f \cdot n^*$ on C-valued functions on *H. Now* it is easy to check that if

$$
\tilde{f}(\omega(\alpha, z)) = \alpha^{2^{\ell}} \cdot f(\omega(\alpha, 2z)).
$$

then $f \mapsto \tilde{f}$ is an isomorphism of W_i and W_{i+1} commuting with the action of N: therefore the four representations $V_i \otimes V_i^*$ are all equivalent, so we may as well work with $V \otimes V^*$. This space has a decomposition $\mathbb{C} \oplus Z$ where Z is the subspace of trace zero. One sees immediately that as an H/C -module Z is the sum of the 24 non-trivial (linear) characters of *H/C*. Since N acts transitively on these, Z is irreducible as N/C -module. Its character ζ has values in Q since Z is equivalent to all its conjugates.

To summarize our conclusions, we have found groups:

order 5 order 125 order 15,000
\n
$$
C \underbrace{\subset H}_{\text{all}} \subset N \subset SL_5(\mathbb{Q}(\epsilon)). \tag{1.3.}
$$
\n
$$
\underbrace{\mathbb{Q} \cup H}_{\text{II}} \cap C \qquad \text{all}
$$
\n
$$
H \cdot SL_2(\mathbb{Z}_5)
$$
\n
$$
\mathbb{Z}_5 \times \mathbb{Z}_5
$$

It is not hard to work out the explicit matrices representing elements of N . They turn out to be of two types:

$$
A_{ij} = \pm \frac{\varepsilon^{a^{i2} + bij + cj^2 + di + cj + f}}{\sqrt{5}} \qquad (a, \ldots, f \in \mathbb{Z}_5, b \neq 0)
$$

and

$$
A_{ij} = \pm \varepsilon^{ai^2 + bi + c} \delta_{i, dj + e} \qquad (a, \ldots, e \in \mathbb{Z}_5, d \neq 0)
$$

(the sign being adjusted to make the determinant $+1$). It will be necessary to identify some special elements of N of the second type for the purpose of computation. Look at the elements *i*, μ , $\nu \in SL_5(\mathbb{Q}(\epsilon))$ given by

$$
ix(i) = x(-i)
$$

\n
$$
\mu x(i) = -x(2i)
$$

\n
$$
vx(i) = \varepsilon^{i^2} \cdot x(i)
$$

\n
$$
\langle i, V_i \rangle = 1
$$

\n
$$
\langle \mu, V_i \rangle = -1, \langle \mu^2, V_i \rangle = 1
$$

\n
$$
\langle v, V_i \rangle = \theta^i (\eta - \eta'), \langle v^2, V_i \rangle = \theta^i (\eta' - \eta)
$$

\n(1.4)

where $\eta = \varepsilon + \varepsilon^4$, $\eta' = \varepsilon^2 + \varepsilon^3$. Conjugating σ and τ , we find

$$
i^{-1}\sigma i = \sigma^{-1}, \qquad i^{-1}\tau i = \tau^{-1}
$$

$$
\mu^{-1}\sigma\mu = \sigma^2, \qquad \mu^{-1}\tau\mu = \tau^3
$$

$$
v^{-1}\sigma v = \sigma\tau^2 \mod C, \qquad v^{-1}\tau v = \tau.
$$

Thus $i, \mu, v \in N$ and their images $i, \bar{\mu}, \bar{v}$ in $SL_2(\mathbb{Z}_5)$ are:

$$
\begin{aligned}\n\bar{\imath} &= \begin{pmatrix} -1 & 0 \\
0 & -1 \end{pmatrix} \\
\bar{\mu} &= \begin{pmatrix} 2 & 0 \\
0 & 3 \end{pmatrix} \\
\bar{\mathbf{v}} &= \begin{pmatrix} 1 & 2 \\
0 & 1 \end{pmatrix}\n\end{aligned} (1.5)
$$

\$2. THE BUNDLE $\mathcal F$

Let $\mathbb P$ be the projective space representing the one-dimensional subspaces of V^i . Since V is given an underlying rational vector space, $\mathbb P$ is to be regarded as the complexification of a scheme over Q. In particular it is meaningful to speak of coherent sheaves and their homomorphisms as being defined over specified subfields of C.

Write \varnothing for the sheaf of local rings of $\mathbb P$ and $\mathcal C(1)$ for the canonical positive invertible sheaf on P. The general linear group acts on $\mathcal{O}(1)$ and the space of sections $\Gamma(\mathcal{O}(1))$ is canonically isomorphic to V^* the dual of V. Regard V as a sheaf over Spec C. The external tensor product $\mathcal{O}(1) \otimes_{\mathbb{C}} V$ is a sheaf on P and $\Gamma(\mathcal{O}(1) \otimes_{\mathbb{C}} V)$ is isomorphic to $\text{Hom}_{\mathbb{C}}(V, V)$. Let ∂ in $\Gamma(\mathcal{O}(1) \otimes_{\mathbb{C}} V)$ correspond to I_V . The Koszul complex $\mathcal X$ is the exterior algebra $\Lambda^*(\mathcal{O}(1) \otimes_{\mathbb{C}} V)$ with multiplication by ∂ as differential:

$$
0 \to \mathcal{O} \to \mathcal{O}(1) \otimes V \to \mathcal{O}(2) \otimes \Lambda^2 V \to \mathcal{O}(3) \otimes \Lambda^3 V \to \mathcal{O}(4) \otimes \Lambda^4 V \to \mathcal{O}(5) \otimes \Lambda^5 V \to 0.
$$

The quotient $\mathcal{O}(1) \otimes V/\mathcal{O}$ is isomorphic to the tangent sheaf $\mathcal T$ to $\mathbb P$ and the sheaf of cycles $\text{Im}(\mathcal{O}(i) \otimes \Lambda^i V) \subset \mathcal{O}(i+1) \otimes \Lambda^{i+1} V$ is isomorphic to the *i*th exterior power $\Lambda^i \mathcal{F}$ of \mathcal{F} . For the construction of the bundle $\mathcal F$ the relevant part of $\mathcal X$ is:

$$
\begin{array}{ccc}\nrk 10 & rk 6 \\
\hline\n\varphi(2) \otimes_{\mathbb{C}} \Lambda^2 V & \xrightarrow{p_0} & \overbrace{\Lambda^2 \mathcal{F}} & \xrightarrow{q_0} & \varphi(3) \otimes_{\mathbb{C}} \Lambda^3 V.\n\end{array} \tag{2.1}
$$

Note also that $\mathcal X$ has a symmetric pairing

 $\mathcal{K}^i \otimes \mathcal{K}^{s-i} \to \mathcal{O}(5) \otimes_{\mathbb{C}} \Lambda^5 V \cong \mathcal{O}(5),$

given by $x \otimes y \rightarrow (x \wedge y)_5$, and that this induces the natural pairing $\Lambda^i \mathcal{F} \otimes \Lambda^{4-i} \mathcal{F} \rightarrow \mathcal{O}(5)$ and is compatible with the action of $SL_5(\mathbb{C})$. Note that with respect to these pairings $q_0 = p_0$ ^{*}(5).

The H-modules $\Lambda^2 V$ and $2V_1$ are isomorphic since $\langle \varepsilon I_V, \Lambda^2 V \rangle = 10\varepsilon^2$ and by (1.2) $2V_1$ is the only representation of degree 10 for which this is possible. In identifying $\Lambda^2 V$ and other such spaces as N-modules, the reader should use the general observation:

 (2.2) Let Y, Z be representation spaces for a group G and let K be a normal subgroup of *G. Suppose that Y is irreducible as a K-module and that* $Z \cong nY$ *as K-modules, then* $Hom_K(Y, Z)$ *is a G/K-module, the evaluation mapping Y* \otimes Hom_k(*Y, Z)* \rightarrow *Z is an isomorphism of G-modules, and Z is irreducible as a G-module if and only if* $Hom_K(Y, Z)$ *is irreducible as a* G/K -module.

In the present case, put $W = \text{Hom}_{H}(V_1, \Lambda^2 V)$. It is a representation of N/H of degree 2, and the trace of \bar{v} (the image of v in N/H) is

$$
\langle \bar{v}, W \rangle = (3 + \varepsilon + \varepsilon^4)/(1 + 2\varepsilon^2 + 2\varepsilon^3) = \eta'.
$$

It follows that W has character χ , (cf. character table in Appendix).

Since N/H is perfect. W is unimodular. So W has an invariant skew symmetric pairing defined over Q and this form is unique up to a scale factor. Let

$$
f: V_1 \to \Lambda^2 V \otimes W
$$

be the N-homomorphism determined by this form, and let

$$
g \colon \Lambda^3 V \otimes W \to V_3(=V_1^*)
$$

be the dual of f composed with the canonical mapping $\Lambda^3 V \otimes W \cong \Lambda^3 V \otimes W^*$. Combining these with (2.1) gives the sequence of sheaf homomorphisms

$$
\mathcal{O}(2)\otimes V_1 \xrightarrow{1\mathcal{O}\otimes f} \mathcal{C}(2)\otimes \Lambda^2 V \otimes W \xrightarrow{\rho_{\mathcal{O}}\otimes 1_W} \Lambda^2 \mathcal{F} \otimes W \xrightarrow{q_{\mathcal{O}}+1_W} \mathcal{O}(3)\otimes V_3. \tag{2.3}
$$

This sequence is defined over Q .

Let

$$
\frac{rk \ 5}{p \colon \mathcal{O}(2) \otimes V_1 \to \Lambda^2 \mathcal{F} \otimes W,} \qquad q \colon \widehat{\Lambda^2 \mathcal{F} \otimes W} \to \widehat{\mathcal{O}(3) \otimes V_3}
$$

be the composites of the first two and last two morphisms in 2.3. Note that $q \approx p^*(5)$. We shall prove that $q_p = 0$ and p, q are locally split. From this it follows that $\mathcal{F} = \text{Ker } q/\text{Im } p$ is locally free of rank 2 and defined over $\mathbb Q$. The bundle $\mathscr F$ is our goal.

To prove that $qp = 0$ it is sufficient, since $\mathcal{O} \otimes V_i$ is generated by its sections, to show that $\Gamma(qp(-2)) = 0$ and to prove that p, q are locally split it is sufficient that p is $-$ for then q is locally split by duality. The first assertion follows immediately from

LEMMA 2.4. Let U be the symmetric square representation $S^2 W$ of degree 3, and let W' be the representation obtained by acting on W with the Galois automorphism θ .

(i) $\Gamma(\Lambda^2 \mathcal{F}(-2)) \cong \Lambda^2 V \cong V_1 \otimes W$, $\Gamma(\Lambda^2 \mathcal{F}(-2) \otimes W) \cong V_1 \oplus (V_1 \otimes U)$, and $\Gamma(p(-2))$ *is equivalent to the inclusion* $V_1 \rightarrow V_1 \oplus (V_1 \otimes U)$.

(ii) $\Gamma(\mathcal{O}(1) \otimes V_3) \cong (V_1 \otimes U) \oplus (V_1 \otimes W')$ and $\Gamma(q(-2))$ is equivalent to the homomor*phism* $V_1 \oplus (V_1 \otimes U) \rightarrow (V_1 \otimes U) \oplus (V_1 \otimes W')$ *induced by the identity on* $V_1 \otimes U$.

Proof. (i) The first isomorphism follows from (2.1), and the second is just the evaluation mapping. The third isomorphism now follows from the decomposition $W \otimes W = \mathbb{C} \oplus U$. Finally, since $\Gamma(\Lambda^2 \mathcal{F}(-2)) \cong \Lambda^2 V$, the mapping $\Gamma(p(-2))$ is equivalent to *f* which is just the mapping induced by $\mathbb{C} \to \mathbb{C} \oplus U$.

(ii) First note that $\Gamma(\mathcal{O}(1) \otimes V_3) \cong V^* \otimes V_3$. The character of $V^* \cong V_3$ as an *H*-module is given by

$$
\langle h, V^* \otimes V_3 \rangle = 0 (h \in H - C), \quad \langle \varepsilon^i, V^* \otimes V_3 \rangle = 25 \varepsilon^{2i}.
$$

So $V^* \otimes V_3 \cong 5V_1$ as an *H*-module. Put $X = \text{Hom}_H(V_1, V^* \otimes V_3)$. The formulas (1.4) show that

$$
\langle \bar{\mu}, X \rangle = -1, \langle \bar{\mu}^2, X \rangle = 1, \langle \bar{v}, X \rangle = \eta - \eta'.
$$

The first of these shows that X must have an irreducible component $X¹$ of degree 3, the second that the remaining component X^2 is irreducible of degree 2, and the third that X^1 , X^2 have characters χ_3 , χ_2' . Since $\chi_2^2 = \chi_3 + \chi_1$ and $\chi_2' = \theta \chi_2$ it follows that $X^1 \cong U$. and $X^2 \cong W'$.

To prove the statement about $\Gamma q(-2)$ it is sufficient to show that $\Gamma q(-2) \neq 0$, for $V_1, V_1 \otimes U, V_1 \otimes W$ are irreducible. But $q \simeq p^*(5)$ and $p \neq 0$ by (i). So $q \neq 0$, and $\Gamma q(-2) \neq 0$ since $\Gamma(\mathcal{O}(1) \otimes V_1)$ generates $\mathcal{O}(1) \otimes V_1$. $Q.E.D.$

It remains to be proven that $p(-2)$ and hence p splits locally. Let v be a non-zero element of V and write \hat{v} for the corresponding point of \mathbb{P} . We must show that the induced map on the vector bundle fibres:

$$
p(-2)_{\rho}: V_1 \to \Lambda^2 T_{\rho} \otimes \mathcal{O}(-2)_{\rho} \otimes W
$$

is injective $(T_0 = \text{tangent space to } \mathbb{P} \text{ at } \hat{v})$. But via p_a

$$
\Lambda^2 T_{\theta} \otimes \mathcal{O}(-2)_{\theta} \cong \Lambda^{2+}/v \wedge V,
$$

so in view of (2.3), the injectivity of $p(-2)$ _{θ} is equivalent to:

LEMMA 2.5. *For all nonzero* $v \in V$ and $t \in V_1$, the element $f(t) \notin (v \land V) \otimes W$.

Proof. Let v_i be the element of *V* defined by $v_i(j) = \delta_{ij}$ and put

$$
z_0^+ = v_2 \wedge v_3, z_1^+ = v_3 \wedge v_4, z_2^+ = v_4 \wedge v_0, z_3^+ = v_0 \wedge v_1, z_4^+ = v_1 \wedge v_2
$$

$$
z_0^- = v_1 \wedge v_4, z_1^- = v_2 \wedge v_0, z_2^- = v_3 \wedge v_1, z_3^- = v_4 \wedge v_2, z_4^- = v_0 \wedge v_3.
$$

The linear mappings w^+ : $V_1 \rightarrow \Lambda^2 V$, w^- : $V_1 \rightarrow \Lambda^2 V$ defined by $w^+(v_i) = z_i^+, w^-(v_i) = z_i^$ are *H*-homomorphisms, and form a base for W. We wish to show that for non-zero $v \in V$, $t \in V_1$, the equations

$$
w^+(t) = v \wedge y^+, w^-(t) = v \wedge y^-
$$

are contradictory. But these imply that

$$
w^+(t) \wedge w^-(t) = 0,
$$

and if $t = \sum a_i v_i$, then one computes that

$$
w^+(t) \wedge w^-(t) = \sum_{i=0}^4 (-1)^i a_i^2 v_0 \wedge \cdots \wedge \hat{v}_i \wedge \cdots \wedge v_4
$$

hence $t = 0$. $Q.E.D.$

This completes the proof that $\mathcal F$ is a locally free sheaf of rank 2. To show that $\mathcal F$ is indecomposable it is sufficient to verify that its total Chern class $c(\mathscr{F})$ is irreducible. By definition

$$
c(\mathscr{F})=c(\Lambda^2\mathscr{F})^2\cdot c(\mathscr{O}(2))^{-5}\cdot c(\mathscr{O}(3))^{-5}.
$$

Let h be the positive generator for the Chow ring of P . It follows that

$$
c(\mathcal{F}) = ((1+2h)^{10}(1+h)^{-5})^2(1+2h)^{-5}(1+3h)^{-5}
$$

(where the first factor comes from the resolution of $\Lambda^2 \mathcal{F}$ given by the Koszul complex). Hence

$$
c(\mathcal{F})=1+5h+10h^2.
$$

Applying the Riemann-Roch theorem or directly from the definition of \mathcal{F} , one also computes the Hilbert polynomial:

$$
\chi(\mathcal{F}(n-5)) = \frac{1}{12}(n^2-1)(n^2-24).
$$

\$3. THE INVARIANT QUINTICS

This section is preliminary to the computation of $\Gamma(\mathcal{F})$ and the proof of the nonsingularity of the zero set of a general section. The main results are the determination of the N/H -module $\Gamma_H(\mathcal{O}(5))$ of H-invariants of $\Gamma(\mathcal{O}(5))$ and the sheaf of ideals $\mathcal L$ in $\mathcal O$ generated by the subspace $\Gamma_H(\mathcal{O}(5))$. In the next section we show that this subspace is isomorphic to the second exterior power of $\Gamma(\mathcal{F})$, however the present section does not depend on this fact.

Write a_i for the character of $\Lambda^i V$ as an N-module, h_i for the character of $S^i V$, and a_i^* , h_i^* for the characters of the duals. Then

$$
a_i^* = \overline{a}_i = \theta^2 a_i
$$

\n
$$
h_i^* = \overline{h}_i = \theta^2 h_i
$$
\n(3.1)

since the representations are unitary. Also

$$
a_i^* = a_{5-i} \tag{3.2}
$$

since the representation is unimodular. As in §1, decompose $V \otimes V^*$ into $\mathbb{C} \oplus Z$ and let ζ be the character of Z. It follows that $h_1 \cdot \theta^2 h_1 = \theta h_1 \cdot \theta^3 h_1 = 1 + \zeta$.

LEMMA 3.3. (1)
$$
a_1 = h_1
$$

\n(ii) $a_2 = \chi_2 \cdot \theta h_1$
\n(iii) $a_3 = \chi_2 \cdot \theta^3 h_1$
\n(iv) $a_4 = \theta^2 h_1$
\n(v) $h_2 = \chi_3' \cdot \theta h_1$
\n(vi) $h_3 = (\chi_5 + \chi_2') \cdot \theta^3 h_1$
\n(vii) $h_4 = (\chi_4 + \chi_4^* + \chi_3 + \chi_3') \cdot \theta^2 h_1$
\n(viii) $h_5 = (\chi_3 + \chi_3') + \zeta \cdot (\chi_3 + \chi_3' - 1)$
\n(ix) $h_1 \theta h_1 = (\chi_3 + \chi_2') \cdot \theta^3 h_1$.

Proof. (ii) follows from Lemma (2.4) and then (i), (iii) and (iv) follows from (3.1) and (3.2). To prove (c), note that (2.2) implies $h_2 = \chi \cdot \theta h_1$ for some character χ of *N/H.* A simple computation shows that $\chi(v) = 3$ and $\chi(v) = -\eta$. So since χ nas degree 3, $\chi = \chi_3'$. Now use the well-known formula:

$$
h_i = a_1 h_{i-1} - a_2 h_{i-2} + \cdots - (-1)^i a_i h_0,
$$

plus the identity (ix) proven in (2.4) and (vi), (vii) and (viii) follow by computing characters via the character table in the Appendix. *Q.E.D.*

The first of the main results of this section follows at once from part (viii) of this lemma :

THEOREM 3.5. The character of $\Gamma_H(\mathcal{C}(5))$ is $\chi_3 + \chi_3'$ and its dimension is 6.

Let y_i be the *i*th coordinate function on V, $(y_i(x) = x(i))$. The monomials

$$
y_0^5
$$
, $y_0^3y_1y_4$, $y_0^3y_2y_3$, $y_0^2y_2^2y_1$, $y_0^2y_1^2y_3$, $\prod_{i=0}^{4} y_i$

are invariants of τ , and the six forms

$$
S = \sum y_i^5, Q, Q', R, R', Y = 5 \prod y_i
$$

obtained by summing these monomials over the powers of σ are invariants of *H*. Since they are linearly independent they form a base for $\Gamma_H(\mathcal{O}(5))$.

Another natural basis of $\Gamma_H(\mathcal{O}(5))$ is obtained as follows: the group *H/C* has six proper subgroups and these subgroups are permuted triply transitively by N. The fixed point set in P of the subgroup {C, τC , $\tau^2 C$, $\tau^3 C$, $\tau^4 C$ } is just the simplex of reference. The six simplexes determined in this way by the six subgroups we call the *fundamental simplexes*. Each of them determines, up to a scalar multiple, the quintic whose zero set consists of five three-dimensional faces of the simplex. The subspace of $\Gamma_H(\mathcal{O}(5))$ that these quintics span is invariant under both N and Θ . So Theorem 3.5 shows that these six quintics also form a base for $\Gamma_H(\mathcal{O}(5))$.

Now let *L* be the set of common zeros of the polynomials in $\Gamma_H(\mathcal{O}(5))$, and let L_i be its intersection with $y_i = 0$. But

$$
S(0, y_1, ..., y_4) = y_1^5 + y_2^5 + y_3^5 + y_4^5
$$

\n
$$
Q(0, y_1, ..., y_4) = y_2 y_3 (y_2^2 y_1 + y_3^2 y_4)
$$

\n
$$
Q'(0, y_1, ..., y_4) = y_1 y_4 (y_1^2 y_3 + y_4^2 y_2)
$$

\n
$$
R(0, y_1, ..., y_4) = y_2 y_3 (y_1^2 y_3 + y_4^2 y_2)
$$

\n
$$
R'(0, y_1, ..., y_4) = y_1 y_4 (y_2^2 y_1 + y_3^2 y_4).
$$

These equations define the set L_0 and it is straightforward to check that it consists of precisely the five lines

$$
y_2 + \varepsilon' y_3 = \varepsilon^{2r} y_1 + y_4 = 0
$$

\n
$$
y_1 = y_2 = 0, y_3 = \varepsilon' y_4
$$

\n
$$
y_1 = y_3 = 0, y_2 = \varepsilon' y_4
$$
 (*)

$$
y_1 = y_3 =
$$

plus the 20 points

$$
y_4 = y_2 = 0, y_3 = \varepsilon y_1
$$

$$
y_4 = y_3 = 0, y_2 = \varepsilon y_1.
$$

The set of points of L_i is just $\sigma^i L_0$, the same set with $y_i = 0$ after a cyclic permutation of the coordinates. Taking the union over all i , it follows that the set L consists of the 25 skew lines *:*

$$
y_i = y_{i+2} = \varepsilon^r y_{i+3} = \varepsilon^{2r} y_{i+1} + y_{i+4} = 0, \qquad (0 \le i, r \le 4).
$$
 (3.6)

We claim that the *scheme* \mathbb{O}/\mathscr{L} is this set of 25 skew lines with reduced structure sheaf, hence is a regular scheme. If $x \in L$ lies on only one face of each of the fundamental simplices, then the ideal \mathscr{L}_x is defined by six linear forms in the y_i 's, so $\sqrt{\mathscr{L}_x} = \mathscr{L}_x$. On the other hand, say $x \in L$ lies on a 2-dimensional face of at least one fundamental simplex. Then x is necessarily on a l-dimensional face or edge of this simplex (as you see by intersecting the line (3.6) with a typical 2-dimensional face $y_0 = y_1 = 0$ on the simplex of reference). But the edges of two distinct fundamental simplices do not intersect: in fact N permutes the fundamental simplices triply transitively and one may readily calculate that the edges of $\prod_i y_i = 0$ and $\prod_i (y_0 + \varepsilon^i y_1 + \varepsilon^{2i} y_2 + \varepsilon^{3i} y_3 + \varepsilon^{4i} y_4) = 0$ do not intersect. Therefore x is singular on at most one fundamental simplex. This shows that \mathcal{L}_x is generated by five linear forms and one of higher degree. If these five linear forms met in a plane, L would contain more than one line in this plane, i.e. *L* would have two components that met. Since this is false, \mathcal{L}_x is generated by the five linear forms and $\sqrt{\mathcal{L}_x} = \mathcal{L}_x$ again.

§4. THE SPACES $H^i(\mathcal{F}(n))$

Let $\psi^{i}(n)$ be the character of $H^{i}(\mathcal{F}(n))$ as a representation of N. To determine these characters we write $\mathcal G$ for the cokernel of p (cf. \S 2) and consider the exact sequences

$$
0 \to \mathcal{O}(2) \otimes V_1 \to \Lambda^2 \mathcal{F} \otimes W \to \mathcal{G} \to 0
$$

\n
$$
0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{O}(3) \otimes V_3 \to 0.
$$
\n(4.1)

Using the well-known values for the cohomology of $\mathcal{C}(n)$ and $\Lambda^2(\mathcal{T}(n))$ (which is just $\Omega^2(5 + n)$, Ω^i being the shear of *i*-forms on P) we get

$$
0 \to \Gamma(\mathcal{O}(n+2)) \otimes V_1 \to \Gamma(\Lambda^2 \mathcal{F}(n)) \otimes W^n \to \Gamma(\mathcal{G}(n)) \to 0;
$$

\n
$$
H^1(\mathcal{G}(n)) = (0);
$$

\n
$$
H^2(\mathcal{G}(n)) = (0) \text{ if } n \neq -5, H^2(\mathcal{G}(-5)) \cong W;
$$

\n
$$
0 \to \Gamma(\mathcal{F}(n)) \to \Gamma(\mathcal{G}(n)) \to \Gamma(\mathcal{O}(n+3)) \otimes V_3 \to H^1(\mathcal{F}(n)) \to 0;
$$

\n
$$
\psi^2(n) = 0 \text{ if } n \neq -5, \psi^2(-5) = \chi_2.
$$

\n(4.2)

Now since $\Lambda^2 \mathcal{F} \cong \mathcal{O}(5) \cong \Omega^4(10)$, Serre duality asserts that $H^i(\mathcal{F}(n))$ and $H^{4-i}(\mathcal{F}(-10))$ $- n$)) are dual. We deduce using (4.2)

$$
\psi^1(n) = 0 \quad \text{if} \quad n \leq -4,
$$

$$
\psi^3(n) = 0 \quad \text{if} \quad n \geq -6.
$$
 (4.3)

Since $\Gamma(\Lambda^2 \mathcal{F}(-3)) = (0)$ we further deduce from (4.2)

$$
\psi^1(-3) = \theta^3 h_1, \psi^3(-7) = \theta h_1.
$$
\n(4.4)

From Lemma 2.4 (ii) the image of $\Gamma(\mathscr{G}(-2))$ in $\Gamma(\mathscr{O}(1)) \otimes V_3$ has dimension 15. But the first exact sequence of (4.2) shows that the dimension of $\Gamma \mathcal{G}(-2)$ is 15. So from the second exact sequence and Serre duality we deduce that

$$
\psi^0(n) = 0 \quad \text{if} \quad n \le -2
$$

$$
\psi^1(n) = 0 \quad \text{if} \quad n \ge -8.
$$
 (4.5)

We can now calculate $\psi^1(-2)$ from the exact sequences of (4.2) together with (4.5) and we find

$$
\psi^1(-2) = \chi_2' \cdot \theta h_1, \psi^3(-8) = \chi_2' \cdot \theta^3 h_1.
$$
 (4.6)

Consider now the characters $\psi^{i}(j)$ for $i = 0, 1$ and $j = 0, -1$. The exact sequences of $(4,2)$ together with Lemma 3.3 give

$$
\psi^{0}(-1) - \psi^{1}(-1) = -\chi_{2}' \cdot h_{1},
$$

\n
$$
\psi^{0}(0) - \psi^{1}(0) = \chi_{4} - \chi_{2}',
$$
\n(4.7)

and in particular it follows that

$$
\psi^0(0) \ge \chi_4, \psi^1(0) \ge \chi_2',\tag{4.8}
$$

where the inequality means that the difference between the tvvo sides is the character of a representation. Also, since $\Gamma(\mathcal{F}(n))$ is a subspace of $\Gamma(\mathcal{G}(n))$, the exact sequences show that

$$
\psi^{0}(-1) \leq (\chi_{4}^{\#} + \chi_{4} + \chi_{5})h_{1},
$$

\n
$$
\psi^{0}(0) \leq \chi_{4} + \chi_{5} + (\chi_{4} + \chi_{5} - \chi_{2})\zeta.
$$
\n(4.9)

Since $\Lambda^2 \mathcal{F} \cong \mathcal{O}(5)$ there are homomorphisms

$$
\lambda(-1): \Lambda^2 \Gamma(\mathcal{F}(-1)) \to \Gamma(\mathcal{O}(3)), \lambda: \Lambda^2 \Gamma(\mathcal{F}) \to \Gamma \mathcal{O}(5).
$$

LEMMA 4.10 Let *S* be a locally free sheaf of rank 2 on P such that $\Gamma(\mathcal{S}(-1)) = 0$, let $\gamma: \Lambda^2\Gamma(\mathscr{G}) \to \Gamma\Lambda^2(\mathscr{G})$ be the canonical homomorphism, and let A be any subspace of $\Gamma(\mathscr{G})$. *Then*

$$
\dim \gamma(\Lambda^2 A) \ge 2 \dim A - 3.
$$

Proof. Since the Grassman cone in A^2A has dimension 2 dim $A - 3$ it is sufficient to show that the only element of this cone in Ker γ is the zero.

Suppose that $y(s \wedge t) = 0$ for some s, t in A. Assume s, t are not both zero, then they generate a subsheaf $\mathscr L$ of $\mathscr S$ with rank 1. Since $\mathscr L$ is torsion-free its bidual is an invertible sheaf. So s, t are contained in a subsheaf isomorphic to $\mathcal{O}(r)$ for some r. As $\Gamma(\mathcal{S}(-1)) = 0$, it follows that $r \le 0$. Hence s, t are proportional and $s \wedge t = 0$. Q.E.D

First consider $\lambda(-1)$. Suppose that $\psi^0(-1) \neq 0$. Since the terms of the first inequality of (4.9) are irreducible characters with degrees at least 20, it follows that dim $\Gamma(\mathcal{F}(-1))$ \geq 20 and so by the lemma dim $\Gamma(\mathcal{O}(3)) \geq 37$. Since dim $\Gamma \mathcal{O}(3) = 35$ it follows that

$$
\psi^{0}(-1) = 0, \psi^{1}(-1) = \chi_{2}' \cdot h_{1}. \tag{4.11}
$$

Now consider λ . Take A to be the subspace $\Gamma_H(\mathcal{F})$ of H-invariant sections. From Theorem 3.5, dim $\Gamma_H(\mathcal{C}(5)) = 6$. So the lemma shows that dim $A < 5$. Together with (4.8) and (4.9) this shows that the character of $\Gamma_H(\mathcal{F})$ is χ_4 . Applying the lemma again shows that dim $\lambda(A) \ge 5$. So since $\Gamma_H(\mathcal{C}(5))$ has character $\chi_3 + \chi_3'$ it follows that λ is an isomorphism from $\Lambda^2\Gamma_H(\mathscr{F})$ to $\Gamma_H(\mathcal{O}(5))$.

We claim that in fact $\Gamma_H(\mathcal{F}) = \Gamma(\mathcal{F})$. If this is not true, then as a representation of

H, the space $\Gamma(\mathcal{F})$ must contain all the non-trivial characters of *H C* at least once (by (4.9)), hence dim $\Gamma(\mathcal{F}) \geq 28$. Let .4, $B \subseteq \mathbb{P}^+$ be two hyperplanes with homogeneous equations a, b and consider the exact sequence

$$
0 \to \mathcal{F}(-2) \xrightarrow{(a, b)} \mathcal{F}(-1) \oplus \mathcal{F}(-1) \xrightarrow{(b, -a)} \mathcal{F} \to \mathcal{F}_{A \cdot B} \to 0
$$

since $\Gamma(\mathcal{F}(-1)) = 0$

We find, since $\Gamma(\mathcal{F}(-1)) = 0$,

dim $\Gamma(\mathscr{F}_{A \cdot B}) \geq \dim \Gamma(\mathscr{F}) - \dim \text{Ker}\left[(a, b) \text{ on } H^1(\mathscr{F}(-2))\right]$.

But from (4.2), $H^1(\mathcal{F}(-1))$ is generated by $H^0(\mathcal{C}(1)) \otimes H^1(\mathcal{F}(-2))$. Note that $h^1(\mathcal{F}(-2)) =$ 10, $h^1(\mathcal{F}(-1)) = 10$ (by (4.6), (4.11)). So if a, *b* are sufficiently generic the image $a \cdot H^1$ $(\mathcal{F}(-2)) + b \cdot H^{1}(\mathcal{F}(-2))$ in $H^{1}(\mathcal{F}(-1))$ has dimension at least 4. Therefore dim $\Gamma \mathcal{F}_{A+B}$ \geq 28 - 10 + 4 = 22. But let s be a non-zero section of \mathscr{F} . Its zero set X_s is a surface (since $\Gamma \mathcal{F}(-1) = 0$) and non-empty (since $c_2(\mathcal{F}) \neq 0$), so we can choose A, B so that $A \cdot B \cdot X_s$ *is a non-empty finite set of points. Then* $\mathscr{F}_{A+B}/s\mathscr{O}_{A+B}$ *is a torsion-free rank 1 sheaf on* $A \cdot B$, and hence isomorphic to $\mathscr{J} \cdot \mathscr{O}_{A \cdot B}(n)$ for some sheaf of ideals \mathscr{J} defining $A \cdot B \cdot X_s$. Computing Chern classes we find $n = 5$. So, since $A \cdot B \cdot X_s$ is non-empty, dim Γ $(\mathscr{F}_{A \ B} s\mathscr{O}_{A \ B}) < 21$, and finally

$$
21 \leq \dim \Gamma(\mathcal{F}_{A \cdot B}) - 1 \leq \dim \Gamma(\mathcal{F}_{A \cdot B} | s \mathcal{O}_{A \cdot B}) < 21,
$$

which is a contradiction. So, taking account of (4.7) , we have

$$
\psi^0(0) = \chi_4, \psi^1(0) = \chi_2'.
$$
\n(4.12)

Finally we claim $\psi^1(n) = 0$ if $n \ge 1$. By Castelnuovo's lemma [11], it suffices to prove that $\psi^1(1) = 0$. By (4.2) the cup product $\chi: \Gamma(\mathcal{O}(1)) \otimes H^1(\mathcal{F}) \to H^1(\mathcal{F}(1))$ is surjective. On the other hand N acts irreducibly on $\Gamma(\mathcal{C}(1)) \otimes H^1(\mathcal{F})$ by (2.2). Therefore either $\psi^1(1) =$ 0 or α is an isomorphism. But $\Gamma(\mathcal{C}(1)) \otimes H^1(\mathcal{F}(-1)) \to H^1(\mathcal{F})$ is also surjective so for some $a \in \Gamma(\mathcal{O}(1)), \sigma \in H^1(\mathcal{F}(-1))$, it follows that $a \cup \sigma \neq 0$. Since dim $\Gamma(\mathcal{O}(1)) > \dim H^1$ (F), it follows that $b \cup \sigma = 0$ for some other non-zero *b*. Therefore $\alpha(b, a \cup \sigma) = 0$ and α is not injective.

We summarize our calculations as follows:

\$5. THE ZERO SETS X_s , $s \in \Gamma(\mathcal{F})$

THEOREM 5.1. For almost all $s \in \Gamma(\mathcal{F})$, the zero set of s is a non-singular surface $X_s \subset \mathbb{P}$ *of degree* 10; when X_s is nonsingular, it is an abelian surface.

Proof. Let Q be the projective space associated to $\Gamma(\mathscr{F})$, and let Z be the subvariety of $Q \times P$ represented by pairs (s, x) $(s \in \Gamma(\mathcal{F}), x \in P)$ such that $s(x) = 0$. Since $\Lambda^2 \Gamma(\mathcal{F}) \cong$ $\Gamma_H(\mathcal{O}(5))$ the sheaf $\mathcal F$ is generated by $\Gamma(\mathcal F)$ except at points of the set of 25 skew lines *L* whose ideal is generated by $\Gamma_H(\mathcal{C}(5))$ (see §3). It follows that Z is a fibre-bundle over $\mathbb{P} - L$, in particular it is non-singular over $P - L$. Applying Sard's theorem [15] to the projection $Z \to Q$ shows that the zero variety $X_s = \{x \mid s(x) = 0\}$ of a general section s is a surface that is non-singular except possibly at points of *L.*

Let $x \in L$ and let e_1, e_2 be a basis of the free rank two \mathcal{C}_x -module \mathcal{F}_x . Each $s \in \psi(\mathcal{F})$ can be written

$$
s = s_1 e_1 + s_2 e_2, \qquad s_i \in \mathcal{O}_x,
$$

so that if $s, t \in \Gamma(\mathcal{F})$,

$$
s \wedge t = (s_1 t_2 - s_2 t_1) e_1 \wedge e_2.
$$

If for every $s \in \Gamma(\mathcal{F})$, $s_1(x) = s_2(x) = 0$, then for every s and t, s \wedge t would vanish to second order at x. Using again the fact that $\Lambda^2 \Gamma(\mathcal{F}) \cong \Gamma_H(\mathcal{O}(5))$ and that $\Gamma_H(\mathcal{O}(5))$ generates the ideal of *L*, this is impossible. We may therefore choose e_1 , e_2 so that e_1 is an element of $\Gamma(\mathscr{F})$. Write out a basis of $\Gamma(\mathscr{F})$ locally:

$$
t = fe_1 + ue_2
$$

\n
$$
t' = f'e_1 + u'e_2
$$
 where $f, f', f'', u, u', u'' \in \mathcal{O}_x$.
\n
$$
t'' = f''e_1 + u''e_2
$$

Then

$$
s \wedge t = u \cdot e_1 \wedge e_2
$$

$$
s \wedge t' = u' \cdot e_1 \wedge e_2
$$

$$
s \wedge t'' = u'' \cdot e_1 \wedge e_2
$$

and $t^{(i)} \wedge t^{(j)}$ vanishes at x to 2nd order.

 $s = e$

Therefore u, u', u'' must generate the ideal of L at x , i.e. their differentials are independent at x. But if $\lambda s + \mu t + \mu' t' + \mu'' t''$ is a general section in $\Gamma(\mathcal{F})$, so that $(\lambda, \mu, \mu', \mu'')$ are homogeneous coordinates in Q, then Z is described above points near x by the equations:

$$
\lambda = -(\mu f + \mu' f' + \mu'' f'')
$$

$$
0 = \mu u + \mu' u' + \mu'' u''
$$

which are easily seen to define a non-singular subvariety of $Q \times P$. Thus Z is everywhere non-singular, hence by Sard's theorem so is the set X_s of zeros of a generic section s of \mathscr{F} .

To prove that $X(=X_s)$ is abelian of degree 10 note that its normal bundle N in P is isomorphic to $\mathcal{F} \otimes \mathcal{O}_X$. So the Chern class $c(N)$ of N (in the Chow ring of X) is just the restriction to X of $1 + 5h + 10h^2$. Since P has Chern class $1 + 5h + 10h^2 + \cdots$, the Chern class of X is 1. So the canonical class K_X is zero and the Euler characteristic $c₂(X)$ is zero. This characterizes abelian surfaces [8, §6]. Since $c_2(N)$ is just the self intersection of X, the degree of X is 10. $Q.E.D$ $Q.E.D$

THEOREM 5.2. *Every abelian surface* $Z \subset \mathbb{P}$ *is projectively equivalent to the zero set of some section s of* \mathcal{F} *.*

Proof. Let $\mathscr{D} = \mathscr{C}(1) \otimes \mathscr{O}_Z$. Since the Chern class of Z is 1 that of its normal bundle is the restriction of $1 + 5h + 10h^2$. As above it follows that Z has degree 10. Choose an origin on Z and let $H(\mathcal{D})$ be the subgroup

$$
\{z \in Z | T_z^* \mathscr{D} \cong \mathscr{D}\}
$$

where T_z is just the translation by z (cf. [13, §13]). Since $H(\mathscr{D})$ has order (deg $Z/2$)² and carries a non-degenerate alternating form,

$$
H(\mathscr{D}) \cong \mathbb{Z}_5 \times \mathbb{Z}_5.
$$

Further the Riemann-Roch theorem for abelian varieties *(ibid.)* shows that dim $\Gamma(\mathcal{D}) = 5$, and Lefschetz's theorem implies that Z cannot lie in a subspace of P (otherwise Z would be simply-connected). So the mapping

$$
\phi \colon \Gamma \mathcal{O}(1) \to \Gamma(\mathcal{D})
$$

is necessarily an isomorphism. Applying the results of $[12, 81]$ it follows that when Z is embedded in \mathbb{P}^4 by the complete linear system $\Gamma(\mathscr{L})$ and a suitable isomorphism is chosen between \mathbb{P}^4 of §2 then Z is invariant under the action of the Heisenberg group introduced in §1. But since ϕ is an isomorphism this is just the composition of our given embedding and a projective transformation, i.e. after a projective transformation we may assume that Z is invariant under H . Actually we can go a bit further: if we choose an origin O in Z with respect to which $\mathscr L$ is symmetric then the map $x \mapsto -x$ for this origin extends to a projective transformation i_0 of P, leaving Z fixed, normalizing the action of H/C and so that $u_0 \cdot \eta \cdot u_0^{-1} = \eta^{-1}$ for $\eta \in H/C$. Therefore u_0 must be induced by the element ι of N introduced in \$1, and Z is invariant under *H* and I.

Next, look at the natural map:

$$
\psi \colon \Gamma_H(\mathbb{P}, \mathcal{O}(5)) \to \Gamma_H(Z, \mathcal{D}^5).
$$

The group $H(\mathcal{D})$ acts on the line bundle \mathcal{D}^5 , hence there is a line bundle \mathcal{M} on $Y =$ $Z/H(\mathscr{D})$ such that $\pi^*\mathscr{M} \cong \mathscr{D}^5$ ($\pi: Z \to Y$ the natural homomorphism). Then $\Gamma(Y, \mathscr{M}) \cong$ $\Gamma_H(Z, \mathscr{D}^5)$ and deg $\mathscr{M} = \text{deg } \mathscr{D}^5/\text{deg } \pi = 5$, so dim $\Gamma(Y, \mathscr{M}) = 5$. In fact, under the symmetry $x \mapsto -x$, the space $\Gamma(Y, \mathcal{M})$ breaks up into the sum of an eigenspace of dimension 3 and one of dimension 2 (cf. [12, §2]; note that the action of $x \mapsto -x$ on $\Gamma(Y, \mathcal{M})$ is only well determined up to sign, so we have no obvious way of labelling one eigenspace "even" and the other " odd"). Since *i* is the identity on $\Gamma_H(\mathbb{P}, \mathcal{O}(5))$, the image of ψ is contained in one of these eigenspaces. Therefore dim $\ker(\psi) \geq 3$, *i.e.* at least three independent quintics of $\S3$ contain Z.

Consider the map

$$
\Lambda^2 \Gamma(\mathscr{F}) \xrightarrow{\simeq} \Gamma_H(\mathcal{O}(5)).
$$

We have proven that there is a subspace $K = \Lambda^2 \Gamma(\mathcal{F})$ of dim ≥ 3 consisting of elements that are mapped to zero in $\Gamma(\Lambda^2(\mathcal{F}\otimes\mathcal{O}_Z))$. It follows with a little linear algebra that there are two possibilities :

for some basis s_1 , s_2 , s_3 , s_4 of $\Gamma(\mathscr{F})$, either

- (a) $s_1 \wedge s_2$, $s_3 \wedge s_4$, $s_1 \wedge s_3 s_2 \wedge s_4 \in K$, or
- (b) $s_1 \wedge s_2$, $s_1 \wedge s_3$ (and a 3rd independent elt.) $\in K$.

Now if $s \wedge t \in K$, and \overline{s} , \overline{t} are the restrictions of s , t to \overline{z} , then $\overline{s} = f \cdot \overline{t}$ for some $f \in \mathbb{C}(Z)$. Therefore in case (a),

$$
\bar{s}_1 = f \cdot \bar{s}_2 \qquad \bar{s}_4 = f \cdot \bar{s}_3 \, .
$$

Let *D* be the divisors of poles of f and let $\mathcal{M} = \mathcal{O}_Z(D)$. Define

$$
\alpha \colon \mathcal{M} + \mathcal{M} \to \mathcal{F} \otimes \mathcal{O}_Z \quad \text{by} \quad (g_1, g_2) \mapsto g_1 \bar{s}_2 + g_2 \bar{s}_3 \,.
$$

Then all four sections \bar{s}_i of $\mathcal{F} \otimes \mathcal{O}_{\mathcal{I}}$ are images by α of sections of $\mathcal{M} + \mathcal{M}$ (i.e. $\alpha(1, 0)$, $\alpha(0, 1)$, $\alpha(f, 0)$ and $\alpha(0, f)$). But the s_i generate $\mathcal F$ everywhere except at the 25 lines *L*. Since Z is abelian, none of these lines is contained in Z, hence the \bar{s}_i generate $\mathcal{F} \otimes \mathcal{O}_z$ at all but a finite set of points. But α is a homomorphism of rank 2 bundles, so the support of its cokernel is defined by the principal ideal (det α), and has codimension 1. Therefore α must be an isomorphism. But then $\mathcal{M}^2 \cong \Lambda^2 \mathcal{F} \otimes \mathcal{O}_z \cong \mathcal{D}^5$, hence

$$
4(D^2) = 25 \cdot c_1(\mathcal{D})^2 = 25 \cdot \deg Z = 250,
$$

contradiction.

In case (b), either $\bar{s}_2 = f \cdot \bar{s}_1$, $\bar{s}_3 = g \cdot \bar{s}_1$, $f, g \in \mathbb{C}(Z)$ or $\bar{s}_1 = 0$. In the 1st case, as above, we get a homomorphism:

$$
\alpha\colon \mathscr{M}\to \mathscr{F}\otimes \mathscr{O}_Z\,,
$$

with three out of the four \vec{s}_i 's in the image $\alpha \Gamma(\mathcal{M})$. Then \vec{s}_4 generates the cokernel except at a finite set of points:

$$
0 \to \mathcal{O}_Z \xrightarrow{\qquad \qquad \mathfrak{F}} \mathcal{D} \mathcal{O}_Z/\alpha \mathcal{M} \to \mathcal{G} \xrightarrow{\qquad \qquad \mathcal{G}} \qquad \to 0.
$$

By elementary homological algebra, extensions of $\mathcal G$ by a line bundle split. Using this twice we find $\mathscr G$ must be zero, and we have

$$
0 \to \mathcal{M} \xrightarrow{\iota} \mathcal{F} \otimes \mathcal{O}_Z \to \mathcal{O}_Z \to 0,
$$

hence $c_2(\mathcal{F} \otimes \mathcal{O}_Z) = Z \cdot c_2(\mathcal{F}) = 0$, which is absurd. Thus $\bar{s}_1 = 0$, i.e. $Z \subset$ zeroes of s_1 . Since deg $Z = 10 = \text{deg } X_{s_1}$, it follows that $Z = X_{s_1}$. $Q.E.D.$

\$5. CONNECTIONS WITH MODUJJ

The bundle $\mathcal F$ can be used to give an explicit representation of a certain moduli space for 2-dimensional abelian varieties. We first recall some standard results in the theory of moduli of abelian varieties:

- (a) Let $g \ge 1$ be the dimension;
- (b) Let $\mathfrak{H}_q =$ Siegel upper $\frac{1}{2}$ -space of $q \times q$ symmetric matrices Ω , Im $\Omega > 0$, \cong Sp(2g, R)/maximum compact K;
- (c) Fix a sequence δ of positive integers $\delta_1, \ldots, \delta_q$ such that δ_i divides δ_{i+1} ;
- (d) Sp (2g, \mathbb{Q}) acts on \mathbb{Q}^{2g} , fixing the form

$$
A(e_i, e_{g+j}) = \delta_{ij}, A(e_i, e_j) = A(e_{g+i}, e_{g+j}) = 0, \qquad 1 \le i, j \le g;
$$

- (e) Let $L_{\delta} =$ the sublattice $\mathbb{Z}^{q} \times \prod_{i=1}^{q} \delta_{i} \mathbb{Z}$ of \mathbb{Z}^{2q} . L_{δ}^{\perp} = the lattice $\prod_{i=1}^g (1/\delta_i) \mathbb{Z} \times \mathbb{Z}^g$, characterized as the set of $x \in \mathbb{Q}^{2g}$ such that $A(x, y) \in \mathbb{Z}$, all $y \in L_{\delta}$;
- (f) On $L_{\delta}^{-1}/L_{\delta}$, put the multiplicative symplectic form

$$
e_{\delta}(x, y) = e^{2\pi i A(x, y)}.
$$

- *(g)* Let $\Gamma(\delta_1, \ldots, \delta_a)_0 = {X \in Sp(2g, \mathbb{Q}) | X(L_i) = L_i};$ $\Gamma(\delta_1, \ldots, \delta_q) = \{X \in \text{Sp}(2g, \mathbb{Q})\mid X(L_q) = L_q \text{ and } X = \text{id} \text{ on } L_q^{\perp}/L_q\};$
- (h) Then the analytic quotient spaces have the significance

$$
\mathfrak{U}_{\delta}^{(0)} = \mathfrak{H}_{g} / \Gamma(\delta_{1}, \ldots, \delta_{g})_{0} = \begin{cases}\n\text{moduli space of pairs } (X, \lambda), X \text{ a} \\
\text{g-dimensional abelian variety, } \lambda: \\
X \to \hat{X} \text{ a polarization such that} \\
\ker(\lambda) \cong \prod_{i=1}^{g} (\mathbb{Z}/\delta_{i}\mathbb{Z})^{2}.\n\end{cases}
$$
\n
$$
\mathfrak{U}_{\delta} = \mathfrak{H}_{g} / \Gamma(\delta_{1}, \ldots, \delta_{g}) = \begin{cases}\n\text{moduli space of triples } (X, \lambda, \alpha), \\
(X, \lambda) \text{ as above, and} \\
\text{a symplectic isomorphism with} \\
\text{respect to } e_{\lambda} \text{ and } e_{\delta}.\n\end{cases}
$$

(i) \mathfrak{U}_{δ} and $\mathfrak{U}_{\delta}^{(0)}$ have natural structures of quasi-projective varieties;

(j) Note that the finite "symplectic" group $\Gamma(\delta)_0/\Gamma(\delta)$ acts on \mathfrak{U}_{δ} and $\mathfrak{U}_{\delta}^{(0)}$ is the quotient $\mathfrak{U}_{\delta}/[\Gamma(\delta)_{0}/\Gamma(\delta)].$

Now if $\lambda : X \to \hat{X}$ is a polarization, let L_{λ} denote one of the corresponding invertible sheaves-all such are isomorphic after a translation. 7he result can now be stated:

THEOREM 6.1. *Let*

$$
\mathfrak{U}^*_{(5,1)} = \begin{Bmatrix} the Zariski-open set of points of \mathfrak{U}_{(5,1)} \\ corresponding to triples (X, \lambda, \alpha) such \\ that L_{\lambda} is very ample \end{Bmatrix}.
$$

Let

$$
\mathbb{P}(\Gamma(\mathcal{F}))^* = \begin{cases} the Zariski-open subset of \mathbb{P}(\Gamma(\mathcal{F})) of spaces \\ of sections \mathbb{C} \cdot s, whose zero sets X_s are non-singular \end{cases}
$$

Then $\mathfrak{U}^*_{(5, 1)} \cong \mathbb{P}(\Gamma(\mathscr{F}))^*$, the action of $\Gamma(5, 1)_0/\Gamma(5, 1) \cong SL_2(\mathbb{Z}_5)$ on $\mathfrak{U}_{(5, 1)}$ corresponding to *rhe action of* $N/H \cong SL_2(\mathbb{Z}_5)$ *on* $\mathbb{P}(\Gamma(\mathcal{F}))$ *.*

Proof. The idea is to set up a set-theoretic map from $P(\Gamma(\mathcal{F}))^*$ to $\mathfrak{U}^*_{(5,1)}$; verify that it is a morphism and is bijective; and apply Zariski's Main Theorem. To define the map, start with a one-dimensional subspace $\mathbb{C} \cdot s \subset \Gamma(\mathcal{F})$. This determines uniquely its zero-set X_s . This variety carries a line bundle, $\mathcal{O}_{X_s}(1)$, and is invariant under the group H_t^iC . Strictly speaking, X_s is not yet an abelian variety, since it has no distinguished origin. We can either choose any point $x \in X_s$ as origin, or if we wish to be canonical, replace X_s by its "double dual ":

$$
X'_{s} = \text{Pic}^{0}(\text{Pic}^{0} X_{s}),
$$

 $(Pic⁰ = connected component of Grothendieck's Picard scheme).$

In this case, X_s is canonically a principal homogeneous space over X_s' . In both cases, $\mathcal{O}_{X_{\bullet}}(1)$ induces a polarization λ on X_{\bullet} (or X_{\bullet}'). And the automorphisms induced by H/C are the translations by the points of $ker(\lambda)$, so we get an isomorphism

$$
\alpha\colon \ker(\lambda) \xrightarrow{\quad \approx \quad} H/C = \mathbb{Z}_5 \times \mathbb{Z}_5 = L^{\perp}_{(5,1)}/L_{(5,1)}.
$$

This is a point of $\mathfrak{U}^*_{(5,1)}$. The fact that this is a morphism comes from checking that the above construction can be carried out universally leading to an abelian scheme \ddot{x} over $P(\Gamma(\mathcal{F}))^*$, plus a polarization $\Lambda: \mathfrak{X} \to \hat{X}$ plus an isomorphism of ker(Λ) with the constant group scheme $\mathbb{Z}_5 \times \mathbb{Z}_5$. This induces a morphism from $\mathbb{P}(\Gamma(\mathcal{F}))^*$ to $\mathfrak{U}_{(5, 1)}^*$ by the universal property characterizing coarse moduli spaces (cf. [10, p. 96]). To check that this map is injective, say $\mathbb{C} \cdot s_1$ and $\mathbb{C} \cdot s_2$ lead to isomorphic triples (X, λ, α) . It follows that there is an isomorphism

$$
\phi\colon X_{s_1}\to X_{s_2}
$$

such that $\phi^* \mathcal{O}_{X,s_2}(1)$ is algebraically equivalent to $\mathcal{O}_{X,s_1}(1)$ and such that for all $\sigma \in H/C$, if σ induces on X_{s_i} translation by $x_i \in X_{s_i}$, then $\phi T_{x_1} = T_{x_2} \phi$. But then changing ϕ by a translation, we can assume that $\phi^*(\mathcal{O}_{X,s_2}(1)) \cong \mathcal{O}_{X,s_1}(1)$, hence ϕ is the restriction to X_{s_1} of a projective transformation τ . Moreover τ satisfies $\sigma \tau \equiv \tau \sigma$ on X_{s_1} , all $\sigma \in H/C$, hence $\tau \sigma = \sigma \tau$ in *PGL*₅(C). But *H/C* is its own centralizer so $\tau \in H/C$. Therefore $X_{s_2} = \tau(X_{s_1}) = X_{s_2}$, hence $\mathbb{C} \cdot s_1 = \mathbb{C} \cdot s_2$. Finally surjectivity follows from (5.2). *Q.E.D.*

A natural question is to analyze how the isomorphism above goes wrong outside the open sets *. We have not worked this out completely, but we state without proof two pretty facts about this:

(a) If the abelian variety X tends to $E_1 \times E_2$, E_i an elliptic curve, so that the polarization tends to $\lambda = 5\lambda_1 + \lambda_2$ ($\lambda_i: E_i \xrightarrow{\approx} \hat{E}_i$ the canonical isomorphism), then λ is *not* very ample. In fact L_{λ} has a fixed component *F* and defines the morphism

$$
X - F \xrightarrow{p_1} E_1 \xrightarrow{\phi_1} \mathbb{P}^4
$$

where ϕ_1 is the morphism defined by L_{λ_1} . Let $C_1 = \phi_1(E_1)$, an elliptic quintic curve. Then while X approaches $E_1 \times E_2$, the corresponding section s of $\mathcal F$ has a well-defined limit s_o

and X_{s_0} is the singular ruled surface with C_1 as cuspidal double curve equal to the union of the tangent lines to C_1 . It follows that at the points $(E_1 \times E_2, 5\lambda_1 + \lambda_2, x) \in \mathfrak{U}_{(5,1)}$ the correspondence with $P(\Gamma(\mathcal{F}))$ given in (6.1) is still regular, but not biregular, since the image does not depend on $E₂$.

(b) Suppose we compactify $\mathfrak{U}_{(5, 1)}$ following Igusa [6] [i.e. take his compactification of $\mathfrak{U}_{(1,1)}$ and normalize it in $\mathbb{C}(\mathfrak{U}_{(5,1)})$ via any of the canonicalmorphisms $\mathfrak{U}_{(5,1)} \to \mathfrak{U}_{(1,1)}$. Then at some of the points at ∞ lying even on the 0-dimensional piece of Satake's compactification, the correspondence remains biregular. The corresponding X_s 's depend on one parameter $\alpha \in \mathbb{C}$ = (0) and are unions of five non-singular quadric surfaces as follows:

$$
X_s = Q_0 \cup Q_1 \cup Q_2 \cup Q_3 \cup Q_4
$$

$$
Q_i = \text{(locus } Y_i = \alpha Y_{2+i} Y_{3+i} + Y_{1+i} Y_{4+i} = 0
$$

The 10 lines $Y_i = Y_j = Y_k = 0$ ($0 \le i < j < k \le 4$) are double lines on X_s , and the five points P_i given by $Y_j(P_i) = \delta_{ij}$ are 4-fold points of X_s . The whole configuration is readily visualized if you form a CW -complex Σ as follows:

(a) take a point $\sigma_i^{(0)}$ for each point P_i ;

(b) joint $\sigma_i^{(0)}$ and $\sigma_j^{(0)}$ by a 1-simplex $\sigma_{ij}^{(1)}$ corresponding to the double line $\overline{P_i P_j}$, for each $i < j$;

(c) glue in a square $\sigma_i^{(2)}$ corresponding to Q_i filling in the loop

for each $0 \le i \le 4$ (read the subscripts mod 5).

Then a point or line is on a line or a quadric in P if and only if the corresponding 0-simplex or 1-simplex is on the corresponding 1-simplex or square in Σ . The nice thing is that the Σ you get is homeomorphic to a 2-dimensional real torus:

Give top and bottom with horizontal shift

REFERESCES

- 1. W. BARTH and M. E. LARSEN: On the homotopy-groups of complex projective-algebraic varieties, Math. Scand. (to appear).
- 2. A. BOREL, R. CARTER, T. SPRINGER et al.: Seminar on Algebraic Groups and Related Finite Groups. Springer Lecture Notes I31
- 3. G. HORROCKS: Vector bundles on the punctured spectrum of a local ring, $Proc.$ Lond. math. Soc. 14 (I **964), 689.**
- 4. G. HORROCKS: A construction for locally free sheaves, Topology 7 (1968), 117.
- 5. B. HUPPERT; *Endliche Gruppen I*. Springer, Berlin (1967).
- 6. J.-I. IGUSA: A desingularization problem in the theory of Siegel modular functions, Math. Annal.
- 7. J.-I. IGUSA: Theta Functions. Springer, Berlin (1972).
- 8. K. KODAIRA: On the structure of compact, complex analytic surfaces 1, Am. J. Math. 86 (1964), 751.
- 9. M. E. LARSEN: On the vanishing of certain homotopy-groups of complex projective-algebraic manifolds. Preprint, Math. Inst. Copenhagen University (1971).
- 10. D. MUMFORD: Geometric Invariant Theory, Springer, Berlin (1965).
- 11. D. MUMFORD: Lectures on curves on an algebraic surface, Ann. Math. Studs. (1966).
- 12. D. MUMFORD: On the equations defining abelian varieties I, Inc. Math. 1 (1966), 287.
- 13. D. MUMFORD: *Abelian Varieties*. Oxford University Press (1971).
- 14. R. L. E. SCHWARZENBERGER: Vector bundles on the projective plane, *Proc. Lond. math. Soc.* 11 (1961), 623.
- 15. S. STERNBERG, Lectures on Differential Geometry. Prentice-Hall, N.J. (1962).
- 16. A. WEIL: Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143.

University of Newcastle-upon-Tyne

Harvard Unioersity

,._..

APPESDIX

The character table of $SL_2(\mathbb{Z}_5)$ [2, p. 160]

