LINEAR ALGEBRA
AND ITS
APPLICATIONS

Characteristic polynomials of graphs having a semifree action

Jaeun Lee ${ }^{\text {a,*, }}$, Hye Kyung Kim ${ }^{\text {b }}$
${ }^{a}$ Mathematics Department, Yeungnam University, Kyongsan 712-749, South Korea
${ }^{\mathrm{b}}$ Mathematics Department, Catholic University of Taegu Hyosung, Kyongsan 713-702, South Korea
Received 13 March 1997; accepted 14 November 1999
Submitted by R.A. Brualdi

Abstract

J.H. Kwak and J. Lee (Linear and Multilinear Algebra 32 (1992) 61-73) computed the characteristic polynomial of a finite graph G having an abelian automorphism group which acts freely on G. For a finite weighted symmetric pseudograph G having an abelian automorphism group which acts semifreely on G, K. Wang (Linear Algebra Appl. 51 (1983) 121-125) showed that the characteristic polynomial of G is factorized into a product of a polynomial associated to the orbit graph and a polynomial associated to the free part of the action. But he did not explicitly compute the characteristic polynomial of such a graph G. In this paper, we introduce a new method to construct a finite pseudograph G having an automorphism group which acts semifreely on G, and obtain an explicit formula to compute the characteristic polynomial of such a graph by using the construction method. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Characteristic polynomial; Covering graph construction; Semifree action

1. Introduction

Let G be a finite connected undirected pseudograph with vertex set $V(G)$ and edge set $E(G)$, and let D be a finite connected pseudo-digraph with vertex set $V(D)$ and directed edge set $E(D)$, where a connected pseudo-digraph is a digraph whose

[^0]underlying graph is a connected pseudograph. Let $A(G)$ and $A(D)$ denote the adjacency matrices of the undirected graph G and the digraph D, respectively. We also denote by $\Phi(G ; \lambda)$ and $\Phi(D ; \lambda)$ the characteristic polynomials $\operatorname{det}(\lambda I-A(G))$ and $\operatorname{det}(\lambda I-A(D)$), respectively (see [1]). A digraph D is symmetric if $A(D)$ is symmetric. By $|X|$, we denote the cardinality of a finite set X. We say that G admits a Γ-action if there is a group homomorphism from Γ to $\operatorname{Aut}(G)$. For each $v \in$ $V(G)$, let $\Gamma_{v}=\{\gamma \in \Gamma \mid \gamma(v)=v\}$ be the isotropy subgroup of v, and $\operatorname{Fix}_{\Gamma}=\{v \in$ $\left.V(G) \mid \Gamma_{v}=\Gamma\right\}$. We call Fix_{Γ} the fixed part of $V(G)$. We say that Γ acts semifreely on G if for each $v \in V(G), \Gamma_{v}$ is either the trivial group or the full group Γ, and for each $e \in E\left(\left\langle\operatorname{Fix}_{\Gamma}\right\rangle\right), \gamma(e)=e$ for all $\gamma \in \Gamma$, where $\left\langle\operatorname{Fix}_{\Gamma}\right\rangle$ is the subgraph induced by the fixed part Fix_{Γ}. In [6], Wang defined that Γ acts freely on G if Γ acts semifreely on G and $\mathrm{Fix}_{\Gamma}=\emptyset$. Notice that even if Γ acts semifreely on G and $\mathrm{Fix}_{\Gamma}=\emptyset$, there might exist an edge e in $E(G)$ such that $\gamma(e)=e$ for some non-identity element γ in Γ. In this paper, we say that Γ acts freely on G if Γ acts freely on both $V(G)$ and $E(G)$. We use the same terminology when Γ acts on a digraph D. Notice that if a digraph D has no loops, then Γ acts freely on a digraph D according to Wang's definition if and only if Γ acts freely on a digraph D according to our definition.

A digraph \tilde{D} is called a covering graph of D if there exists a direction preserving map $f: \tilde{D} \rightarrow D$ with the following properties: $f_{\left.\right|_{V(\tilde{D})}}: V(\tilde{D}) \rightarrow V(D)$ and $f_{\left.\right|_{E(\tilde{D})}}$: $E(\tilde{D}) \rightarrow E(D)$ are surjective and for each $\tilde{v} \in V(\tilde{D}), f$ maps the set of edges originating at \tilde{v} one-to-one onto the set of edges originating at $f(\tilde{v})$, and f maps the set of edges terminating at \tilde{v} one-to-one onto the set of edges terminating at $f(\tilde{v})$. We call such a map $f: \tilde{D} \rightarrow D$ a covering and D the base graph. A covering $f: \tilde{D} \rightarrow D$ is regular if there exists a group Γ of graph automorphisms of \tilde{D} acting freely on \tilde{D} and a graph isomorphism $h: \tilde{D} / \Gamma \rightarrow D$ such that the diagram

commutes, i.e., $h \circ q=f$, where q is the quotient map. Convert the graph G to a digraph \vec{G} by replacing each edge e of G with a pair of oppositely directed edges, say e^{+}and e^{-}. We then say that the digraph \vec{G} is associated with G. By e^{-1} we mean the reverse edge to an edge $e \in E(\vec{G})$. We denote the directed edge e of G by $u v$ if the initial and the terminal vertices of e are u and v, respectively. Note that the adjacency matrix of graph G is the same as that of digraph \vec{G}, i.e., $A(G)=A(\vec{G})$ (see Fig. 1).

Notice that Γ acts semifreely on G with $\operatorname{Fix}_{\Gamma}=\emptyset$ iff Γ acts freely on \vec{G}. We say that a graph \tilde{G} is a covering of G if $\overrightarrow{\tilde{G}}$ is a covering of \vec{G} as digraphs. Moreover, \vec{G} is always symmetric. It is clear that the complete graph K_{2} is not a covering of any smaller graph. But \vec{K}_{2} can be presented as a covering of a directed loop with one vertex (see Fig. 2).

Fig. 1. G and \vec{G}.

Fig. 2. \vec{K}_{2} covers a directed loop.
Let Γ be a finite group. A Γ-voltage assignment on G is a function $\Phi: E(\vec{G}) \rightarrow \Gamma$ such that $\phi\left(e^{-1}\right)=\phi(e)^{-1}$ for all e in $E(\vec{G})$. The derived graph $G \times_{\phi} \Gamma$, derived by a Γ-voltage assignment ϕ, has $V(G) \times \Gamma$ as its vertex set and $E(G) \times \Gamma$ as its edge set, where (e, g) joins from (u, g) to $(v, \phi(e) g)$ if $e=u v \in E(\vec{G})$. For convenience, a vertex (u, g) is denoted by u_{g} and an edge (e, g) by e_{g}. The voltage group Γ acts naturally on $G \times_{\phi} \Gamma$ as follows: for every $g \in \Gamma$, let $\Phi_{g}: G \times_{\phi} \Gamma \rightarrow$ $G \times{ }_{\phi} \Gamma$ denote the graph automorphism defined by $\Phi_{g}\left(v_{g^{\prime}}\right)=v_{g^{\prime} g^{-1}}$ on vertices and $\Phi_{g}\left(e_{g^{\prime}}\right)=e_{g^{\prime} g^{-1}}$ on edges. Then the natural map $p: G \times_{\phi} \Gamma \rightarrow G \times_{\phi} \Gamma / \Gamma \simeq G$ is a $|\Gamma|$-fold regular covering. Gross and Tucker [3] showed that every regular covering of G arises from a voltage assignment on G. Similarly, we can show that every regular covering of a digraph D can be constructed by the same method.

In this paper, we introduce a new method to construct a finite pseudograph G which admits a semifree Γ-action, and obtain an explicit formula to compute the characteristic polynomial of such a graph by using the construction method. The previous works on this direction can be found in [2,4,5].

2. A construction of a Γ-graph

Throughout this paper, by a Γ-graph G (resp. D) we mean a graph (resp. digraph $D)$ which admits a semifree Γ-action. In this section, we introduce a method to construct a Γ-graph. Let D be a pseudo-digraph. For a subset S of $V(D)$, we denote by $\langle S\rangle$ the subgraph of D induced by S, and for a pair of subsets S_{1} and S_{2} of $V(D)$, by $E\left(S_{1}, S_{2}\right)$ the set of all directed edges $e=u v$ such that $u \in S_{1}$ and $v \in S_{2}$. Then, for a subset S of $V(D), E(D)=E(\bar{S}, \bar{S}) \cup E(S, S) \cup E(\bar{S}, S) \cup E(S, \bar{S})$, where $\bar{S}=$ $V(D)-S$.

For a Γ-voltage assignment ϕ on the subgraph $\langle S\rangle$ of D, we define a new digraph $D \times_{(\phi, S)} \Gamma$ as follows. We adjoin an extra element, say ∞, to the group Γ with
the property that $\gamma \infty=\infty=\infty \gamma$ for each $\gamma \in \Gamma \cup\{\infty\}$. Notice that $\Gamma \cup\{\infty\}$ is a semigroup. The vertex set $V\left(D \times_{(\phi, S)} \Gamma\right)$ is $(S \times \Gamma) \cup(\bar{S} \times\{\infty\})$ and let there be a directed edge from (u, α) to (v, β) if (i) $u v \in E(\bar{S}, \bar{S})$ and $\alpha=\beta=\infty$; (ii) $u v \in E(S, S), \alpha, \beta \in \Gamma$ and $\phi(u v) \alpha=\beta$; (iii) $u v \in E(\bar{S}, S), \alpha=\infty$ and $\beta \in \Gamma$; or (iv) $u v \in E(S, \bar{S}), \alpha \in \Gamma$ and $\beta=\infty$. We call $D \times_{(\phi, S)} \Gamma$ the derived digraph by a subset S of $V(D)$ and a Γ-voltage assignment ϕ on the subgraph $\langle S\rangle$ or simply, the derived digraph.

Now, we define a Γ-action on the derived digraph $D \times_{(\phi, S)} \Gamma$ by $\gamma(v, \alpha)=$ $\left(v, \alpha \gamma^{-1}\right)$ for all $\gamma \in \Gamma$ and $(v, \alpha) \in V\left(D \times_{(\phi, S)} \Gamma\right)$. Then $D \times_{(\phi, S)} \Gamma$ is a Γ-graph such that the fixed part $\operatorname{Fix}_{\Gamma}$ is $\bar{S} \times\{\infty\}$. Moreover, for each $(v, \gamma) \in S \times \Gamma$ the isotropy subgroup $\Gamma_{(v, \gamma)}$ is the trivial subgroup of Γ, i.e., each element of $S \times \Gamma$ is not fixed by any non-identity element of Γ. We call the quotient map $p: D \times_{(\phi, S)} \Gamma \rightarrow$ $\left(D \times_{(\phi, S)} \Gamma\right) / \Gamma \cong D$ defined by $p(v, \alpha)=v$ for each $(v, \alpha) \in V\left(D \times_{(\phi, S)} \Gamma\right)$ the natural projection. Fig. 3 illustrates this construction.

Notice that if S is the full set $V(D)$, then the derived digraph $D \times_{(\phi, S)} \Gamma$ is a regular covering of D, and if S is the empty set, then the derived digraph $D \times_{(\phi, S)} \Gamma$ is just the digraph D. For a given Γ-graph D, let $S=\left(V(D)-\operatorname{Fix}_{\Gamma}\right) / \Gamma \in V(D / \Gamma)$. Then the quotient map $p:\left\langle V(D)-\mathrm{Fix}_{\Gamma}\right\rangle \rightarrow\langle S\rangle$ is a Γ-covering and there exists a voltage assignment ϕ on $\langle S\rangle$ such that $\langle S\rangle \times_{\phi} \Gamma=\left\langle V(D)-\mathrm{Fix}_{\Gamma}\right\rangle$. Now, it is clear that D is isomorphic to the derived digraph $(D / \Gamma) \times_{(\phi, S)} \Gamma$. We summarize our discussions as follows.

Theorem 1. Let Γ be a finite group and D a finite pseudo-digraph. Then D is a Γ-graph if and only if there exist a subset S of $V(D / \Gamma)$ and a Γ-voltage assignment ϕ on the subgraph $\langle S\rangle$ of D / Γ such that D is isomorphic to the derived digraph $(D / \Gamma) \times_{(\phi, S)} \Gamma$.

Fig. 3. $D \times_{(\phi, S)} \mathbb{Z}_{4}$ with $S=\left\{v_{4}, v_{5}\right\}$.

Notice that for some undirected pseudograph $G, \vec{G} / \Gamma$ need not be the digraph associated with a undirected graph even though \vec{G} is a Γ-graph. Now, we consider a construction method of a Γ-graph G which is undirected. For a Γ-graph G, the digraph \vec{G} is symmetric and also a Γ-graph. This implies that the quotient graph \vec{G} / Γ is symmetric. Hence, to construct a Γ-graph, it is suffice to consider the base graph D of our construction as a symmetric digraph. A subset S of $V(D)$ is called a \mathscr{P}-subset if the number of directed loops based at each vertex in $\bar{S}=V(D)-S$ is even. Notice that if the derived digraph $D \times_{(\phi, S)} \Gamma$ is symmetric, then the subset S of $V(D)$ must be a \mathscr{P}-subset. For our purpose, we define a symmetric Γ-voltage assignment ϕ on the subgraph $\langle S\rangle$ induced by a \mathscr{P}-subset S of $V(D)$ as follows.

Definition 1. Let D be a finite symmetric connected digraph and S a \mathscr{P}-subset of $V(D)$. A Γ-voltage assignment ϕ on $\langle S\rangle$ is said to be symmetric if
(i) for each directed loop e based at v_{i} in S, there exists another directed loop e^{\prime} based at v_{i} in S such that $\phi\left(e^{\prime}\right)=\phi(e)^{-1}$ if $\phi(e)$ is not of order 2;
(ii) for each directed edge $e=v_{i} v_{j}(i \neq j)$ in $E(S, S)$ there exists $e^{\prime}=v_{j} v_{i}$ in $E(S, S)$ such that $\phi\left(e^{\prime}\right)=\phi(e)^{-1}$.

Now, we aim to discuss a method to construct an undirected Γ-graph G. Let D be a finite connected symmetric digraph and S a \mathscr{P}-subset of $V(D)$. Let ϕ be symmetric Γ-voltage assignment on the subgraph $\langle S\rangle$. Then it is clear that the derived digraph $D \times_{(\phi, S)} \Gamma$ is symmetric. Since for each vertex (v, γ) of the derived digraph $D \times_{(\phi, S)} \Gamma$, the number of directed loops at (v, γ) is even. This implies that $D \times_{(\phi, S)} \Gamma=\vec{G}$ for some Γ-graph G.

Conversely, if $D=\vec{G} / \Gamma$ for some undirected Γ-graph G, then $S=(V(D)-$ $\left.\mathrm{Fix}_{\Gamma}\right) / \Gamma$ is a \mathscr{P}-subset of $V(D)$ and there exists a symmetric Γ-voltage assignment ϕ on $\langle S\rangle$ such that the derived digraph $D \times{ }_{(\phi, S)} \Gamma$ is isomorphic to \vec{G}. We summarize our discussions as follows.

Theorem 2. Let Γ be a finite group and D a finite connected symmetric digraph. Let S be a subset of $V(D)$ and ϕ a Γ-voltage assignment on the subgraph $\langle S\rangle$ of D. Then the derived digraph $D \times{ }_{(\phi, S)} \Gamma=\vec{G}$ for some Γ-graph G if and only if S is a \mathscr{P}-subset of $V(D)$ and ϕ is symmetric.

3. Adjacency matrices of Γ-graphs

Let D be a finite connected pseudo-digraph and S a subset of $V(D)$. For convenience, let $H_{11}(S)=(V(D), E(\bar{S}, \bar{S})), H_{12}(S)=(V(\underline{D}), E(\bar{S}, S)), H_{21}(S)=$ $(V(D), E(S, \bar{S}))$ and $H_{22}(S)=(V(D), E(S, S))$, where $\bar{S}=V(D)-S$. Then

$$
A(D)=A\left(H_{11}(S)\right)+A\left(H_{12}(S)\right)+A\left(H_{21}(S)\right)+A\left(H_{22}(S)\right)
$$

Let $V(D)=\left\{v_{1}, v_{2}, \ldots, v_{|V(D)|}\right\}$ and $S=\left\{v_{|V(D)|-|S|+1}, \ldots, v_{|V(D)|}\right\}$. Then the adjacency matrices of $H_{11}(S), H_{12}(S), H_{21}(S)$ and $H_{22}(S)$ are presented as follows.

$$
\begin{aligned}
& A\left(H_{11}(S)\right)=\left[\begin{array}{cc}
A_{11}(S) & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
A(\langle\bar{S}\rangle) & 0 \\
0 & 0
\end{array}\right], \\
& A\left(H_{12}(S)\right)=\left[\begin{array}{ll}
0 & A_{12}(S) \\
0 & 0
\end{array}\right], \\
& A\left(H_{21}(S)\right)=\left[\begin{array}{cc}
0 & 0 \\
A_{21}(S) & 0
\end{array}\right], \\
& A\left(H_{22}(S)\right)=\left[\begin{array}{cc}
0 & 0 \\
0 & A_{22}(S)
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & A(\langle S\rangle)
\end{array}\right] .
\end{aligned}
$$

For each $1 \leqslant i, j \leqslant 2$, we call $A_{i j}(S)$ the supporting matrix of the subgraph $H_{i j}(S)$ of D.

Let Γ be a group and ϕ a Γ-voltage assignment on the induced subgraph $\langle S\rangle$ of a finite connected pseudo-digraph D. For each $\gamma \in \Gamma$, let $\langle S\rangle_{(\phi, \gamma)}$ denote the spanning subgraph of the digraph $\langle S\rangle$ whose directed edge set is $\phi^{-1}(\gamma)$ so that the digraph $\langle S\rangle$ is the edge-disjoint union of spanning subgraphs $\langle S\rangle_{(\phi, \gamma)}, \gamma \in \Gamma$.

We define an order relation \leqslant on the vertex set $V\left(D \times_{(\phi, S)} \Gamma\right)$ of the derived digraph $D \times_{(\phi, S)} \Gamma$ as follows: for any two vertices $\left(v_{i}, \alpha\right)$ and $\left(v_{j}, \beta\right)$ of $D \times_{(\phi, S)} \Gamma$, $\left(v_{i}, \alpha\right) \leqslant\left(v_{j}, \beta\right)$ if and only if (i) $\alpha=\infty$ and $\beta \in \Gamma$, (ii) $\alpha, \beta \in \Gamma$ and $\alpha \leqslant \beta$ or (iii) $\alpha=\beta$ and $i \leqslant j$.

Now, under this order relation, we can show that

$$
\begin{aligned}
& A\left(p^{-1}\left(H_{11}(S)\right)\right)=\left[\begin{array}{ccc}
A(\langle\bar{S}\rangle) & 0 \\
0 & 0
\end{array}\right], \\
& A\left(p^{-1}\left(H_{12}(S)\right)\right)=\left[\begin{array}{cccc}
0 & A_{12}(S) & \cdots & A_{12}(S) \\
0 & 0 & \cdots & 0
\end{array}\right], \\
& A\left(p^{-1}\left(H_{21}(S)\right)\right)=\left[\begin{array}{ccc}
0 & 0 \\
A_{21}(S) & 0 \\
\vdots & \vdots \\
A_{21}(S) & 0
\end{array}\right], \quad A\left(p^{-1}\left(H_{22}(S)\right)\right)=A\left(\langle S\rangle \times_{\phi} \Gamma\right),
\end{aligned}
$$

where $p: D \times{ }_{(\phi, S)} \Gamma \rightarrow D$ is the natural projection. Since

$$
\begin{aligned}
A\left(D \times_{(\phi, S)} \Gamma\right)= & A\left(p^{-1}\left(H_{11}(S)\right)\right)+A\left(p^{-1}\left(H_{12}(S)\right)\right) \\
& +A\left(p^{-1}\left(H_{21}(S)\right)\right)+A\left(p^{-1}\left(H_{22}(S)\right)\right)
\end{aligned}
$$

$$
A\left(D \times_{(\phi, S)} \Gamma\right)=\left[\begin{array}{ccc}
A(\bar{S}) & \vdots & A_{12}(S) \cdots A_{12}(S) \\
\cdots \cdots & \vdots & \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
A_{21}(S) & \vdots & \\
\vdots & \vdots & A\left(\langle S\rangle \times_{\phi} \Gamma\right) \\
A_{21}(S) & \vdots &
\end{array}\right]
$$

To simplify the adjacency matrix $A\left(D \times_{(\phi, S)} \Gamma\right)$ of the derived digraph $D \times_{(\phi, S)} \Gamma$, we define the tensor product $A \otimes B$ of two matrices A and B by the matrix obtained from B when every element $b_{i j}$ is replaced by the matrix $A b_{i j}$. Now, by the virtue of the properties of the tensor product of matrices, we have following theorem.

Theorem 3. Let Γ be a finite group and D a finite connected pseudo-digraph. Let S be a subset of $V(D)$ and ϕ a Γ-voltage assignment on the subgraph $\langle S\rangle$ of D. Then the adjacency matrix $A\left(D \times_{(\phi, S)} \Gamma\right)$ of the derived digraph $D \times_{(\phi, S)} \Gamma$ is

$$
A\left(D \times_{(\phi, S)} \Gamma\right)=\left[\begin{array}{cc}
A(\langle\bar{S}\rangle) & A_{12}(S) \otimes J \\
A_{21}(S) \otimes J^{\mathrm{t}} & \sum_{\gamma \in \Gamma} A\left(\langle S\rangle_{(\phi, \gamma)}\right) \otimes P(\gamma)
\end{array}\right]
$$

where J is $[11 \cdots 1], P(\gamma)$ is the $|\Gamma| \times|\Gamma|$ permutation matrix associated with $\gamma \in$ Γ and A^{t} is the transpose of a matrix A.

Let Γ be an abelian group. By the classification of finite abelian groups, Γ is isomorphic to $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{s}}$ for some $n_{i} \geqslant 2$ with $n_{i-1} \mid n_{i}$. For each $k=$ $1, \ldots, s$, let ρ_{k} denote a generator of the cyclic group $\mathbb{Z}_{n_{k}}$ so that $\mathbb{Z}_{n_{k}}=\left\{\rho_{k}^{0}, \rho_{k}^{1}, \ldots\right.$, $\left.\rho_{k}^{n_{k}-1}\right\}$. We define an order relation \leqslant on the cyclic group $\mathbb{Z}_{n}=\left\{\rho^{0}, \ldots, \rho^{n-1}\right\}$ by $\rho^{i} \leqslant \rho^{j}$ if and only if $i \leqslant j$. Under this order relation, we can see that for a generator ρ of a cyclic group \mathbb{Z}_{n}, the permutation matrix $P(\rho)$ associated with ρ is expressed as follows:

$$
P(\rho)=\left[\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Notice that the order relation defined on a cyclic group \mathbb{Z}_{n} gives an order relation on the product of cyclic groups Γ. For example, if $\Gamma=\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$, then $\left(\rho_{1}{ }^{i}, \rho_{2}{ }^{h}\right) \leqslant$ $\left(\rho_{1}{ }^{j}, \rho_{2}{ }^{k}\right)$ if and only if either $h<k$ or $h=k$ and $i \leqslant j$. Under this order relation, we can see that

$$
P\left(\rho_{1}^{m_{1}}, \rho_{2}^{m_{2}}, \ldots, \rho_{s}^{m_{s}}\right)=P\left(\rho_{1}\right)^{m_{1}} \otimes P\left(\rho_{2}\right)^{m_{2}} \otimes \cdots \otimes P\left(\rho_{s}\right)^{m_{s}}
$$

for each $\left(\rho_{1}^{m_{1}}, \rho_{2}^{m_{2}}, \ldots, \rho_{s}^{m_{s}}\right) \in \mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{s}}$.

Since $P(\gamma)$ is diagonalizable for each $\gamma \in \Gamma$ and Γ is abelian, the matrices $P(\gamma), \gamma \in \Gamma$, are simultaneously diagonalizable. More precisely, there exists a unitary matrix M_{Γ} of order $|\Gamma|$ such that $M_{\Gamma} P(\gamma) M_{\Gamma}^{-1}$ is a diagonal matrix for each $\gamma \in \Gamma$ and $J M_{\Gamma}=[\sqrt{|\Gamma|} 0 \cdots 0]$. For convenience, let $\eta_{k}=\exp \left(2 \pi \mathrm{i} / n_{k}\right)$ for each $k=1, \ldots, s$. Then for each $\gamma=\left(\rho_{1}^{m_{1}}, \rho_{2}^{m_{2}}, \ldots, \rho_{s}^{m_{s}}\right)$ in $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{s}}$, we have

$$
\begin{aligned}
& M_{\Gamma} P(\gamma) M_{\Gamma}^{-1} \\
& \quad=\operatorname{Diag}\left[1, \lambda_{(\gamma, 1)}, \ldots, \lambda_{(\gamma,|\Gamma|-1)}\right]=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & \lambda_{(\gamma, 1)} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_{(\gamma,|\Gamma|-1)}
\end{array}\right],
\end{aligned}
$$

where $\lambda_{(\gamma, j)}=\prod_{k=1}^{s}\left(\eta_{k}{ }^{m_{k}}\right)^{j_{k}}$ if $j=\left(n_{1} n_{2} \cdots n_{s-1}\right) j_{s}+\left(n_{1} n_{2} \cdots n_{s-2}\right) j_{s-1}+$ $\cdots+\left(n_{1}\right) j_{2}+j_{1}$ for some $j_{k}=0,1, \ldots, n_{k}-1$. Then, by a simple computation, we can show that

$$
\begin{aligned}
& \left(I_{m} \oplus\left(I_{n} \otimes M_{\Gamma}\right)\right) A\left(D \times_{(\phi, S)} \Gamma\right)\left(I_{m} \oplus\left(I_{n} \otimes M_{\Gamma}\right)\right)^{-1} \\
& \quad=\left[\begin{array}{cc}
A(\langle\bar{S}\rangle) & \sqrt{|\Gamma|} A_{12}(S) \\
\sqrt{|\Gamma|} A_{21}(S) & A(\langle S\rangle)
\end{array}\right] \oplus\left[\bigoplus_{j=1}^{|\Gamma|-1} \sum_{\gamma \in \Gamma} \lambda_{(\gamma, j)} A\left(\langle S\rangle_{(\phi, \gamma)}\right)\right],
\end{aligned}
$$

where $m=|\bar{S}|$ and $n=|S|$. Hence, we have the following theorem.
Theorem 4. Let Γ be a finite group and D a finite connected pseudo-digraph. Let S be a subset of $V(D)$ and ϕ a Γ-voltage assignment on the subgraph $\langle S\rangle$ of D. If Γ is abelian, then the adjacency matrix $A\left(D \times_{(\phi, S)} \Gamma\right)$ of $D \times_{(\phi, S)} \Gamma$ is similar to

$$
\left[\begin{array}{cc}
A(\langle\bar{S}\rangle) & \sqrt{|\Gamma|} A_{12}(S) \\
\sqrt{|\Gamma|} A_{21}(S) & A(\langle S\rangle)
\end{array}\right] \oplus\left[\begin{array}{c}
|\Gamma|-1 \\
\bigoplus_{j=1} \sum_{\gamma \in \Gamma} \lambda_{(\gamma, j)} A\left(\langle S\rangle_{(\phi, \gamma)}\right)
\end{array}\right],
$$

where $A_{12}(S)$ and $A_{21}(S)$ are the supporting matrices of $H_{12}(S)$ and $H_{21}(S)$, respectively, and $\bar{S}=V(D)-S$.

It is clear that if D is a symmetric connected digraph, then the transpose $A\left(H_{12}(S)\right)^{t}$ of the matrix $A\left(H_{12}(S)\right)$ is $A\left(H_{21}(S)\right)$ for each subset S of $V(D)$, i.e., $A_{12}(S)^{t}=A_{21}(S)$. If S is a \mathscr{P}-subset of $V(D)$ and ϕ a symmetric Γ-voltage assignment on $\langle S\rangle$, then

$$
\left[A\left(\langle S\rangle_{(\phi, \gamma)}\right)\right]^{\mathrm{t}}=A\left(\langle S\rangle_{\left(\phi, \gamma^{-1}\right)}\right) \quad \text { for each } \gamma \in \Gamma .
$$

It follows from Theorem 2 that every Γ-graph G can be described as a derived digraph $D \times_{(\phi, S)} \Gamma$, where D is a symmetric digraph and ϕ is a symmetric Γ-voltage assignment on the subgraph $\langle S\rangle$ of D induced by a \mathscr{P}-subset S. Now, by

Theorems 2 and 4, we can find a similar form of the adjacency matrix of a Γ-graph G as follows.

Corollary 1. Let Γ be a finite abelian group and D a finite symmetric connected pseudo-digraph. Let S be a \mathscr{P}-subset of $V(D)$ and ϕ a symmetric Γ-voltage assignment on the subgraph $\langle S\rangle$ of D. Then the adjacency matrix $A\left(D \times_{(\phi, S)} \Gamma\right)$ of the derived digraph $D \times_{(\phi, S)} \Gamma$ is similar to

$$
\left[\begin{array}{cc}
A(\langle\bar{S}\rangle) & \sqrt{|\Gamma|} A_{12}(S) \\
\sqrt{|\Gamma|} A_{12}(S)^{\mathrm{t}} & A(\langle S\rangle)
\end{array}\right] \oplus\left[\begin{array}{c}
|\Gamma|-1 \\
\bigoplus_{j=1} \sum_{\gamma \in \Gamma} \lambda_{(\gamma, j)} A\left(\langle S\rangle_{(\phi, \gamma)}\right)
\end{array}\right],
$$

where $\bar{S}=V(D)-S$ and $A_{12}(S)$ is the supporting matrix of the graph $H_{12}(S)=$ $(V(D), E(\bar{S}, S))$.

4. Computation formulas

In this section, we aim to find a similar form of the adjacency matrix $A\left(D \times{ }_{(\phi, S)}\right.$ Γ) of the derived digraph $D \times_{(\phi, S)} \Gamma$ to make it easy to compute the characteristic polynomial of $D \times_{(\phi, S)} \Gamma$, and then obtain a computational formula for the characteristic polynomial of a Γ-graph G, by using our construction.

Let \mathbb{C} denote the field of complex numbers. A weighted digraph is a pair $D_{\omega}=$ (D, ω), where D is a digraph and $\omega: E(D) \rightarrow \mathbb{C}$ is a function. Given any weighted pseudo-digraph, the adjacency matrix $A\left(D_{\omega}\right)=\left(a_{i j}\right)$ of D_{ω} is the square matrix of order $|V(D)|$ defined by

$$
a_{i j}=\sum_{e \in E\left(\left\{v_{i}\right\},\left\{v_{j}\right\}\right)} \omega(e) .
$$

The characteristic polynomial $\operatorname{det}\left(\lambda I-A\left(D_{\omega}\right)\right)$ is denoted by $\Phi\left(D_{\omega} ; \lambda\right)$ and is called the characteristic polynomial of D_{ω}.

Let Γ be a finite abelian group. For a \mathscr{P}-subset S of $V(D)$ and a symmetric Γ voltage assignment ϕ on the subgraph $\langle S\rangle$, we define a function $\omega_{0}(\phi): E(D) \rightarrow \mathbb{C}$ by

$$
\omega_{0}(\phi)(e)= \begin{cases}1 & \text { if } e \in E(\bar{S}, \bar{S}) \cup E(S, S) \\ \sqrt{|\Gamma|} & \text { if } e \in E(\bar{S}, S) \cup E(S, \bar{S})\end{cases}
$$

and define a function $\omega_{k}(\phi): E(\langle S\rangle) \rightarrow \mathbb{C}$ by $\omega_{k}(\phi)(e)=\lambda_{(\phi(e), k)}$ for each $k=$ $1,2, \ldots,|\Gamma|-1$.

Then, by Corollary 1, the adjacency matrix $A\left(D \times_{(\phi, S)} \Gamma\right)$ of the derived digraph $D \times_{(\phi, S)} \Gamma$ is similar to

$$
A\left(D_{\omega_{0}(\phi)}\right) \oplus\left(\bigoplus_{j=1}^{|\Gamma|-1} A\left(\langle S\rangle_{\omega_{j}(\phi)}\right)\right)
$$

Hence we have the following.
Theorem 5. Let Γ be a finite abelian group and D a finite symmetric connected pseudo-digraph. Let S be a \mathscr{P}-subset of $V(D)$ and ϕ a symmetric Γ-voltage assignment on the subgraph $\langle S\rangle$ of D. Then the characteristic polynomial $\Phi\left(D \times_{(\phi, S)}\right.$ $\Gamma ; \lambda)$ of the derived digraph $D \times_{(\phi, S)} \Gamma$ is

$$
\Phi\left(D \times_{(\phi, S)} \Gamma ; \lambda\right)=\Phi\left(D_{\omega_{0}(\phi)} ; \lambda\right) \times \prod_{j=1}^{|\Gamma|-1} \Phi\left(\langle S\rangle_{\omega_{j}(\phi)} ; \lambda\right) .
$$

Now, we aim to find an explicit computational formula for the characteristic polynomial $\Phi\left(D \times_{(\phi, \mathrm{S})} \Gamma ; \lambda\right)$ of the derived digraph $D \times_{(\phi, \mathrm{S})} \Gamma$. Notice that the matrix $A\left(D_{\omega_{0}(\phi)}\right)$ is Hermitian and $A\left(\langle S\rangle_{\omega_{j}(\phi)}\right)$ is also Hermitian for each $j=1, \ldots, n-$ 1. For a Hermitian matrix A, let G be the simple graph associated with A, i.e., the number of vertices of G is equal to the number of columns (or rows) of A and there is an edge between two vertices v_{s} and v_{t} of G if and only if the (s, t)-entry of A is not zero. Let $G_{0}, G_{1}, \ldots, G_{n-1}$ be the simple graphs associated with the Hermitian matrices $A\left(D_{\omega_{0}(\phi)}\right), A\left(\langle S\rangle_{\omega_{1}(\phi)}\right), \ldots, A\left(\langle S\rangle_{\omega_{n-1}(\phi)}\right)$, respectively. We define a function $\mu_{0}(\phi): E\left(\vec{G}_{0}\right) \cup V\left(\vec{G}_{0}\right) \rightarrow \mathbb{C}$ as follows: $\mu_{0}(\phi)\left(v_{s}\right)$ is the (s, s)-entry of $A\left(D_{\mu_{0}(\phi)}\right)$ for each $v_{s} \in V\left(\vec{G}_{0}\right)$ and $\mu_{0}(\phi)\left(v_{s} v_{t}\right)$ is the (s, t)-entry of $A\left(D_{\mu_{0}(\phi)}\right)$ for each $v_{s} v_{t} \in E\left(\vec{G}_{0}\right)$. Then $A\left(G_{0}, \mu_{0}(\phi)\right)=A\left(D_{\omega_{0}(\phi)}\right)$, where the adjacency matrix $A\left(G_{0}, \mu_{0}(\phi)\right)=\left(a_{i j}\right)$ is defined by $a_{i j}=\mu_{0}(\phi)\left(v_{i} v_{j}\right)$ if $i \neq j$ and $a_{i j}=\mu_{0}(\phi)\left(v_{i}\right)$ if $i=j$. For each $j=1, \ldots, n-1$, we can also define $\mu_{j}(\phi): E\left(\vec{G}_{j}\right) \cup V\left(\vec{G}_{j}\right) \rightarrow$
 $\overline{\mu_{i}(e)}=\mu_{i}\left(e^{-1}\right)$ for each $e \in E\left(\vec{G}_{i}\right)$ and $\mu_{i}\left(v_{s}\right)$ is a real number for each $v_{s} \in$ $V\left(\vec{G}_{i}\right)$. Such a weight function is said to be symmetric (see [5]). Now, we aim to compute the characteristic polynomials of the weighted graphs $\left(\vec{G}_{i}, \mu_{i}(\phi)\right), j=$ $0, \ldots,|\Gamma|-1$. To do this, let G be a simple graph with a symmetric weight function $\omega: E(\vec{G}) \cup V(\vec{G}) \rightarrow \mathbb{C}$ on the digraph \vec{G} of G. A subgraph P of G is called an elementary configuration if each of its components is either a cycle $C_{m}(m \geqslant 3)$, K_{2} or K_{1}. We denote E_{k} as the set of all elementary configurations of G having k vertices, for each k. For an elementary configuration P, let $\kappa(P)$ denote the number of components of $P, C(P)$ the set of all cycles $C_{m}(m \geqslant 3)$ in P, and $I_{v}(P)$ and $I_{E}(P)$ the set of all isolated vertices and edges in P, respectively. Notice that for each cycle C in $C(P)$, there exist two directed cycles, say C^{+}and C^{-}, in \vec{G}. By a slight modification of the method used in [5], we can show the following theorem.

Theorem 6. Let G be a finite simple connected graph and $\omega: E(\vec{G}) \cup C(\vec{G}) \rightarrow \mathbb{C}$ a symmetric weight function on \vec{G}. Then

Fig. 4. $\mathrm{A} \mathbb{Z}_{4}$-graph.

Fig. 5. A symmetric digraph D with a symmetric \mathbb{Z}_{4}-voltage assignment ϕ.

$$
\begin{aligned}
\Phi\left(\vec{G}_{\omega} ; \lambda\right)= & \lambda^{|V(D)|}+\sum_{k=1}^{n}\left[\sum_{P \in E_{k}}(-1)^{\kappa(P)} 2^{|C(P)|} \prod_{u \in I_{v}(P)} \omega(u)\right. \\
& \left.\times \prod_{e \in I_{E}(P)}|\omega(e)|^{2} \prod_{e \in C(P)} \operatorname{Re}\left(\omega\left(C^{+}\right)\right)\right] \lambda^{|V(D)|-k},
\end{aligned}
$$

where $\operatorname{Re}\left(\omega\left(C^{+}\right)\right)$is the real part of $\prod_{e \in C^{+}} \omega(e)$ and the product over the empty index set is defined to be 1 .

Example. Let $\Gamma=\mathbb{Z}_{4}$ and G be the graph depicted in Fig. 4 .
Clearly, G is a \mathbb{Z}_{4}-graph. Then there exist a symmetric digraph D and a symmetric \mathbb{Z}_{4}-voltage assignment ϕ on a \mathscr{P}-subset S such that \vec{G} is isomorphic to $D \times{ }_{(\phi, S)} \mathbb{Z}_{4}$. Such a symmetric digraph D with a symmetric \mathbb{Z}_{4}-voltage assignment ϕ is depicted in Fig. 5. In Fig. 5, the \mathscr{P}-subset S of $V(D)$ is $\left\{v_{3}, v_{4}\right\}$.

By Corollary 1, we can see that the adjacency matrix $A\left(D \times_{(\phi, S)} \mathbb{Z}_{4}\right)$ is similar to

$$
\begin{aligned}
& A\left(D_{\omega_{0}(\phi)}\right) \oplus A\left(\langle S\rangle_{\omega_{1}(\phi)}\right) \oplus A\left(\langle S\rangle_{\omega_{2}(\phi)}\right) \oplus A\left(\langle S\rangle_{\omega_{3}(\phi)}\right) \\
& \quad=\left[\begin{array}{llll}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 \\
2 & 0 & 3 & 1 \\
0 & 2 & 1 & 3
\end{array}\right] \oplus\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right] \oplus\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right] \oplus\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right] .
\end{aligned}
$$

Notice that the simple graph G_{0} associated with the Hermitian matrix $A\left(D_{\omega_{0}(\phi)}\right)$ is the path P_{4} on $V(D)$ and for each $i=1,2,3$, the simple graph G_{i} associated with the Hermitian matrix $A\left(\langle S\rangle_{\omega_{i}(\phi)}\right)$ is the complete graph K_{2} on two vertices $\left\{v_{3}, v_{4}\right\}$.

Moreover, for each $i=0,1,2,3$, it is not hard to find the weight function $\mu_{i}(\phi)$ on \vec{G}_{i}. Now, by Theorem 6 , we have

$$
\Phi(G ; \lambda)=\left(\lambda^{4}-6 \lambda^{3}+24 \lambda+16\right)\left(\lambda^{2}+2 \lambda\right)\left(\lambda^{2}+2 \lambda\right)\left(\lambda^{2}+2 \lambda\right)
$$

References

[1] N. Biggs, Algebraic Graph Theory, second ed, Cambridge University Press, London, 1993.
[2] Y. Chae, J.H. Kwak, J. Lee, Characteristic polynomials of some graph bundles, J. Korean Math. Soc. 30 (1993) 229-249.
[3] J.L. Gross, T.W. Tucker, Topological Graph Theory, Wiley, New York 1987.
[4] J.H. Kwak, Y.S. Kwon, Characteristic polynomials of graph bundles having voltages in a dihedral group, submitted.
[5] J.H. Kwak, J. Lee, Characteristic polynomials of some graph bundles, Linear and Multilinear Algebra 32 (1992) 61-73.
[6] K. Wang, Characteristic polynomials of symmetric graphs, Linear Algebra Appl. 51 (1983) 121-125.

[^0]: * Corresponding author.

 E-mail address: julee@yu.ac.kr (J. Lee).
 ${ }^{1}$ Supported by KOSEF Grant 951-0105-007-2.

