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Abstract

J.H. Kwak and J. Lee (Linear and Multilinear Algebra 32 (1992) 61–73) computed the
characteristic polynomial of a finite graphG having an abelian automorphism group which
acts freely onG. For a finite weighted symmetric pseudographG having an abelian automor-
phism group which acts semifreely onG, K. Wang (Linear Algebra Appl. 51 (1983) 121–125)
showed that the characteristic polynomial ofG is factorized into a product of a polynomial
associated to the orbit graph and a polynomial associated to the free part of the action. But
he did not explicitly compute the characteristic polynomial of such a graphG. In this paper,
we introduce a new method to construct a finite pseudographG having an automorphism
group which acts semifreely onG, and obtain an explicit formula to compute the characteristic
polynomial of such a graph by using the construction method. © 2000 Elsevier Science Inc.
All rights reserved.
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1. Introduction

Let G be a finite connected undirected pseudograph with vertex setV (G) and
edge setE(G), and letD be a finite connected pseudo-digraph with vertex setV (D)

and directed edge setE(D), where a connected pseudo-digraph is a digraph whose
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underlying graph is a connected pseudograph. LetA(G) andA(D) denote the adja-
cency matrices of the undirected graphG and the digraphD, respectively. We also
denote byU(G; λ) andU(D; λ) the characteristic polynomials det(λI − A(G)) and
det(λI − A(D)), respectively (see [1]). A digraphD is symmetricif A(D) is sym-
metric. By |X|, we denote the cardinality of a finite setX. We say thatG admits
a C-action if there is a group homomorphism fromC to Aut(G). For eachv ∈
V (G), letCv = {γ ∈ C | γ (v) = v} be the isotropy subgroup ofv, and FixC = {v ∈
V (G) | Cv = C}. We call FixC thefixed partof V (G). We say thatC acts semifreely
onG if for eachv ∈ V (G), Cv is either the trivial group or the full groupC, and for
eache ∈ E(〈FixC〉), γ (e) = e for all γ ∈ C, where〈FixC〉 is the subgraph induced by
the fixed part FixC. In [6], Wang defined thatC acts freely onG if C actssemifreely
onG and FixC = ∅. Notice that even ifC acts semifreely onG and FixC = ∅, there
might exist an edgee in E(G) such thatγ (e) = e for some non-identity elementγ
in C. In this paper, we say thatC acts freely onG if C acts freely on bothV (G)

andE(G). We use the same terminology whenC acts on a digraphD. Notice that
if a digraphD has no loops, thenC acts freely on a digraphD according to Wang’s
definition if and only ifC acts freely on a digraphD according to our definition.

A digraphD̃ is called acovering graphof D if there exists a direction preserving
mapf : D̃ → D with the following properties:f|

V (D̃)
: V (D̃) → V (D) andf|

E(D̃)
:

E(D̃) → E(D) are surjective and for each̃v ∈ V (D̃), f maps the set of edges origi-
nating atṽ one-to-one onto the set of edges originating atf (ṽ), andf maps the set of
edges terminating at̃v one-to-one onto the set of edges terminating atf (ṽ). We call
such a mapf : D̃ → D a coveringandD thebase graph. A coveringf : D̃ → D

is regular if there exists a groupC of graph automorphisms of̃D acting freely onD̃
and a graph isomorphismh : D̃/C → D such that the diagram

commutes, i.e.,h ◦ q = f , whereq is the quotient map. Convert the graphG to a
digraph EG by replacing each edgee of G with a pair of oppositely directed edges,
saye+ ande−. We then say that the digraphEG is associatedwith G. By e−1 we mean
the reverse edge to an edgee ∈ E( EG). We denote the directed edgeeof Gbyuv if the
initial and the terminal vertices ofeareu andv, respectively. Note that the adjacency
matrix of graphG is the same as that of digraphEG, i.e.,A(G) = A( EG) (see Fig. 1).

Notice thatC acts semifreely onG with FixC = ∅ iff C acts freely onEG. We say

that a graphG̃ is a covering ofG if Ẽ
G is a covering ofEG as digraphs. Moreover,EG

is always symmetric. It is clear that the complete graphK2 is not a covering of any
smaller graph. ButEK2 can be presented as a covering of a directed loop with one
vertex (see Fig. 2).
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Fig. 1. G and EG.

Fig. 2. EK2 covers a directed loop.

LetC be a finite group. AC-voltage assignment onG is a functionU : E( EG) → C
such thatφ(e−1) = φ(e)−1 for all e in E( EG). ThederivedgraphG ×φ C, derived
by aC-voltage assignmentφ, hasV (G) × C as its vertex set andE(G) × C as its
edge set, where(e, g) joins from (u, g) to (v, φ(e)g) if e = uv ∈ E( EG). For con-
venience, a vertex(u, g) is denoted byug and an edge(e, g) by eg. The voltage
groupC acts naturally onG ×φ C as follows: for everyg ∈ C, let Ug : G ×φ C →
G ×φ C denote the graph automorphism defined byUg(vg′) = vg′g−1 on vertices and
Ug(eg′) = eg′g−1 on edges. Then the natural mapp : G ×φ C → G ×φ C/C ' G is
a |C|-fold regular covering. Gross and Tucker [3] showed that every regular covering
of Garises from a voltage assignment onG. Similarly, we can show that every regular
covering of a digraphD can be constructed by the same method.

In this paper, we introduce a new method to construct a finite pseudographG
which admits a semifreeC-action, and obtain an explicit formula to compute the
characteristic polynomial of such a graph by using the construction method. The
previous works on this direction can be found in [2,4,5].

2. A construction of aC-graph

Throughout this paper, by aC-graph G(resp.D) we mean a graph (resp. digraph
D) which admits a semifreeC-action. In this section, we introduce a method to con-
struct aC-graph. LetD be a pseudo-digraph. For a subsetSof V (D), we denote by
〈S〉 the subgraph ofD induced byS, and for a pair of subsetsS1 andS2 of V (D), by
E(S1, S2) the set of all directed edgese = uv such thatu ∈ S1 andv ∈ S2. Then, for
a subsetS of V (D), E(D) = E(S̄, S̄) ∪ E(S, S) ∪ E(S̄, S) ∪ E(S, S̄), whereS̄ =
V (D) − S.

For aC-voltage assignmentφ on the subgraph〈S〉 of D, we define a new digraph
D ×(φ,S) C as follows. We adjoin an extra element, say∞, to the groupC with
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the property thatγ∞ = ∞ = ∞γ for eachγ ∈ C ∪ {∞}. Notice thatC ∪ {∞} is
a semigroup. The vertex setV (D ×(φ,S) C) is (S × C) ∪ (S̄ × {∞}) and let there
be a directed edge from(u, α) to (v, β) if (i) uv ∈ E(S̄, S̄) andα = β = ∞; (ii)
uv ∈ E(S, S), α, β ∈ C andφ(uv)α = β; (iii) uv ∈ E(S̄, S), α = ∞ andβ ∈ C; or
(iv) uv ∈ E(S, S̄), α ∈ C andβ = ∞. We callD ×(φ,S) C thederived digraphby a
subsetSof V (D) and aC-voltage assignmentφ on the subgraph〈S〉 or simply, the
derived digraph.

Now, we define aC-action on the derived digraphD ×(φ,S) C by γ (v, α) =
(v, αγ −1) for all γ ∈ C and(v, α) ∈ V (D ×(φ,S) C). ThenD ×(φ,S) C is aC-graph
such that the fixed part FixC is S̄ × {∞}. Moreover, for each(v, γ ) ∈ S × C the isot-
ropy subgroupC(v,γ ) is the trivial subgroup ofC, i.e., each element ofS × C is not
fixed by any non-identity element ofC. We call the quotient mapp : D ×(φ,S) C →
(D ×(φ,S) C)/C∼=D defined byp(v, α) = v for each(v, α) ∈ V (D ×(φ,S) C) the
natural projection. Fig. 3 illustrates this construction.

Notice that if S is the full setV (D), then the derived digraphD ×(φ,S) C is a
regular covering ofD, and ifS is the empty set, then the derived digraphD ×(φ,S) C
is just the digraphD. For a givenC-graphD, let S = (V (D) − FixC)/C ∈ V (D/C).
Then the quotient mapp : 〈V (D) − FixC〉 → 〈S〉 is aC-covering and there exists a
voltage assignmentφ on 〈S〉 such that〈S〉 ×φ C = 〈V (D) − FixC〉. Now, it is clear
thatD is isomorphic to the derived digraph(D/C) ×(φ,S) C. We summarize our dis-
cussions as follows.

Theorem 1. Let C be a finite group and D a finite pseudo-digraph. Then D is a
C-graph if and only if there exist a subset S ofV (D/C) and aC-voltage assignment
φ on the subgraph〈S〉 of D/C such that D is isomorphic to the derived digraph
(D/C) ×(φ,S) C.

Fig. 3. D ×(φ,S) Z4 with S = {v4, v5}.
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Notice that for some undirected pseudographG, EG/C need not be the digraph
associated with a undirected graph even thoughEG is aC-graph. Now, we consider
a construction method of aC-graphG which is undirected. For aC-graphG, the
digraph EG is symmetric and also aC-graph. This implies that the quotient graph
EG/C is symmetric. Hence, to construct aC-graph, it is suffice to consider the base
graphD of our construction as a symmetric digraph. A subsetS of V (D) is called
a P-subsetif the number of directed loops based at each vertex inS̄ = V (D) − S

is even. Notice that if the derived digraphD ×(φ,S) C is symmetric, then the subset
S of V (D) must be aP-subset. For our purpose, we define a symmetricC-voltage
assignmentφ on the subgraph〈S〉 induced by aP-subsetSof V (D) as follows.

Definition 1. Let D be a finite symmetric connected digraph andS a P-subset of
V (D). A C-voltage assignmentφ on 〈S〉 is said to besymmetricif
(i) for each directed loope based atvi in S, there exists another directed loope′

based atvi in Ssuch thatφ(e′) = φ(e)−1 if φ(e) is not of order 2;
(ii) for each directed edgee = vivj (i 6= j) in E(S, S) there existse′ = vj vi in

E(S, S) such thatφ(e′) = φ(e)−1.

Now, we aim to discuss a method to construct an undirectedC-graphG. Let D
be a finite connected symmetric digraph andSaP-subset ofV (D). Let φ be sym-
metricC-voltage assignment on the subgraph〈S〉. Then it is clear that the derived
digraphD ×(φ,S) C is symmetric. Since for each vertex(v, γ ) of the derived di-
graphD ×(φ,S) C, the number of directed loops at(v, γ ) is even. This implies that
D ×(φ,S) C = EG for someC-graphG.

Conversely, ifD = EG/C for some undirectedC-graphG, then S = (V (D) −
FixC)/C is aP-subset ofV (D) and there exists a symmetricC-voltage assignment
φ on〈S〉 such that the derived digraphD ×(φ,S) C is isomorphic toEG. We summarize
our discussions as follows.

Theorem 2. Let C be a finite group and D a finite connected symmetric digraph.
Let S be a subset ofV (D) andφ a C-voltage assignment on the subgraph〈S〉 of D.
Then the derived digraphD ×(φ,S) C = EG for someC-graph G if and only if S is a
P-subset ofV (D) andφ is symmetric.

3. Adjacency matrices ofC-graphs

Let D be a finite connected pseudo-digraph andS a subset ofV (D). For con-
venience, letH11(S) = (V (D), E(S̄, S̄)), H12(S) = (V (D), E(S̄, S)), H21(S)=
(V (D), E(S, S̄)) andH22(S) = (V (D), E(S, S)), whereS̄ = V (D) − S. Then

A(D) = A(H11(S)) + A(H12(S)) + A(H21(S)) + A(H22(S)).
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LetV (D) = {v1, v2, . . . , v|V (D)|} andS = {v|V (D)|−|S|+1, . . . , v|V (D)|}. Then the ad-
jacency matrices ofH11(S), H12(S), H21(S) andH22(S) are presented as follows.

A(H11(S)) =
[
A11(S) 0

0 0

]
=

[
A(〈S̄〉) 0

0 0

]
,

A(H12(S)) =
[

0 A12(S)

0 0

]
,

A(H21(S)) =
[

0 0

A21(S) 0

]
,

A(H22(S)) =
[

0 0

0 A22(S)

]
=

[
0 0

0 A(〈S〉)

]
.

For each 16 i, j 6 2, we callAij (S) thesupporting matrixof the subgraphHij (S)

of D.
Let C be a group andφ aC-voltage assignment on the induced subgraph〈S〉 of a

finite connected pseudo-digraphD. For eachγ ∈ C, let 〈S〉(φ,γ ) denote the spanning
subgraph of the digraph〈S〉 whose directed edge set isφ−1(γ ) so that the digraph
〈S〉 is the edge-disjoint union of spanning subgraphs〈S〉(φ,γ ), γ ∈ C.

We define an order relation6 on the vertex setV (D ×(φ,S) C) of the derived di-
graphD ×(φ,S) C as follows: for any two vertices(vi, α) and(vj , β) of D ×(φ,S) C,
(vi, α) 6 (vj , β) if and only if (i) α = ∞ andβ ∈ C, (ii) α, β ∈ C andα 6 β or (iii)
α = β andi 6 j .

Now, under this order relation, we can show that

A(p−1(H11(S))) =
[
A(〈S̄〉) 0

0 0

]
,

A(p−1(H12(S))) =
[

0 A12(S) · · · A12(S)

0 0 · · · 0

]
,

A(p−1(H21(S))) =




0 0

A21(S) 0

...
...

A21(S) 0


 , A(p−1(H22(S))) =A(〈S〉 ×φ C),

wherep : D ×(φ,S) C → D is the natural projection. Since

A(D ×(φ,S) C)=A(p−1(H11(S))) + A(p−1(H12(S)))

+A(p−1(H21(S))) + A(p−1(H22(S))),
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A(D ×(φ,S) C) =




A(S̄)
... A12(S) · · · A12(S)·

· · · · · · ... · · · · · · · · · · · · · · · · · ··
A21(S)

...·...

... A(〈S〉 ×φ C)·
A21(S)

...




.

To simplify the adjacency matrixA(D ×(φ,S) C) of the derived digraphD ×(φ,S) C,
we define the tensor productA ⊗ B of two matricesA andB by the matrix obtained
from B when every elementbij is replaced by the matrixAbij . Now, by the virtue of
the properties of the tensor product of matrices, we have following theorem.

Theorem 3. LetC be a finite group and D a finite connected pseudo-digraph. Let S
be a subset ofV (D) andφ a C-voltage assignment on the subgraph〈S〉 of D. Then
the adjacency matrixA(D ×(φ,S) C) of the derived digraphD ×(φ,S) C is

A(D ×(φ,S) C) =
[

A(〈S̄〉) A12(S) ⊗ J

A21(S) ⊗ J t ∑
γ∈CA(〈S〉(φ,γ )) ⊗ P(γ )

]
,

where J is[1 1· · · 1], P(γ ) is the|C| × |C| permutation matrix associated withγ ∈
C andAt is the transpose of a matrix A.

Let C be an abelian group. By the classification of finite abelian groups,C is
isomorphic toZn1 × Zn2 × · · · × Zns for someni > 2 with ni−1|ni . For eachk =
1, . . . , s, letρk denote a generator of the cyclic groupZnk so thatZnk = {ρ0

k , ρ1
k , . . . ,

ρ
nk−1
k }. We define an order relation6 on the cyclic groupZn = {ρ0, . . . , ρn−1} by

ρi 6 ρj if and only if i 6 j . Under this order relation, we can see that for a generator
ρ of a cyclic groupZn, the permutation matrixP(ρ) associated withρ is expressed
as follows:

P(ρ) =




0 1 · · · 0 0

0 0
... 0 0

...
...

. . .
...

...

0 0 · · · 0 1
1 0 · · · 0 0




.

Notice that the order relation defined on a cyclic groupZn gives an order relation
on the product of cyclic groupsC. For example, ifC = Zn1 × Zn2, then(ρ1

i , ρ2
h) 6

(ρ1
j , ρ2

k) if and only if eitherh < k or h = k andi 6 j . Under this order relation,
we can see that

P(ρ
m1
1 , ρ

m2
2 , . . . , ρms

s ) = P(ρ1)
m1 ⊗ P(ρ2)

m2 ⊗ · · · ⊗ P(ρs)
ms

for each(ρm1
1 , ρ

m2
2 , . . . , ρ

ms
s ) ∈ Zn1 × · · · × Zns .
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Since P(γ ) is diagonalizable for eachγ ∈ C and C is abelian, the matrices
P(γ ), γ ∈ C, are simultaneously diagonalizable. More precisely, there exists a uni-
tary matrixMC of order |C| such thatMCP(γ )M−1

C is a diagonal matrix for each
γ ∈ C andJMC = [√|C| 0 · · · 0

]
. For convenience, letηk = exp(2pi/nk) for each

k = 1, . . . , s. Then for eachγ = (ρ
m1
1 , ρ

m2
2 , . . . , ρ

ms
s ) in Zn1 × · · · × Zns , we have

MCP(γ )M−1
C

= Diag[1, λ(γ,1), . . . , λ(γ,|C|−1)] =




1 0 · · · 0
0 λ(γ,1) 0
...

. . .
...

0 · · · 0 λ(γ,|C|−1)


 ,

where λ(γ,j) = ∏s
k=1 (ηk

mk )jk if j = (n1n2 · · · ns−1)js + (n1n2 · · ·ns−2)js−1 +
· · · + (n1)j2 + j1 for somejk = 0, 1, . . . , nk − 1. Then, by a simple computation,
we can show that

(Im ⊕ (In ⊗ MC)) A(D ×(φ,S) C) (Im ⊕ (In ⊗ MC))−1

=
[

A(〈S̄〉) √|C|A12(S)√|C|A21(S) A(〈S〉)

]
⊕


|C|−1⊕

j=1

∑
γ∈C

λ(γ,j)A
(〈S〉(φ,γ )

) ,

wherem = |S̄| andn = |S|. Hence, we have the following theorem.

Theorem 4. LetC be a finite group and D a finite connected pseudo-digraph. Let S
be a subset ofV (D) andφ a C-voltage assignment on the subgraph〈S〉 of D. If C is
abelian, then the adjacency matrixA(D ×(φ,S) C) of D ×(φ,S) C is similar to[

A(〈S̄〉) √| C |A12(S)√| C |A21(S) A(〈S〉)

]
⊕


|C|−1⊕

j=1

∑
γ∈C

λ(γ,j)A(〈S〉(φ,γ ))


 ,

where A12(S) and A21(S) are the supporting matrices ofH12(S) and H21(S),
respectively, and̄S = V (D) − S.

It is clear that if D is a symmetric connected digraph, then the transpose
A(H12(S))t of the matrixA(H12(S)) is A(H21(S)) for each subsetS of V (D),
i.e., A12(S)t = A21(S). If S is a P-subset ofV (D) andφ a symmetricC-voltage
assignment on〈S〉, then[

A(〈S〉(φ,γ ))
]t = A(〈S〉(φ,γ −1)) for eachγ ∈ C.

It follows from Theorem 2 that everyC-graphG can be described as a derived
digraphD ×(φ,S) C, whereD is a symmetric digraph andφ is a symmetricC-voltage
assignment on the subgraph〈S〉 of D induced by aP-subset S. Now, by
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Theorems 2 and 4, we can find a similar form of the adjacency matrix of aC-graph
G as follows.

Corollary 1. Let C be a finite abelian group and D a finite symmetric connected
pseudo-digraph. Let S be aP-subset ofV (D) andφ a symmetricC-voltage assign-
ment on the subgraph〈S〉 of D. Then the adjacency matrixA(D ×(φ,S) C) of the
derived digraphD ×(φ,S) C is similar to

[
A(〈S̄〉) √| C |A12(S)√| C |A12(S)t A(〈S〉)

]
⊕


|C|−1⊕

j=1

∑
γ∈C

λ(γ,j)A(〈S〉(φ,γ ))


 ,

whereS̄ = V (D) − S andA12(S) is the supporting matrix of the graphH12(S) =
(V (D),E(S̄, S)).

4. Computation formulas

In this section, we aim to find a similar form of the adjacency matrixA(D ×(φ,S)

C) of the derived digraphD ×(φ,S) C to make it easy to compute the character-
istic polynomial ofD ×(φ,S) C, and then obtain a computational formula for the
characteristic polynomial of aC-graphG, by using our construction.

Let C denote the field of complex numbers. A weighted digraph is a pairDω =
(D,ω), whereD is a digraph andω : E(D) → C is a function. Given any weighted
pseudo-digraph, the adjacency matrixA(Dω) = (aij ) of Dω is the square matrix of
order|V (D)| defined by

aij =
∑

e∈E({vi },{vj })
ω(e).

The characteristic polynomial det(λI − A(Dω)) is denoted byU(Dω; λ) and is
called the characteristic polynomial ofDω.

Let C be a finite abelian group. For aP-subsetS of V (D) and a symmetricC-
voltage assignmentφ on the subgraph〈S〉, we define a functionω0(φ) : E(D) → C

by

ω0(φ)(e) =
{

1 if e ∈ E(S̄, S̄) ∪ E(S, S),
√| C | if e ∈ E(S̄, S) ∪ E(S, S̄),

and define a functionωk(φ) : E(〈S〉) → C by ωk(φ)(e) = λ(φ(e),k) for eachk =
1, 2, . . . , |C| − 1.

Then, by Corollary 1, the adjacency matrixA(D ×(φ,S) C) of the derived digraph
D ×(φ,S) C is similar to
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A(Dω0(φ)) ⊕

|C|−1⊕

j=1

A(〈S〉ωj (φ))


 .

Hence we have the following.

Theorem 5. Let C be a finite abelian group and D a finite symmetric connected
pseudo-digraph. Let S be aP-subset ofV (D) andφ a symmetricC-voltage assign-
ment on the subgraph〈S〉 of D. Then the characteristic polynomialU(D ×(φ, S)

C; λ) of the derived digraphD ×(φ, S) C is

U(D ×(φ,S) C; λ) = U(Dω0(φ); λ) ×
|C|−1∏
j=1

U
(〈S〉ωj (φ); λ

)
.

Now, we aim to find an explicit computational formula for the characteristic poly-
nomialU(D ×(φ, S) C; λ) of the derived digraphD ×(φ, S) C. Notice that the matrix
A(Dω0(φ)) is Hermitian andA(〈S〉ωj (φ)) is also Hermitian for eachj = 1, . . . , n −
1. For a Hermitian matrixA, let G be the simple graph associated withA, i.e., the
number of vertices ofG is equal to the number of columns (or rows) ofA and there
is an edge between two verticesvs andvt of G if and only if the(s, t)-entry of A
is not zero. LetG0,G1, . . . ,Gn−1 be the simple graphs associated with the Hermi-
tian matricesA(Dω0(φ)), A(〈S〉ω1(φ)), . . . , A(〈S〉ωn−1(φ)), respectively. We define a
functionµ0(φ) : E( EG0) ∪ V ( EG0) → C as follows:µ0(φ)(vs) is the(s, s)-entry of
A(Dµ0(φ)) for eachvs ∈ V ( EG0) andµ0(φ)(vsvt ) is the(s, t)-entry ofA(Dµ0(φ)) for
eachvsvt ∈ E( EG0). ThenA(G0, µ0(φ)) = A(Dω0(φ)), where the adjacency matrix
A(G0, µ0(φ)) = (aij ) is defined byaij = µ0(φ)(vivj ) if i 6= j andaij = µ0(φ)(vi)

if i = j . For eachj = 1, . . . , n − 1, we can also defineµj(φ) : E( EGj) ∪ V ( EGj) →
C so thatA( EGj,µj (φ)) = A(〈S〉ωj (φ)). Notice that for eachi = 0, 1, . . . , n − 1,

µi(e) = µi(e
−1) for eache ∈ E( EGi) and µi(vs) is a real number for eachvs ∈

V ( EGi). Such a weight function is said to besymmetric(see [5]). Now, we aim to
compute the characteristic polynomials of the weighted graphs( EGi,µi(φ)), j =
0, . . . , |C| − 1. To do this, letG be a simple graph with a symmetric weight function
ω : E( EG) ∪ V ( EG) → C on the digraphEG of G. A subgraphP of G is called an
elementary configurationif each of its components is either a cycleCm (m > 3),
K2 or K1. We denoteEk as the set of all elementary configurations ofG havingk
vertices, for eachk. For an elementary configurationP, let κ(P ) denote the number
of components ofP, C(P) the set of all cyclesCm (m > 3) in P, andIv(P ) and
IE(P ) the set of all isolated vertices and edges inP, respectively. Notice that for
each cycleC in C(P), there exist two directed cycles, sayC+ andC−, in EG. By a
slight modification of the method used in [5], we can show the following theorem.

Theorem 6. Let G be a finite simple connected graph andω : E( EG) ∪ C( EG) → C

a symmetric weight function onEG. Then
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Fig. 4. A Z4-graph.

Fig. 5. A symmetric digraphD with a symmetricZ4-voltage assignmentφ.

U( EGω; λ)=λ|V (D)| +
n∑

k=1


 ∑

P∈Ek

(−1)κ(P )2|C(P )| ∏
u∈Iv(P )

ω(u)

×
∏

e∈IE(P )

|ω(e)|2
∏

e∈C(P )

Re(ω(C+))


λ|V (D)|−k,

whereRe(ω(C+)) is the real part of
∏

e∈C+ ω(e) and the product over the empty
index set is defined to be1.

Example. Let C = Z4 andG be the graph depicted in Fig. 4 .
Clearly,G is aZ4-graph. Then there exist a symmetric digraphD and a symmetric

Z4-voltage assignmentφ on aP-subsetSsuch thatEG is isomorphic toD ×(φ,S) Z4.
Such a symmetric digraphD with a symmetricZ4-voltage assignmentφ is depicted
in Fig. 5. In Fig. 5, theP-subsetSof V (D) is {v3, v4}.

By Corollary 1, we can see that the adjacency matrixA(D ×(φ,S) Z4) is similar
to

A(Dω0(φ)) ⊕ A(〈S〉ω1(φ)) ⊕ A(〈S〉ω2(φ)) ⊕ A(〈S〉ω3(φ))

=




0 0 2 0
0 0 0 2
2 0 3 1
0 2 1 3


 ⊕

[−1 −1
−1 −1

]
⊕

[−1 1
1 −1

]
⊕

[−1 −1
−1 −1

]
.

Notice that the simple graphG0 associated with the Hermitian matrixA(Dω0(φ))

is the pathP4 onV (D) and for eachi = 1, 2, 3, the simple graphGi associated with
the Hermitian matrixA(〈S〉ωi (φ)) is the complete graphK2 on two vertices{v3, v4}.
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Moreover, for eachi = 0, 1, 2, 3, it is not hard to find the weight functionµi(φ) on
EGi . Now, by Theorem 6, we have

U(G; λ) =
(
λ4 − 6λ3 + 24λ + 16

)(
λ2 + 2λ

) (
λ2 + 2λ

) (
λ2 + 2λ

)
.
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