

Linear Algebra and its Applications 307 (2000) 35-46

LINEAR ALGEBRA AND ITS APPLICATIONS

www.elsevier.com/locate/laa

Characteristic polynomials of graphs having a semifree action

Jaeun Lee^{a,*,1}, Hye Kyung Kim^b

^aMathematics Department, Yeungnam University, Kyongsan 712–749, South Korea ^bMathematics Department, Catholic University of Taegu Hyosung, Kyongsan 713-702, South Korea Received 13 March 1997; accepted 14 November 1999

Submitted by R.A. Brualdi

Abstract

J.H. Kwak and J. Lee (Linear and Multilinear Algebra 32 (1992) 61–73) computed the characteristic polynomial of a finite graph *G* having an abelian automorphism group which acts freely on *G*. For a finite weighted symmetric pseudograph *G* having an abelian automorphism group which acts semifreely on *G*, K. Wang (Linear Algebra Appl. 51 (1983) 121–125) showed that the characteristic polynomial of *G* is factorized into a product of a polynomial associated to the orbit graph and a polynomial associated to the free part of the action. But he did not explicitly compute the characteristic polynomial of such a graph *G*. In this paper, we introduce a new method to construct a finite pseudograph *G* having an automorphism group which acts semifreely on *G*, and obtain an explicit formula to compute the characteristic polynomial of such a graph by using the construction method. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Characteristic polynomial; Covering graph construction; Semifree action

1. Introduction

Let G be a finite connected undirected pseudograph with vertex set V(G) and edge set E(G), and let D be a finite connected pseudo-digraph with vertex set V(D) and directed edge set E(D), where a connected pseudo-digraph is a digraph whose

0024-3795/00/\$ - see front matter $_{\odot}$ 2000 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3 7 9 5 (0 0) 0 0 0 1 5 - X

^{*} Corresponding author.

E-mail address: julee@yu.ac.kr (J. Lee).

¹ Supported by KOSEF Grant 951-0105-007-2.

underlying graph is a connected pseudograph. Let A(G) and A(D) denote the adjacency matrices of the undirected graph G and the digraph D, respectively. We also denote by $\Phi(G; \lambda)$ and $\Phi(D; \lambda)$ the characteristic polynomials det $(\lambda I - A(G))$ and $det(\lambda I - A(D))$, respectively (see [1]). A digraph D is symmetric if A(D) is symmetric. By |X|, we denote the cardinality of a finite set X. We say that G admits a Γ -action if there is a group homomorphism from Γ to Aut(G). For each $v \in$ V(G), let $\Gamma_v = \{\gamma \in \Gamma \mid \gamma(v) = v\}$ be the isotropy subgroup of v, and Fix $\Gamma = \{v \in V\}$ $V(G) \mid \Gamma_v = \Gamma$. We call Fix_{\(\Gamma\)} the *fixed part* of V(G). We say that \(\Gamma\) acts semifreely on G if for each $v \in V(G)$, Γ_v is either the trivial group or the full group Γ , and for each $e \in E(\langle Fix_{\Gamma} \rangle), \gamma(e) = e$ for all $\gamma \in \Gamma$, where $\langle Fix_{\Gamma} \rangle$ is the subgraph induced by the fixed part Fix_{Γ}. In [6], Wang defined that Γ acts freely on G if Γ acts semifreely on G and Fix_{Γ} = \emptyset . Notice that even if Γ acts semifreely on G and Fix_{Γ} = \emptyset , there might exist an edge e in E(G) such that $\gamma(e) = e$ for some non-identity element γ in Γ . In this paper, we say that Γ acts freely on G if Γ acts freely on both V(G)and E(G). We use the same terminology when Γ acts on a digraph D. Notice that if a digraph D has no loops, then Γ acts freely on a digraph D according to Wang's definition if and only if Γ acts freely on a digraph D according to our definition.

A digraph \tilde{D} is called a *covering graph* of D if there exists a direction preserving map $f: \tilde{D} \to D$ with the following properties: $f|_{V(\tilde{D})} : V(\tilde{D}) \to V(D)$ and $f|_{E(\tilde{D})} :$ $E(\tilde{D}) \to E(D)$ are surjective and for each $\tilde{v} \in V(\tilde{D})$, f maps the set of edges originating at \tilde{v} one-to-one onto the set of edges originating at $f(\tilde{v})$, and f maps the set of edges terminating at \tilde{v} one-to-one onto the set of edges terminating at $f(\tilde{v})$. We call such a map $f: \tilde{D} \to D$ a *covering* and D the *base graph*. A covering $f: \tilde{D} \to D$ is *regular* if there exists a group Γ of graph automorphisms of \tilde{D} acting freely on \tilde{D} and a graph isomorphism $h: \tilde{D}/\Gamma \to D$ such that the diagram

commutes, i.e., $h \circ q = f$, where q is the quotient map. Convert the graph G to a digraph \vec{G} by replacing each edge e of G with a pair of oppositely directed edges, say e^+ and e^- . We then say that the digraph \vec{G} is associated with G. By e^{-1} we mean the reverse edge to an edge $e \in E(\vec{G})$. We denote the directed edge e of G by uv if the initial and the terminal vertices of e are u and v, respectively. Note that the adjacency matrix of graph G is the same as that of digraph \vec{G} , i.e., $A(G) = A(\vec{G})$ (see Fig. 1).

Notice that Γ acts semifreely on G with $\operatorname{Fix}_{\Gamma} = \emptyset$ iff Γ acts freely on \vec{G} . We say that a graph \tilde{G} is a covering of G if \vec{G} is a covering of \vec{G} as digraphs. Moreover, \vec{G} is always symmetric. It is clear that the complete graph K_2 is not a covering of any smaller graph. But \vec{K}_2 can be presented as a covering of a directed loop with one vertex (see Fig. 2).

Fig. 2. \vec{K}_2 covers a directed loop

Let Γ be a finite group. A Γ -voltage assignment on G is a function $\Phi : E(\overline{G}) \to \Gamma$ such that $\phi(e^{-1}) = \phi(e)^{-1}$ for all e in $E(\overline{G})$. The *derived* graph $G \times_{\phi} \Gamma$, derived by a Γ -voltage assignment ϕ , has $V(G) \times \Gamma$ as its vertex set and $E(G) \times \Gamma$ as its edge set, where (e, g) joins from (u, g) to $(v, \phi(e)g)$ if $e = uv \in E(\overline{G})$. For convenience, a vertex (u, g) is denoted by u_g and an edge (e, g) by e_g . The voltage group Γ acts naturally on $G \times_{\phi} \Gamma$ as follows: for every $g \in \Gamma$, let $\Phi_g : G \times_{\phi} \Gamma \to$ $G \times_{\phi} \Gamma$ denote the graph automorphism defined by $\Phi_g(v_{g'}) = v_{g'g^{-1}}$ on vertices and $\Phi_g(e_{g'}) = e_{g'g^{-1}}$ on edges. Then the natural map $p : G \times_{\phi} \Gamma \to G \times_{\phi} \Gamma / \Gamma \simeq G$ is a $|\Gamma|$ -fold regular covering. Gross and Tucker [3] showed that every regular covering of G arises from a voltage assignment on G. Similarly, we can show that every regular covering of a digraph D can be constructed by the same method.

In this paper, we introduce a new method to construct a finite pseudograph G which admits a semifree Γ -action, and obtain an explicit formula to compute the characteristic polynomial of such a graph by using the construction method. The previous works on this direction can be found in [2,4,5].

2. A construction of a Γ -graph

Throughout this paper, by a Γ -graph G (resp. D) we mean a graph (resp. digraph D) which admits a semifree Γ -action. In this section, we introduce a method to construct a Γ -graph. Let D be a pseudo-digraph. For a subset S of V(D), we denote by $\langle S \rangle$ the subgraph of D induced by S, and for a pair of subsets S_1 and S_2 of V(D), by $E(S_1, S_2)$ the set of all directed edges e = uv such that $u \in S_1$ and $v \in S_2$. Then, for a subset S of V(D), $E(D) = E(\overline{S}, \overline{S}) \cup E(S, S) \cup E(S, \overline{S})$, where $\overline{S} = V(D) - S$.

For a Γ -voltage assignment ϕ on the subgraph $\langle S \rangle$ of D, we define a new digraph $D \times_{(\phi,S)} \Gamma$ as follows. We adjoin an extra element, say ∞ , to the group Γ with

the property that $\gamma \infty = \infty = \infty \gamma$ for each $\gamma \in \Gamma \cup \{\infty\}$. Notice that $\Gamma \cup \{\infty\}$ is a semigroup. The vertex set $V(D \times_{(\phi,S)} \Gamma)$ is $(S \times \Gamma) \cup (\overline{S} \times \{\infty\})$ and let there be a directed edge from (u, α) to (v, β) if (i) $uv \in E(\overline{S}, \overline{S})$ and $\alpha = \beta = \infty$; (ii) $uv \in E(S, S), \alpha, \beta \in \Gamma$ and $\phi(uv)\alpha = \beta$; (iii) $uv \in E(\overline{S}, S), \alpha = \infty$ and $\beta \in \Gamma$; or (iv) $uv \in E(S, \overline{S}), \alpha \in \Gamma$ and $\beta = \infty$. We call $D \times_{(\phi,S)} \Gamma$ the *derived digraph* by a subset *S* of V(D) and a Γ -voltage assignment ϕ on the subgraph $\langle S \rangle$ or simply, the *derived digraph*.

Now, we define a Γ -action on the derived digraph $D \times_{(\phi,S)} \Gamma$ by $\gamma(v, \alpha) = (v, \alpha \gamma^{-1})$ for all $\gamma \in \Gamma$ and $(v, \alpha) \in V(D \times_{(\phi,S)} \Gamma)$. Then $D \times_{(\phi,S)} \Gamma$ is a Γ -graph such that the fixed part $\operatorname{Fix}_{\Gamma}$ is $\overline{S} \times \{\infty\}$. Moreover, for each $(v, \gamma) \in S \times \Gamma$ the isotropy subgroup $\Gamma_{(v,\gamma)}$ is the trivial subgroup of Γ , i.e., each element of $S \times \Gamma$ is not fixed by any non-identity element of Γ . We call the quotient map $p : D \times_{(\phi,S)} \Gamma \to (D \times_{(\phi,S)} \Gamma)/\Gamma \cong D$ defined by $p(v, \alpha) = v$ for each $(v, \alpha) \in V(D \times_{(\phi,S)} \Gamma)$ the *natural projection*. Fig. 3 illustrates this construction.

Notice that if *S* is the full set V(D), then the derived digraph $D \times_{(\phi,S)} \Gamma$ is a regular covering of *D*, and if *S* is the empty set, then the derived digraph $D \times_{(\phi,S)} \Gamma$ is just the digraph *D*. For a given Γ -graph *D*, let $S = (V(D) - \operatorname{Fix}_{\Gamma})/\Gamma \in V(D/\Gamma)$. Then the quotient map $p : \langle V(D) - \operatorname{Fix}_{\Gamma} \rangle \rightarrow \langle S \rangle$ is a Γ -covering and there exists a voltage assignment ϕ on $\langle S \rangle$ such that $\langle S \rangle \times_{\phi} \Gamma = \langle V(D) - \operatorname{Fix}_{\Gamma} \rangle$. Now, it is clear that *D* is isomorphic to the derived digraph $(D/\Gamma) \times_{(\phi,S)} \Gamma$. We summarize our discussions as follows.

Theorem 1. Let Γ be a finite group and D a finite pseudo-digraph. Then D is a Γ -graph if and only if there exist a subset S of $V(D/\Gamma)$ and a Γ -voltage assignment ϕ on the subgraph $\langle S \rangle$ of D/Γ such that D is isomorphic to the derived digraph $(D/\Gamma) \times_{(\phi,S)} \Gamma$.

Notice that for some undirected pseudograph G, \vec{G}/Γ need not be the digraph associated with a undirected graph even though \vec{G} is a Γ -graph. Now, we consider a construction method of a Γ -graph G which is undirected. For a Γ -graph G, the digraph \vec{G} is symmetric and also a Γ -graph. This implies that the quotient graph \vec{G}/Γ is symmetric. Hence, to construct a Γ -graph, it is suffice to consider the base graph D of our construction as a symmetric digraph. A subset S of V(D) is called a \mathcal{P} -subset if the number of directed loops based at each vertex in $\bar{S} = V(D) - S$ is even. Notice that if the derived digraph $D \times_{(\phi,S)} \Gamma$ is symmetric, then the subset S of V(D) must be a \mathcal{P} -subset. For our purpose, we define a symmetric Γ -voltage assignment ϕ on the subgraph $\langle S \rangle$ induced by a \mathcal{P} -subset S of V(D) as follows.

Definition 1. Let *D* be a finite symmetric connected digraph and *S* a \mathscr{P} -subset of V(D). A Γ -voltage assignment ϕ on $\langle S \rangle$ is said to be *symmetric* if

- (i) for each directed loop *e* based at v_i in *S*, there exists another directed loop *e'* based at v_i in *S* such that $\phi(e') = \phi(e)^{-1}$ if $\phi(e)$ is not of order 2;
- (ii) for each directed edge $e = v_i v_j$ $(i \neq j)$ in E(S, S) there exists $e' = v_j v_i$ in E(S, S) such that $\phi(e') = \phi(e)^{-1}$.

Now, we aim to discuss a method to construct an undirected Γ -graph G. Let D be a finite connected symmetric digraph and S a \mathscr{P} -subset of V(D). Let ϕ be symmetric Γ -voltage assignment on the subgraph $\langle S \rangle$. Then it is clear that the derived digraph $D \times_{(\phi,S)} \Gamma$ is symmetric. Since for each vertex (v, γ) of the derived digraph $D \times_{(\phi,S)} \Gamma$, the number of directed loops at (v, γ) is even. This implies that $D \times_{(\phi,S)} \Gamma = \vec{G}$ for some Γ -graph G.

Conversely, if $D = \vec{G}/\Gamma$ for some undirected Γ -graph G, then $S = (V(D) - \text{Fix}_{\Gamma})/\Gamma$ is a \mathscr{P} -subset of V(D) and there exists a symmetric Γ -voltage assignment ϕ on $\langle S \rangle$ such that the derived digraph $D \times_{(\phi,S)} \Gamma$ is isomorphic to \vec{G} . We summarize our discussions as follows.

Theorem 2. Let Γ be a finite group and D a finite connected symmetric digraph. Let S be a subset of V(D) and ϕ a Γ -voltage assignment on the subgraph $\langle S \rangle$ of D. Then the derived digraph $D \times_{(\phi,S)} \Gamma = \vec{G}$ for some Γ -graph G if and only if S is a \mathscr{P} -subset of V(D) and ϕ is symmetric.

3. Adjacency matrices of Γ -graphs

Let *D* be a finite connected pseudo-digraph and *S* a subset of V(D). For convenience, let $H_{11}(S) = (V(D), E(\overline{S}, \overline{S})), H_{12}(S) = (V(D), E(\overline{S}, S)), H_{21}(S) = (V(D), E(S, \overline{S}))$ and $H_{22}(S) = (V(D), E(S, S))$, where $\overline{S} = V(D) - S$. Then

$$A(D) = A(H_{11}(S)) + A(H_{12}(S)) + A(H_{21}(S)) + A(H_{22}(S)).$$

Let $V(D) = \{v_1, v_2, \dots, v_{|V(D)|}\}$ and $S = \{v_{|V(D)|-|S|+1}, \dots, v_{|V(D)|}\}$. Then the adjacency matrices of $H_{11}(S)$, $H_{12}(S)$, $H_{21}(S)$ and $H_{22}(S)$ are presented as follows.

$$A(H_{11}(S)) = \begin{bmatrix} A_{11}(S) & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A(\langle \bar{S} \rangle) & 0 \\ 0 & 0 \end{bmatrix},$$
$$A(H_{12}(S)) = \begin{bmatrix} 0 & A_{12}(S) \\ 0 & 0 \end{bmatrix},$$
$$A(H_{21}(S)) = \begin{bmatrix} 0 & 0 \\ A_{21}(S) & 0 \end{bmatrix},$$
$$A(H_{22}(S)) = \begin{bmatrix} 0 & 0 \\ 0 & A_{22}(S) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & A(\langle S \rangle) \end{bmatrix}.$$

For each $1 \le i$, $j \le 2$, we call $A_{ij}(S)$ the *supporting matrix* of the subgraph $H_{ij}(S)$ of *D*.

Let Γ be a group and ϕ a Γ -voltage assignment on the induced subgraph $\langle S \rangle$ of a finite connected pseudo-digraph D. For each $\gamma \in \Gamma$, let $\langle S \rangle_{(\phi,\gamma)}$ denote the spanning subgraph of the digraph $\langle S \rangle$ whose directed edge set is $\phi^{-1}(\gamma)$ so that the digraph $\langle S \rangle$ is the edge-disjoint union of spanning subgraphs $\langle S \rangle_{(\phi,\gamma)}$, $\gamma \in \Gamma$.

We define an order relation \leq on the vertex set $V(D \times_{(\phi,S)} \Gamma)$ of the derived digraph $D \times_{(\phi,S)} \Gamma$ as follows: for any two vertices (v_i, α) and (v_j, β) of $D \times_{(\phi,S)} \Gamma$, $(v_i, \alpha) \leq (v_j, \beta)$ if and only if (i) $\alpha = \infty$ and $\beta \in \Gamma$, (ii) $\alpha, \beta \in \Gamma$ and $\alpha \leq \beta$ or (iii) $\alpha = \beta$ and $i \leq j$.

Now, under this order relation, we can show that

$$A(p^{-1}(H_{11}(S))) = \begin{bmatrix} A(\langle \bar{S} \rangle) & 0 \\ 0 & 0 \end{bmatrix},$$

$$A(p^{-1}(H_{12}(S))) = \begin{bmatrix} 0 & A_{12}(S) & \cdots & A_{12}(S) \\ 0 & 0 & \cdots & 0 \end{bmatrix},$$

$$A(p^{-1}(H_{21}(S))) = \begin{bmatrix} 0 & 0 \\ A_{21}(S) & 0 \\ \vdots & \vdots \\ A_{21}(S) & 0 \end{bmatrix}, \quad A(p^{-1}(H_{22}(S))) = A(\langle S \rangle \times_{\phi} \Gamma),$$

where $p: D \times_{(\phi,S)} \Gamma \to D$ is the natural projection. Since

$$A(D \times_{(\phi,S)} \Gamma) = A(p^{-1}(H_{11}(S))) + A(p^{-1}(H_{12}(S))) + A(p^{-1}(H_{21}(S))) + A(p^{-1}(H_{22}(S)))$$

$$A(D \times_{(\phi,S)} \Gamma) = \begin{bmatrix} A(\overline{S}) & \vdots & A_{12}(S) \cdots A_{12}(S) \\ \vdots & \vdots & \ddots & \vdots \\ A_{21}(S) & \vdots & & \\ A_{21}(S) & & \\ A_{21}(S) & \vdots & & \\ A_{21}(S) & & \\ A_{21}(S)$$

To simplify the adjacency matrix $A(D \times_{(\phi,S)} \Gamma)$ of the derived digraph $D \times_{(\phi,S)} \Gamma$, we define the tensor product $A \otimes B$ of two matrices A and B by the matrix obtained from B when every element b_{ij} is replaced by the matrix Ab_{ij} . Now, by the virtue of the properties of the tensor product of matrices, we have following theorem.

Theorem 3. Let Γ be a finite group and D a finite connected pseudo-digraph. Let S be a subset of V(D) and ϕ a Γ -voltage assignment on the subgraph $\langle S \rangle$ of D. Then the adjacency matrix $A(D \times (\phi, S) \Gamma)$ of the derived digraph $D \times (\phi, S) \Gamma$ is

$$A(D \times_{(\phi,S)} \Gamma) = \begin{bmatrix} A(\langle \bar{S} \rangle) & A_{12}(S) \otimes J \\ A_{21}(S) \otimes J^{\mathsf{t}} & \sum_{\gamma \in \Gamma} A(\langle S \rangle_{(\phi,\gamma)}) \otimes P(\gamma) \end{bmatrix}$$

where J is $[1 \ 1 \cdots 1]$, $P(\gamma)$ is the $|\Gamma| \times |\Gamma|$ permutation matrix associated with $\gamma \in \Gamma$ and A^{t} is the transpose of a matrix A.

Let Γ be an abelian group. By the classification of finite abelian groups, Γ is isomorphic to $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_s}$ for some $n_i \ge 2$ with $n_{i-1}|n_i$. For each $k = 1, \ldots, s$, let ρ_k denote a generator of the cyclic group \mathbb{Z}_{n_k} so that $\mathbb{Z}_{n_k} = \{\rho_k^0, \rho_k^1, \ldots, \rho_k^{n_k-1}\}$. We define an order relation \leq on the cyclic group $\mathbb{Z}_n = \{\rho^0, \ldots, \rho^{n-1}\}$ by $\rho^i \le \rho^j$ if and only if $i \le j$. Under this order relation, we can see that for a generator ρ of a cyclic group \mathbb{Z}_n , the permutation matrix $P(\rho)$ associated with ρ is expressed as follows:

$P(\rho) =$	Γ0	1	•••	0	0	
	0	0	۰.	0	0	
	:	÷	۰.	÷	÷	•
	0	0		0	1	
	1	0		0	0	

Notice that the order relation defined on a cyclic group \mathbb{Z}_n gives an order relation on the product of cyclic groups Γ . For example, if $\Gamma = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$, then $(\rho_1^i, \rho_2^h) \leq (\rho_1^j, \rho_2^k)$ if and only if either h < k or h = k and $i \leq j$. Under this order relation, we can see that

$$P(\rho_1^{m_1}, \rho_2^{m_2}, \dots, \rho_s^{m_s}) = P(\rho_1)^{m_1} \otimes P(\rho_2)^{m_2} \otimes \dots \otimes P(\rho_s)^{m_s}$$

for each $(\rho_1^{m_1}, \rho_2^{m_2}, \dots, \rho_s^{m_s}) \in \mathbb{Z}_{n_1} \times \dots \times \mathbb{Z}_{n_s}.$

Since $P(\gamma)$ is diagonalizable for each $\gamma \in \Gamma$ and Γ is abelian, the matrices $P(\gamma), \gamma \in \Gamma$, are simultaneously diagonalizable. More precisely, there exists a unitary matrix M_{Γ} of order $|\Gamma|$ such that $M_{\Gamma}P(\gamma)M_{\Gamma}^{-1}$ is a diagonal matrix for each $\gamma \in \Gamma$ and $JM_{\Gamma} = \left[\sqrt{|\Gamma|} \ 0 \cdots 0\right]$. For convenience, let $\eta_k = \exp(2\pi i/n_k)$ for each $k = 1, \ldots, s$. Then for each $\gamma = (\rho_1^{m_1}, \rho_2^{m_2}, \ldots, \rho_s^{m_s})$ in $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_s}$, we have

$$M_{\Gamma}P(\gamma)M_{\Gamma}^{-1}$$

$$= \operatorname{Diag}[1, \lambda_{(\gamma,1)}, \dots, \lambda_{(\gamma,|\Gamma|-1)}] = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & \lambda_{(\gamma,1)} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_{(\gamma,|\Gamma|-1)} \end{bmatrix},$$

where $\lambda_{(\gamma,j)} = \prod_{k=1}^{s} (\eta_k^{m_k})^{j_k}$ if $j = (n_1 n_2 \cdots n_{s-1}) j_s + (n_1 n_2 \cdots n_{s-2}) j_{s-1} + \cdots + (n_1) j_2 + j_1$ for some $j_k = 0, 1, \ldots, n_k - 1$. Then, by a simple computation, we can show that

$$\begin{aligned} &(I_m \oplus (I_n \otimes M_{\Gamma})) \ A(D \times_{(\phi,S)} \Gamma) \ (I_m \oplus (I_n \otimes M_{\Gamma}))^{-1} \\ &= \begin{bmatrix} A(\langle \bar{S} \rangle) & \sqrt{|\Gamma|} A_{12}(S) \\ \sqrt{|\Gamma|} A_{21}(S) & A(\langle S \rangle) \end{bmatrix} \oplus \begin{bmatrix} |\Gamma| - 1 \\ \bigoplus_{j=1}^{|\Gamma|-1} \sum_{\gamma \in \Gamma} \lambda_{(\gamma,j)} A\left(\langle S \rangle_{(\phi,\gamma)}\right) \end{bmatrix}, \end{aligned}$$

where $m = |\bar{S}|$ and n = |S|. Hence, we have the following theorem.

Theorem 4. Let Γ be a finite group and D a finite connected pseudo-digraph. Let S be a subset of V(D) and ϕ a Γ -voltage assignment on the subgraph $\langle S \rangle$ of D. If Γ is abelian, then the adjacency matrix $A(D \times_{(\phi,S)} \Gamma)$ of $D \times_{(\phi,S)} \Gamma$ is similar to

$$\begin{bmatrix} A(\langle \bar{S} \rangle) & \sqrt{|T|} A_{12}(S) \\ \sqrt{|T|} A_{21}(S) & A(\langle S \rangle) \end{bmatrix} \oplus \begin{bmatrix} |\Gamma|-1 \\ \bigoplus_{j=1}^{|\Gamma|-1} \sum_{\gamma \in \Gamma} \lambda_{(\gamma,j)} A(\langle S \rangle_{(\phi,\gamma)}) \\ \sum_{j=1}^{|\Gamma|-1} \sum_{\gamma \in \Gamma} \lambda_{(\gamma,j)} A(\langle S \rangle_{(\phi,\gamma)}) \end{bmatrix},$$

where $A_{12}(S)$ and $A_{21}(S)$ are the supporting matrices of $H_{12}(S)$ and $H_{21}(S)$, respectively, and $\bar{S} = V(D) - S$.

It is clear that if *D* is a symmetric connected digraph, then the transpose $A(H_{12}(S))^t$ of the matrix $A(H_{12}(S))$ is $A(H_{21}(S))$ for each subset *S* of V(D), i.e., $A_{12}(S)^t = A_{21}(S)$. If *S* is a \mathcal{P} -subset of V(D) and ϕ a symmetric Γ -voltage assignment on $\langle S \rangle$, then

$$\left[A(\langle S \rangle_{(\phi,\gamma)})\right]^{\mathsf{t}} = A(\langle S \rangle_{(\phi,\gamma^{-1})}) \quad \text{for each } \gamma \in \Gamma.$$

It follows from Theorem 2 that every Γ -graph G can be described as a derived digraph $D \times_{(\phi,S)} \Gamma$, where D is a symmetric digraph and ϕ is a symmetric Γ -voltage assignment on the subgraph $\langle S \rangle$ of D induced by a \mathcal{P} -subset S. Now, by

Theorems 2 and 4, we can find a similar form of the adjacency matrix of a Γ -graph *G* as follows.

Corollary 1. Let Γ be a finite abelian group and D a finite symmetric connected pseudo-digraph. Let S be a \mathcal{P} -subset of V(D) and ϕ a symmetric Γ -voltage assignment on the subgraph $\langle S \rangle$ of D. Then the adjacency matrix $A(D \times_{(\phi,S)} \Gamma)$ of the derived digraph $D \times_{(\phi,S)} \Gamma$ is similar to

$$\begin{bmatrix} A(\langle \bar{S} \rangle) & \sqrt{|\Gamma|} A_{12}(S) \\ \sqrt{|\Gamma|} A_{12}(S)^{t} & A(\langle S \rangle) \end{bmatrix} \oplus \begin{bmatrix} |\Gamma|-1 \\ \bigoplus_{j=1}^{|\Gamma|-1} \sum_{\gamma \in \Gamma} \lambda_{(\gamma,j)} A(\langle S \rangle_{(\phi,\gamma)}) \\ \sum_{j=1}^{|\Gamma|-1} \sum_{\gamma \in \Gamma} \lambda_{(\gamma,j)} A(\langle S \rangle_{(\phi,\gamma)}) \end{bmatrix},$$

where $\overline{S} = V(D) - S$ and $A_{12}(S)$ is the supporting matrix of the graph $H_{12}(S) = (V(D), E(\overline{S}, S))$.

4. Computation formulas

In this section, we aim to find a similar form of the adjacency matrix $A(D \times_{(\phi,S)} \Gamma)$ of the derived digraph $D \times_{(\phi,S)} \Gamma$ to make it easy to compute the characteristic polynomial of $D \times_{(\phi,S)} \Gamma$, and then obtain a computational formula for the characteristic polynomial of a Γ -graph G, by using our construction.

Let \mathbb{C} denote the field of complex numbers. A weighted digraph is a pair $D_{\omega} = (D, \omega)$, where *D* is a digraph and $\omega : E(D) \to \mathbb{C}$ is a function. Given any weighted pseudo-digraph, the adjacency matrix $A(D_{\omega}) = (a_{ij})$ of D_{ω} is the square matrix of order |V(D)| defined by

$$a_{ij} = \sum_{e \in E(\{v_i\}, \{v_j\})} \omega(e).$$

The characteristic polynomial det $(\lambda I - A(D_{\omega}))$ is denoted by $\Phi(D_{\omega}; \lambda)$ and is called the characteristic polynomial of D_{ω} .

Let Γ be a finite abelian group. For a \mathscr{P} -subset S of V(D) and a symmetric Γ -voltage assignment ϕ on the subgraph $\langle S \rangle$, we define a function $\omega_0(\phi) : E(D) \to \mathbb{C}$ by

$$\omega_0(\phi)(e) = \begin{cases} 1 & \text{if } e \in E(\bar{S}, \bar{S}) \cup E(S, S), \\ \sqrt{|\Gamma|} & \text{if } e \in E(\bar{S}, S) \cup E(S, \bar{S}), \end{cases}$$

and define a function $\omega_k(\phi) : E(\langle S \rangle) \to \mathbb{C}$ by $\omega_k(\phi)(e) = \lambda_{(\phi(e),k)}$ for each $k = 1, 2, \ldots, |\Gamma| - 1$.

Then, by Corollary 1, the adjacency matrix $A(D \times_{(\phi,S)} \Gamma)$ of the derived digraph $D \times_{(\phi,S)} \Gamma$ is similar to

$$A(D_{\omega_0(\phi)}) \oplus \left(\bigoplus_{j=1}^{|\Gamma|-1} A(\langle S \rangle_{\omega_j(\phi)}) \right).$$

Hence we have the following.

Theorem 5. Let Γ be a finite abelian group and D a finite symmetric connected pseudo-digraph. Let S be a \mathcal{P} -subset of V(D) and ϕ a symmetric Γ -voltage assignment on the subgraph $\langle S \rangle$ of D. Then the characteristic polynomial $\Phi(D \times_{(\phi, S)} \Gamma; \lambda)$ of the derived digraph $D \times_{(\phi, S)} \Gamma$ is

$$\Phi(D \times_{(\phi,S)} \Gamma; \lambda) = \Phi(D_{\omega_0(\phi)}; \lambda) \times \prod_{j=1}^{|\Gamma|-1} \Phi\left(\langle S \rangle_{\omega_j(\phi)}; \lambda\right).$$

Now, we aim to find an explicit computational formula for the characteristic polynomial $\Phi(D \times_{(\phi, \mathbf{S})} \Gamma; \lambda)$ of the derived digraph $D \times_{(\phi, \mathbf{S})} \Gamma$. Notice that the matrix $A(D_{\omega_0(\phi)})$ is Hermitian and $A(\langle S \rangle_{\omega_j(\phi)})$ is also Hermitian for each j = 1, ..., n - 11. For a Hermitian matrix A, let G be the simple graph associated with A, i.e., the number of vertices of G is equal to the number of columns (or rows) of A and there is an edge between two vertices v_s and v_t of G if and only if the (s, t)-entry of A is not zero. Let $G_0, G_1, \ldots, G_{n-1}$ be the simple graphs associated with the Hermitian matrices $A(D_{\omega_0(\phi)}), A(\langle S \rangle_{\omega_1(\phi)}), \ldots, A(\langle S \rangle_{\omega_{n-1}(\phi)})$, respectively. We define a function $\mu_0(\phi) : E(\vec{G}_0) \cup V(\vec{G}_0) \to \mathbb{C}$ as follows: $\mu_0(\phi)(v_s)$ is the (s, s)-entry of $A(D_{\mu_0(\phi)})$ for each $v_s \in V(\vec{G}_0)$ and $\mu_0(\phi)(v_s v_t)$ is the (s, t)-entry of $A(D_{\mu_0(\phi)})$ for each $v_s v_t \in E(\vec{G}_0)$. Then $A(G_0, \mu_0(\phi)) = A(D_{\omega_0(\phi)})$, where the adjacency matrix $A(G_0, \mu_0(\phi)) = (a_{ij})$ is defined by $a_{ij} = \mu_0(\phi)(v_i v_j)$ if $i \neq j$ and $a_{ij} = \mu_0(\phi)(v_i)$ if i = j. For each j = 1, ..., n - 1, we can also define $\mu_j(\phi) : E(\vec{G}_j) \cup V(\vec{G}_j) \rightarrow V(\vec{G}_j)$ \mathbb{C} so that $A(\vec{G}_j, \mu_j(\phi)) = A(\langle S \rangle_{\omega_j(\phi)})$. Notice that for each i = 0, 1, ..., n - 1, $\overline{\mu_i(e)} = \mu_i(e^{-1})$ for each $e \in E(\vec{G}_i)$ and $\mu_i(v_s)$ is a real number for each $v_s \in$ $V(G_i)$. Such a weight function is said to be symmetric (see [5]). Now, we aim to compute the characteristic polynomials of the weighted graphs $(G_i, \mu_i(\phi)), j =$ $0, \ldots, |\Gamma| - 1$. To do this, let G be a simple graph with a symmetric weight function $\omega: E(\vec{G}) \cup V(\vec{G}) \to \mathbb{C}$ on the digraph \vec{G} of G. A subgraph P of G is called an elementary configuration if each of its components is either a cycle C_m ($m \ge 3$), K_2 or K_1 . We denote E_k as the set of all elementary configurations of G having k vertices, for each k. For an elementary configuration P, let $\kappa(P)$ denote the number of components of P, C(P) the set of all cycles C_m ($m \ge 3$) in P, and $I_v(P)$ and $I_E(P)$ the set of all isolated vertices and edges in P, respectively. Notice that for each cycle C in C(P), there exist two directed cycles, say C^+ and C^- , in \vec{G} . By a slight modification of the method used in [5], we can show the following theorem.

Theorem 6. Let G be a finite simple connected graph and $\omega : E(\vec{G}) \cup C(\vec{G}) \rightarrow \mathbb{C}$ a symmetric weight function on \vec{G} . Then

Fig. 4. A \mathbb{Z}_4 -graph.

Fig. 5. A symmetric digraph D with a symmetric \mathbb{Z}_4 -voltage assignment ϕ .

$$\Phi(\vec{G}_{\omega}; \lambda) = \lambda^{|V(D)|} + \sum_{k=1}^{n} \left[\sum_{P \in E_{k}} (-1)^{\kappa(P)} 2^{|C(P)|} \prod_{u \in I_{v}(P)} \omega(u) \right]$$
$$\times \prod_{e \in I_{E}(P)} |\omega(e)|^{2} \prod_{e \in C(P)} \operatorname{Re}(\omega(C^{+})) \left] \lambda^{|V(D)|-k}, \right]$$

where $\operatorname{Re}(\omega(C^+))$ is the real part of $\prod_{e \in C^+} \omega(e)$ and the product over the empty index set is defined to be 1.

Example. Let $\Gamma = \mathbb{Z}_4$ and *G* be the graph depicted in Fig. 4.

Clearly, *G* is a \mathbb{Z}_4 -graph. Then there exist a symmetric digraph *D* and a symmetric \mathbb{Z}_4 -voltage assignment ϕ on a \mathscr{P} -subset *S* such that \vec{G} is isomorphic to $D \times_{(\phi,S)} \mathbb{Z}_4$. Such a symmetric digraph *D* with a symmetric \mathbb{Z}_4 -voltage assignment ϕ is depicted in Fig. 5. In Fig. 5, the \mathscr{P} -subset *S* of V(D) is $\{v_3, v_4\}$.

By Corollary 1, we can see that the adjacency matrix $A(D \times_{(\phi,S)} \mathbb{Z}_4)$ is similar to

$$A(D_{\omega_0(\phi)}) \oplus A(\langle S \rangle_{\omega_1(\phi)}) \oplus A(\langle S \rangle_{\omega_2(\phi)}) \oplus A(\langle S \rangle_{\omega_3(\phi)}) \\ = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 3 & 1 \\ 0 & 2 & 1 & 3 \end{bmatrix} \oplus \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \oplus \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \oplus \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}.$$

Notice that the simple graph G_0 associated with the Hermitian matrix $A(D_{\omega_0(\phi)})$ is the path P_4 on V(D) and for each i = 1, 2, 3, the simple graph G_i associated with the Hermitian matrix $A(\langle S \rangle_{\omega_i(\phi)})$ is the complete graph K_2 on two vertices $\{v_3, v_4\}$.

Moreover, for each i = 0, 1, 2, 3, it is not hard to find the weight function $\mu_i(\phi)$ on \vec{G}_i . Now, by Theorem 6, we have

$$\Phi(G;\lambda) = \left(\lambda^4 - 6\lambda^3 + 24\lambda + 16\right)\left(\lambda^2 + 2\lambda\right)\left(\lambda^2 + 2\lambda\right)\left(\lambda^2 + 2\lambda\right).$$

References

- [1] N. Biggs, Algebraic Graph Theory, second ed, Cambridge University Press, London, 1993.
- [2] Y. Chae, J.H. Kwak, J. Lee, Characteristic polynomials of some graph bundles, J. Korean Math. Soc. 30 (1993) 229–249.
- [3] J.L. Gross, T.W. Tucker, Topological Graph Theory, Wiley, New York 1987.
- [4] J.H. Kwak, Y.S. Kwon, Characteristic polynomials of graph bundles having voltages in a dihedral group, submitted.
- [5] J.H. Kwak, J. Lee, Characteristic polynomials of some graph bundles, Linear and Multilinear Algebra 32 (1992) 61–73.
- [6] K. Wang, Characteristic polynomials of symmetric graphs, Linear Algebra Appl. 51 (1983) 121-125.