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Abstract

J.H. Kwak and J. Lee (Linear and Multilinear Algebra 32 (1992) 61-73) computed the
characteristic polynomial of a finite grafh having an abelian automorphism group which
acts freely orG. For a finite weighted symmetric pseudograplhaving an abelian automor-
phism group which acts semifreely @ K. Wang (Linear Algebra Appl. 51 (1983) 121-125)
showed that the characteristic polynomial®fis factorized into a product of a polynomial
associated to the orbit graph and a polynomial associated to the free part of the action. But
he did not explicitly compute the characteristic polynomial of such a g@&gh this paper,
we introduce a new method to construct a finite pseudogfagtaving an automorphism
group which acts semifreely @B, and obtain an explicit formula to compute the characteristic
polynomial of such a graph by using the construction method. © 2000 Elsevier Science Inc.
All rights reserved.
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1. Introduction

Let G be a finite connected undirected pseudograph with verte¥ 689 and
edge sefZ (G), and letD be a finite connected pseudo-digraph with vertexisdd)
and directed edge sé&t(D), where a connected pseudo-digraph is a digraph whose
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underlying graph is a connected pseudograph A@t) and A(D) denote the adja-
cency matrices of the undirected graphand the digraplb, respectively. We also
denote byd(G; A) and®(D; 1) the characteristic polynomials d&f — A(G)) and
detAl — A(D)), respectively (see [1]). A digraph is symmetridf A(D) is sym-
metric. By | X|, we denote the cardinality of a finite s&t We say thaiG admits
a I'-action if there is a group homomorphism fromto Aut(G). For eachv €
V(G),letlI'y = {y € I' | y(v) = v} be the isotropy subgroup of and Fix = {v €
V(G) | I'y = I'}. We call Fix thefixed partof V(G). We say thal” acts semifreely
onG if for eachv € V(G), I', is either the trivial group or the full grou, and for
eache € E((Fixr)),y(e) = eforall y € I', where(Fixr) is the subgraph induced by
the fixed part Fix. In [6], Wang defined thaf acts freely ors if I" actssemifreely
onGand Fix- = . Notice that even if” acts semifreely o and Fix- = ¢, there
might exist an edge in E(G) such thaty (¢) = e for some non-identity elememt
in I'. In this paper, we say thdt acts freely onG if I" acts freely on both/ (G)
and E(G). We use the same terminology wh&racts on a digrap®. Notice that
if a digraphD has no loops, theR acts freely on a digrapB according to Wang's
definition if and only ifI" acts freely on a digrapb according to our definition.

A digraphD is called acovering graphof D if there exists a direction preserving
map f : D — D with the following propertiesﬁv(ﬁ) - V(D) - V(D) andf‘E(f)) :

E(D) — E(D) are surjective and for eadhe V(D), f maps the set of edges origi-
nating atv one-to-one onto the set of edges originating ét), andf maps the set of
edges terminating atone-to-one onto the set of edges terminating @t). We call
such a mapf : D — D acoveringandD the base graphA covering f: D—D

is regularif there exists a group’ of graph automorphisms @b acting freely onD
and a graph isomorphisin: D/I" — D such that the diagram

D D
N
D/T

commutes, i.e.h o g = f, whereq is the quotient map. Convert the gra@ghto a
digraphé by replacing each edgeof G with a pair of oppositely directed edges,
saye™ ande™. We then say that the digrapﬁhis associateavith G. By e~ we mean
the reverse edge to an edge E(G). We denote the directed edgef G by uv ifthe
initial and the terminal vertices &areu andv, respectively. Note that the adjacency
matrix of graphG is the same as that of digragh i.e., A(G) = A(G) (see Fig. 1).
Notice thatl” acts semifreely o with Fixp = ¢ iff I" acts freely ornG. We say
that a graplG is a covering ofG if G is a covering ofG as digraphs. Moreove6
is always symmetric. It is clear that the complete gré&phis not a covering of any
smaller graph. Buk> can be presented as a covering of a directed loop with one
vertex (see Fig. 2).




J. Lee, H.K. Kim / Linear Algebra and its Applications 307 (2000) 35-46 37

Fig. 1. G andG.
K‘g Kz/ZQ

Fig. 2. 152 covers a directed loop.

LetI" be afinite group. A'-voltage assignment d@is a functiond : EG) — T
such thatp(e~1) = ¢(e)~1 for all ein E(G). ThederivedgraphG x4 I', derived
by aI'-voltage assignment, hasV (G) x I' as its vertex set anfl (G) x I" as its
edge set, wherée, g) joins from (u, g) to (v, ¢p(e)g) if e =uv € E(é). For con-
venience, a vertexu, g) is denoted by, and an edgée, g) by e,. The voltage
group!” acts naturally orG x4 I" as follows: for everyg e I', let @, : G x4 I' —

G x4 I" denote the graph automorphism definedfyv,/) = v,,-1 on vertices and
Dg(eg) = e4r,-1 0N €dges. Thenthe naturalmap G x¢ I' > G x¢ I'/I >~ G is
a|I'|-fold regular covering. Gross and Tucker [3] showed that every regular covering
of G arises from a voltage assignment@rSimilarly, we can show that every regular
covering of a digrapld can be constructed by the same method.

In this paper, we introduce a new method to construct a finite pseudo@aph
which admits a semifre&-action, and obtain an explicit formula to compute the
characteristic polynomial of such a graph by using the construction method. The
previous works on this direction can be found in [2,4,5].

2. A construction of aI'-graph

Throughout this paper, byE-graph G(resp.D) we mean a graph (resp. digraph
D) which admits a semifreg-action. In this section, we introduce a method to con-
struct al'-graph. LetD be a pseudo-digraph. For a subSeif V (D), we denote by
(S) the subgraph ob induced byS, and for a pair of subset andsS, of V (D), by
E (81, S2) the set of all directed edges= uv such thait € 1 andv € S». Then, for
a subseSof V(D), E(D) = E(S,S) UE(S, S)UE(S, S)U E(S, §), where§ =
V(D) —S.

For aI'-voltage assignmeit on the subgraphs) of D, we define a new digraph
D x4, s) I' as follows. We adjoin an extra element, say, to the groupl” with
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the property thayyoo = oo = coy for eachy € I' U {oo}. Notice thatl” U {co} is
a semigroup. The vertex s&(D x5y 1) is (S x I U (S x {o0}) and let there
be a directed edge froru, o) to (v, B) if (i) uv € E(S, §) anda = g = oo; (ii)
uv € E(S,S),a, B € I'andg (uv)a = B; (iii) uv € E(S, S),« = coandp € I'; or
(iv) uv € E(S,S),« € I'andB = oo. We callD x,s) I' thederived digraptby a
subsetSof V(D) and al'-voltage assignmert on the subgrapksS) or simply, the
derived digraph

Now, we define al-action on the derived digrapP x sy I' by y (v, o) =
(v,ay Y forally e I'and(v, a) € V(D x@,5) ). ThenD x4 ) I' is al'-graph
such that the fixed part Fixs S x {oo}. Moreover, for eacliv, y) € S x I' the isot-
ropy subgroufd’(, ;) is the trivial subgroup of’, i.e., each element &f x I' is not
fixed by any non-identity element éf. We call the quotientmap : D x g 5) I’ —
(D xg,5) I'/I'= D defined byp(v, «) = v for each(v, @) € V(D x5 I) the
natural projection Fig. 3 illustrates this construction.

Notice that if Sis the full setV (D), then the derived digrapp x4 s) I' is a
regular covering oD, and if Sis the empty set, then the derived digraphx s) I'
is just the digraptb. For a given/-graphD, let S = (V(D) — Fixp)/I' € V(D/TI').
Then the quotient map : (V (D) — Fixp) — (S) is al'-covering and there exists a
voltage assignment on (S) such that(S) x4 I' = (V(D) — Fixr). Now, it is clear
thatD is isomorphic to the derived digragip/I") x4, s) I'. We summarize our dis-
cussions as follows.

Theorem 1. Let I' be a finite group and D a finite pseudo-digraph. Then D is a
I'-graph if and only if there exist a subset SWofD/I") and al’-voltage assignment

¢ on the subgraphsS) of D/I" such that D is isomorphic to the derived digraph
(D/F) X (¢,8) I.

Fig.3. D X(,8) Zg4 with S = {vg, vs}.
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Notice that for some undirected pseudog@iﬂh@/F need not be the digraph
associated with a undirected graph even thodgis a I'-graph. Now, we consider
a construction method of A-graphG which is undirected. For &-graphG, the
digraphé is symmetric and also &-graph. This implies that the quotient graph
5/1“ is symmetric. Hence, to constructiagraph, it is suffice to consider the base
graphD of our construction as a symmetric digraph. A sulsef V(D) is called
a ?-subsetf the number of directed loops based at each verte% #a V(D) — §
is even. Notice that if the derived digraghx 4 s) I" is symmetric, then the subset
Sof V(D) must be a#-subset. For our purpose, we define a symmédirioltage
assignmeng on the subgraphsS) induced by a?-subsetSof V(D) as follows.

Definition 1. Let D be a finite symmetric connected digraph &d #-subset of

V(D). A I'-voltage assignment on (S) is said to besymmetridf

(i) for each directed looe based ab; in S there exists another directed loep
based ab; in Ssuch that(¢') = ¢ (e) L if ¢ (e) is not of order 2;

(i) for each directed edge = vjv; (i # j) in E(S, S) there existse’ = v;v; in
E(S, S) such thatp(¢/) = ¢(e) 1.

Now, we aim to discuss a method to construct an undireEtgdaphG. Let D
be a finite connected symmetric digraph &a #-subset ofV (D). Let ¢ be sym-
metric I'-voltage assignment on the subgraph. Then it is clear that the derived
digraph D x4 s) I' is symmetric. Since for each vertgx, y) of the derived di-
graphD x4 s) I', the number of directed loops at, y) is even. This implies that
D x5 = G for somer’-graphG.

Conversely, ifD = 5/1“ for some undirected™-graphG, then S = (V(D) —
Fixr)/I" is aZ-subset ofV (D) and there exists a symmetiievoltage assignment
¢ on(S) such that the derived digrafih x 4 s) I is isomorphic taG. We summarize
our discussions as follows.

Theorem 2. Let I’ be a finite group and D a finite connected symmetric digraph.
Let S be a subset ¢f(D) and¢ a I'-voltage assignment on the subgrash of D.
Then the derived digrap® x4 sy I' = G for somel’-graph G if and only if S is a
#-subset oV (D) and¢ is symmetric.

3. Adjacency matrices ofl'-graphs

Let D be a finite connected pseudo-digraph &hd subset ofv (D). For con-
venience, lett11(S) = (V(D), E(S. $)), H12(S) = (V(D), E(S,S)), Ho1(S)=
(V(D), E(S,S)) andHz(S) = (V(D), E(S,S)), where§S = V(D) — S. Then

A(D) = A(H11(S)) + A(H12(S)) + A(H21(S)) + A(H22(S)).
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LetV(D) = {vy, v2, ..., U\V(D)\} andS = {U‘V(D)‘7|S|+la R UIV(D)\}- Then the ad-
jacency matrices off11(S), H12(S), H21(S) and H22(S) are presented as follows.

[A11(S) O] A(S) O
A(H11(S)) = 1(1) . =[ (é ) 0]
Aty = |© 2]

12 = _O 0 | s

r 0 0]
A(Hy(S)) = :

| A21(S) O]
o _'o 0 _Jo 0
2D =10 apts)] ~ o ausn |’

Foreach 1< i, j < 2, we callA;;(S) thesupporting matribof the subgrapl;; (S)
of D.

Let I be a group an@ a I'-voltage assignment on the induced subgréfjof a
finite connected pseudo-digraph For eachy € I', let(S)4,,) denote the spanning
subgraph of the digrapts) whose directed edge setgs 1(y) so that the digraph
() is the edge-disjoint union of spanning subgrap$igs. ., y € I'.

We define an order relatiod on the vertex seV (D x 4,5 I') of the derived di-
graphD x4 s) I' as follows: for any two vertice®;, o) and(v;, ) of D x (g ) I,
(vi, o) < (vj, ) ifandonlyif (i)« = coandp e I, (ii) o, B € I' ande < B or (iii)
a=pBandi <j.

Now, under this order relation, we can show that

[A((S) O
A(pH(H1(S))) = é > 0} ,
[0 A12(8) -+ A12(S)
Alp~L(H =
(p~H(H12(5))) o o . 0 }
0 0
Axn(S) 0
Ap Y Ha()) =| | AT HZAS)) =A(S) xg D),
| A21(S) O

wherep : D x4 5y I — D is the natural projection. Since

A(D X (4.5 D =A(p 1 (H11(5))) + A(p~L(H12(S)))
+A(p Y (H21(5))) + A(p~L(H22(9))),
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AS) 1 Az(S) - Ar(S)

AD x5 1) =1 4(5)
: A((S) x I)

A21(5)
To simplify the adjacency matrid (D x4 s5) I') of the derived digrapl® x s I',
we define the tensor produdt® B of two matricesA andB by the matrix obtained
from B when every elemertt; is replaced by the matridb;;. Now, by the virtue of
the properties of the tensor product of matrices, we have following theorem.

Theorem 3. LetI be a finite group and D a finite connected pseudo-digraph. Let S
be a subset oV (D) and¢ a I'-voltage assignment on the subgrajsh of D. Then
the adjacency matrid (D x 4,5y I') of the derived digrapiD x4 5) I is

A((S)) A1(S) ® J
AnS) @' Y AUS) 6 @ P(Y) |

where Jig[1 1---1], P(y) isthe|I'| x |I'| permutation matrix associated with e
I and Al is the transpose of a matrix A.

A(D X(¢,S) F) = |:

Let I' be an abelian group. By the classification of finite abelian grofipis,
isomorphic toZ,, x Z,, x --- x Z,, for somen; > 2 with n;_1|n;. For eachk =
1,...,s, letpr denote a generator of the cyclic grofip so thatZ,, = {,o,?, p,}, .
p,?k’l}. We define an order relatioq on the cyclic grouZ, = {0°, ..., p"~1} by
o' < p/ifandonlyifi < j.Under this order relation, we can see that for a generator
p of a cyclic groupZ,,, the permutation matri (p) associated with is expressed
as follows:

o1 -.- 0 O
0 0 . 0 O
P(p) = S
0 0 --- 0 1
1 0 --- 0 O

Notice that the order relation defined on a cyclic grdipgives an order relation
on the product of cyclic group. For example, it = Z,,, x Z,,, then(o1’, p2") <
(p1/, p2X) if and only if eitherh < k or h = k andi < j. Under this order relation,
we can see that

P(pyt, py%, o p) = P(o)™ @ P(p2)"2 @ -~ ® P(ps)™
foreach(p'", p52, ..., p5"°) € Zpy X -+ X Zy,.
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Since P(y) is diagonalizable for eacly € I' and I is abelian, the matrices
P(y),y € I', are simultaneously diagonalizable. More precisely, there exists a uni-
tary matrix M of order|I'| such thatMrP(y)M;1 is a diagonal matrix for each
y € F'andJ M = [/IT] 0--- 0]. For convenience, lefy = exp(2ri/ny) for each

k=1,...,s. Thenforeacly = (p1'*, p52, ..., p5*)INZy, x -+ x Zy,, We have
MrP()Mt
0 )‘(V’l) 0

= DiaglL. 2.1 -+ Air-nl = | . . : :
o - 0 Awir-p
where iqy.j) = [Tiog (™) if j = (nanz---ns_1)js + (nanz - - -ns—2) js—1 +
-+ + (n1)j2 + j1 forsomejiy =0, 1,...,ny — 1. Then, by a simple computation,
we can show that
(In ® (Iy ® M) A(D X (g.5) ) (In ® (I, ® Mr))™*
A(S) VT A12<S) nz
= | P D renASien) |-
VT A21(S) A((S

j=1 yer
wherem = |§| andn = |S|. Hence, we have the following theorem.
Theorem 4. LetI be a finite group and D a finite connected pseudo-digraph. Let S

be a subset of (D) and¢ a I'-voltage assignment on the subgrah of D. If I is
abelian then the adjacency matrix(D x4, sy I') of D x (¢ s) I is similar to

AUSY) VT TA12(S) Iri-1
Ay nAUS) g.7))
|:~/|T|A21(S) A((S) ] |:,691 ;; W) @.7)

where A12(S) an_d A21(S) are the supporting matrices aff12(S) and Hz1(S),
respectively, and = V(D) —

It is clear that if D is a symmetric connected digraph, then the transpose
A(H12(S))! of the matrix A(H12(S)) is A(H»1(S)) for each subseS of V (D),
i.e., A12(S)! = A21(S). If Sis aZ2-subset ofV (D) and¢ a symmetricI'-voltage
assignment ofS), then

[AUS) )] = A((S) (4,1 Tforeachy I

It follows from Theorem 2 that every-graphG can be described as a derived
digraphD x4 s) I', whereD is a symmetric digraph anglis a symmetrid -voltage
assignment on the subgrapt$) of D induced by aZ-subsetS. Now, by
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Theorems 2 and 4, we can find a similar form of the adjacency matrix efjeaph
G as follows.

Corollary 1. Let I be a finite abelian group and D a finite symmetric connected
pseudo-digraph. Let S beZ-subset of (D) and¢ a symmetrid’-voltage assign-
ment on the subgrapts) of D. Then the adjacency matrix(D x4 s) I') of the
derived digraphD x 4,5y I is similar to

AWS)  JTTAws] |12
© A pAUS) @) |+
|:x/|T|A12(S)t A((S)) :| |:/e:91); ) (@.7)

where § =V(D)-S§ and A12(S) is the supporting matrix of the grapH12(S) =
(V(D), E(S, S5)).

4. Computation formulas

In this section, we aim to find a similar form of the adjacency matri® x (4 s)
I') of the derived digraptD x4 5) I' to make it easy to compute the character-
istic polynomial of D x4 sy I', and then obtain a computational formula for the
characteristic polynomial of A-graphG, by using our construction.

Let C denote the field of complex numbers. A weighted digraph is a Pai=
(D, w), whereD is a digraph and : E(D) — C is a function. Given any weighted
pseudo-digraph, the adjacency matiixD,,) = (a;;) of D,, is the square matrix of
order|V (D)| defined by

ajj = Z wl(e).

ecE({vi},{vj}

The characteristic polynomial det — A(D,,)) is denoted by®(D,,; A) and is
called the characteristic polynomial 6%,.

Let I' be a finite abelian group. For4@-subsetS of V(D) and a symmetrid -
voltage assignmeit on the subgraphs), we define a functiong(¢) : E(D) — C

by
1 ifee E(S,8)UE(S,S),
wo(@)(e) = , - _
JIT] ifeeE(S, SUECS,S),
and define a functiomy (¢) : E((S)) — C by wi(¢)(e) = Ap(e) k) for eachk =
1,2,...,|I' —1.

Then, by Corollary 1, the adjacency matdXD x4 s) I') of the derived digraph
D x5 I' is similar to
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|Ir|—1
A(Dug(4)) @ (EB A(<S>w«,.<¢>)) :

j=1
Hence we have the following.

Theorem 5. Let I' be a finite abelian group and D a finite symmetric connected
pseudo-digraph. Let S beZ-subset oV (D) and¢ a symmetrid’-voltage assign-
ment on the subgraphS) of D. Then the characteristic polynomigi(D X6 9

I'; ) of the derived digraptD x , g I'is

|ri—1
D(D x(p.5) I3 A) = P(Dog(p); ») x |1 @((S)a,j(¢);k).
j=1

Now, we aim to find an explicit computational formula for the characteristic poly-
nomial®(D x4 g I'; 1) of the derived digrapld x , g I'. Notice that the matrix
A(Duy(g)) is Hermitian andA ((S).; ) is also Hermitian for eachi = 1,...,n —

1. For a Hermitian matrixd, let G be the simple graph associated w#hi.e., the
number of vertices o6 is equal to the number of columns (or rows)fénd there

is an edge between two verticesandv; of G if and only if the (s, )-entry of A

is not zero. LeiGo, G1, ..., G,_1 be the simple graphs associated with the Hermi-
tian matricesA(Dyy(¢))s AUS)w1(g))s - - -» A((S)w,_1(4)), respectively. We define a
function wo(¢) : E(éo) U Vjéo) — C as follows: uo(¢) (vs) is the (s, s)-entry of
A(D,y ) for eachvy, € V(Go) andpuo(@) (vsvy) is the(s, t)-entry of A(D,,4)) for
eachuvgv; € E(éo) ThenA(Go, wo(¢)) = A(Dayyg)), Where the adjacency matrix
A(Go, no(¢)) = (al/) is defined byll/ = po(¢) (v; U/) if i #J andat/ = M0(¢)(Ut)
ifi =j.Foreachj =1,. — 1, we can also defing; (¢) : E(G U V(G ) —

C so thatA(éj, I (¢)) = A(( Jorj (9))- Notice that for eaci =0,1,...,n — 1,
wi(e) = pi(e~b) for eache € E(G;) and u;(vy) is a real number for each, €
V(G;). Such a weight function is said to lsymmetric(see [5]). Now, we aim to
compute the characteristic polynomials of the weighted graphsu;(¢)), j =
0,...,|[I'l — 1. To do this, letG be a simple graph with a symmetric weight function
w: E(G)UV(G) — C on the digraphG of G. A subgraphP of G is called an
elementary configuratioif each of its components is either a cyalg, (m > 3),

K> or K1. We denoteE, as the set of all elementary configurationg®havingk
vertices, for eacl. For an elementary configuratiéh let « (P) denote the number
of components oP, C(P) the set of all cycle<,, (m > 3) in P, andI,(P) and
Ig(P) the set of all isolated vertices and edgesinrespectively. Notice that for
each cycleC in C(P), there exist two directed cycles, say andC~, in G. By a
slight modification of the method used in [5], we can show the following theorem.

Theorem 6. Let G be a finite simple connected graph and E(é) U C(é) —- C
a symmetric weight function . Then
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Fig. 4. AZ4-graph.

Fig. 5. A symmetric digrap with a symmetricZ4-voltage assignmen.

PG =2"PI £ 37| 3 (—1 P2 T ww)

k=1| PeEy uely(P)
x [ le@? ] Rew(c*)) [pVPIE,
eclp(P) eeC(P)

whereRe(w (C™)) is the real part of[[,.+ @(e) and the product over the empty
index set is defined to e

Example. LetI' = Z4 andG be the graph depicted in Fig. 4 .

Clearly,Gis aZs-graph. Then there exista symmetric digrépand a symmetric
Z4-voltage assignmemt on aZ-subseS such thaiG is isomorphic toD x4 5) Z4.
Such a symmetric digragb with a symmetricZs-voltage assignment is depicted
in Fig. 5. In Fig. 5, the?-subseSof V(D) is {vs, va}.

By Corollary 1, we can see that the adjacency mati® x4 s) Z4) is similar
to

A(Dyo)) & AUS)w1(4)) D AUS) wp(¢) D AUS)w3(¢))

®
020

00 2| [-1 -1 _[-1 1].[-1 -
0 3 1@[—1 —1}@[ 1 —1}@[—1 —1}'
2 1 3

Notice that the simple graptip associated with the Hermitian mati D))
is the pathP; on V(D) and for each = 1, 2, 3, the simple graply; associated with
the Hermitian matrixA ((S), (¢)) is the complete grapK» on two verticeqvs, v4}.

OoON OO



46 J. Lee, H.K. Kim / Linear Algebra and its Applications 307 (2000) 35-46

Moreover, for eachh = 0, 1, 2, 3, it is not hard to find the weight functiqm; (¢) on

-

G;. Now, by Theorem 6, we have

®(G: )) = (x“ —6A3 424+ 16) ()\2 + 2A> ()\2 + 2A> ()\2 + 2A> .
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