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Release of extracellular membrane vesicles from microvilli of epithelial cells
is enhanced by depleting membrane cholesterol
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We previously reported on the occurrence of prominin-1-carrying membrane vesicles that are
released into body fluids from microvilli of epithelial cells. This release has been implicated in cell
differentiation. Here we have characterized these vesicles released from the differentiated Caco-2
cells. We find that in these vesicles, prominin-1 directly interacts with membrane cholesterol and
is associated with a membrane microdomain. The cholesterol depletion using methyl-g-cyclodextrin
resulted in a marked increase in their release, and a dramatic change in the microvillar ultrastruc-

ture from a tubular shape to a “pearling” state, with multiple membrane constrictions, suggesting a
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role of membrane cholesterol in vesicle release from microvilli.
© 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Whereas intracellular membrane traffic has been extensively
investigated, less is known about membrane particles released
from cells. By far the most frequently studied extracellular vesicles
are exosomes [1]. However, recent studies have revealed an
increasing diversity of extracellular particles, not only in terms of
their type but also with regard to their origin [2-4]. We previously
reported on a novel class of membrane vesicles that was identified
in the ventricular fluid of the embryonic mouse brain [3,4]. These
small (50-80 nm) electron-translucent vesicles appear to have a
widespread distribution, being found not only in the embryonic
and adult cerebrospinal fluid [3,5], but also in various external
body fluids, including saliva [3,6]. Their sites of origin appear to
be microvilli and primary cilia [3,4,6]. A marker in the character-
ization of these vesicles is prominin-1 (CD133), a membrane glyco-
protein expressed by epithelial and non-epithelial cells including
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various stem/cancer stem cells [7-10]. Prominin-1 exhibits a
preference for plasma membrane protrusions, e.g. microvilli
[3,4,6,7,11], and its accumulation therein reflects its association
with a cholesterol-based membrane microdomain [12,13]. This
association is presumably mediated by its ability to directly inter-
act with membrane cholesterol [12].

Little is known about the mechanism underlying the release of
the extracellular prominin-1-containing membrane vesicles
(PMVs) from their presumptive donor membranes. Several lines
of evidence suggest a link between this release and cell differenti-
ation/dedifferentiation. Thus, the PMVs increase in the ventricular
fluid of the embryonic mouse brain during neurogenesis [3], and
decrease in human patients with glioblastoma during the final
phase of the disease [5]. In a cell culture model, the human co-
lon-carcinoma-derived Caco-2 cells in which prominin-1 is specif-
ically localized in the microvilli [11], we demonstrated that the
PMVs are increasingly released upon their differentiation [3].

In intracellular membrane traffic, the formation of cytoplasmic
vesicles from the plasma membrane is controlled not only by the
protein machinery, but also by lipids, notably cholesterol [14-
17]. Given the cholesterol-binding capacity of prominin-1 and its
association with a membrane microdomain, it was of interest to
explore the possibility whether the release of the PMVs from
microvilli is affected by membrane cholesterol level.
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2. Materials and methods
2.1. Cell culture

Caco-2 cells (ATCC® HTB-37) were grown as described [3], ex-
cept that Dulbecco’s minimal essential medium (DMEM) supple-
mented with 10% fetal calf serum (FCS), 1% non-essential amino
acids (Life Technologies Inc., Paisley, UK), 2 mM L-glutamine,
100 U/ml penicillin, and 100 pg/ml streptomycin (complete med-
ium) was used.

2.2. Cholesterol depletion

Caco-2 cells grown for 10 days post-confluency (dpc) were trea-
ted for 48 h according the following conditions. Cells received for
24 h either 1.5 ml of complete medium or medium supplemented
with 10% delipidated FCS [18] with or without 10 pM Lovastatin
sodium (Calbiochem, #438186). After 24 h, media were discarded
and cells were incubated for an additional 24 h with either
1.5 ml of complete medium or medium supplemented with 10%
delipidated FCS with or without 10 pM Lovastatin sodium and with
or without 2 mM methyl-B-cyclodextrin (mBCD; Sigma). After
24 h, collected media were subjected to centrifugation at 4 °C for
30 min at 10000xg and the resulting supernatants for 1h at
110000xg. The 110000xg-pellets were dissolved in SDS sample
buffer. Cells were washed with PBS and lysed directly in SDS sam-
ple buffer.

2.3. Detergent resistance

Differentiated Caco-2 cells received 5 ml of complete medium,
which was collected after 24 h. The conditioned medium was di-
vided and subjected to differential centrifugation at 4 °C as fol-
lows: 30 min at 10000xg, supernatant 1hr at 200000xg. The
resulting 200000 x g-pellets were resuspended either in 50 pl PBS
or PBS containing 10 mM m@BCD, and incubated for 30 min at
37 °C. Samples were then mixed with PBS containing either 1% Tri-
ton X-100 (Sigma) or 1% Lubrol WX (SERVA) and incubated for
30 min at 4 °C, before a centrifugation for 1 hr at 100000xg at
4°C. The supernatants and pellets were analyzed by
immunoblotting.

2.4. SDS-PAGE and immunoblotting

SDS-PAGE followed by immunoblotting were performed [19]
using either rabbit antiserum ohE2 against prominin-1 [20] or
anti-o-tubulin mouse monoclonal antibody (clone DM1A; Sigma).
Chemiluminescence (ECL system, Amersham Biosciences) was
recorded using a cooled CCD camera (Fujifilm LAS 1000
Imaging system, Fuji Photo Film) and Image Reader Pro Ver2.01
software. Quantification was performed using Image Gauge V3.3
software.

2.5. Photo-cholesterol labeling and immunoprecipitation

Photocholesterol labeling using a [*H]photocholesterol-mpCD
inclusion complex [18] was performed as described [12]. Labeling
was performed with PMVs found either in Caco-2 medium or
saliva.

2.5.1. Caco-2 medium

Differentiated Caco-2 cells received serum-free medium (Opti-
MEM, Gibco) supplemented as above. After 24 h, the conditioned
medium was centrifuged for 30 min at 10000xg and the superna-
tant (30 ml) concentrated to 10ml using Centricon plus-20

(Millipore). Concentrated medium was incubated with 400 pCi
[*H]photocholesterol-mpCD complex for 2 h at 37 °C. Nine millili-
ter of the medium were then transferred onto a 150-mm dish on
ice and irradiated with UV-light for 5 min whereas the remaining
1 ml was kept in the dark (negative control). One milliliter of irra-
diated sample and the negative control were subjected to centrifu-
gation at 4 °C for 2 h at 110000xg. The pellets and the methanol/
chloroform-precipitated material recovered from the supernatants
were dissolved in SDS-sample buffer. The remaining 8 ml of UV-
irradiated medium was incubated for 1 h at 4 °C with 2 ml of ice-
cold (5x) RIPA buffer [6]. Two 5 ml aliquots were incubated for
1 h at 4 °C with either 10 pl of antiserum ahE2 or 50 pg of rabbit
IgG. Immune-complexes were pulled-down using Protein G-Se-
pharose 4 matrix (Amersham Biosciences, Uppsala, Sweden) over-
night at 4 °C, washed with RIPA buffer, and dissolved in SDS sample
buffer. Samples were analyzed by SDS-PAGE followed by fluoro-
graphy [12].

2.5.2. Saliva

Saliva (2 ml) obtained from healthy volunteers was mixed with
2 ml of ice-cold PBS, filtered through cotton gauze, and centrifuged
at 4 °C for 30 min at 10000xg. The supernatant was incubated at
37 °C for 3 h with 80 puCi of [*H]photocholesterol-mpCD complex.
Half of the sample was kept in the dark and the other half irradi-
ated with UV-light for 5 min. Samples were centrifuged at 4 °C
for 1 h at 200000xg. The pellet was resuspended in 600 pu of RIPA
buffer. Prominin-1 was immunoprecipitated from an aliquot
(500 pul) using antiserum ohE2. Immunoprecipitates and the
remaining 100 pl (resuspended pellet) were analyzed by
fluorography.

2.6. Electron microscopy

Caco-2 cells grown for 10-12 dpc on permeable filters (Costar,
Cambridge, Mass) were subjected to various conditions as de-
scribed above. Cells were processed for standard electron micros-
copy [3], and samples examined with a Morgagni electron
microscope (FEI company, Eindhoven, NL).

3. Results

3.1. Extracellular vesicle-associated prominin-1 interacts with
membrane cholesterol

It was previously shown that prominin-1 concentrated in
microvilli of epithelial cells directly interacts with membrane
cholesterol [12]. Given this finding, and that the PMVs appar-
ently originate from microvilli [3], we investigated whether the
vesicle-associated prominin-1 also interacts with cholesterol.
The PMVs released from differentiated Caco-2 cells in complete
medium were incubated with [3H]photocholesterol [18], fol-
lowed by UV-irradiation and immunoprecipitation of prominin-
1. This revealed covalent binding of [*H]photocholesterol to ves-
icle-associated prominin-1 (Fig. 1a, lane 6). Specificity of the
labeling was documented by (i) the dependence on UV-irradia-
tion (Fig. 1a, lanes 2 and 4 versus 1 and 3), (ii) the labeling of
apolipoproteins A1 and B (Fig. 1a, lane 2, thick arrows), two cho-
lesterol-binding proteins, and (iii) the distinct pattern of
[®H]photocholesterol-labeled bands as compared to the protein
staining (Fig. 1a, lane 5).

We performed a similar experiment with saliva, a physiological
fluid known to contain PMVs [3]. The immunoprecipitation of
prominin-1 revealed its covalent binding of [*H]|photocholesterol
(Fig. 1b, lane 3).
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Fig. 1. Membrane vesicles-associated prominin-1 interacts directly with membrane cholesterol. The 24 h-conditioned medium of Caco-2 cells (a) or human saliva (b) was
incubated with [>H]photocholesterol-mpCD complex and subjected to UV irradiation (+) or without (—). The saliva and an aliquot of the medium were ultracentrifuged to
obtain pellet (P) and supernatant (S). Prominin-1 was immunoprecipitated (IP) from the remainder of the UV-irradiated medium and from an aliquot of the UV-irradiated
saliva pellet, using the antiserum ohE2 (hE2) or, as control, rabbit IgG (con). Supernatants, pellets and immunoprecipitates were analyzed by fluorography. For comparison,
lane 5 shows the Coomassie Blue (CB) staining of the pellet obtained from the UV-irradiated Caco-2 medium. Arrowheads and solid circle, prominin-1 or position where
prominin-1 would be expected; solid arrow, apolipoprotein B; open arrow, apolipoprotein Al.

3.2. Prominin-1 in extracellular membrane vesicles is associated with a
specific membrane microdomain

Within microvilli, prominin-1 is associated with a cholesterol-
dependent membrane microdomain that is recovered in the non-
ionic detergent Lubrol WX but solubilized in Triton X-100 [12].
Given this finding and the interaction of vesicle-associated promi-
nin-1 with membrane cholesterol (Fig. 1), we investigated whether
the vesicle-associated prominin-1 would also be found with a sim-
ilar membrane microdomain. Indeed, the vesicle-associated prom-
inin-1 released from differentiated Caco-2 cells (Supplementary
Fig. S1, lane 1, in Supplementary data) was recovered as deter-
gent-resistant membrane when using Lubrol WX (Supplementary
Fig. S1 top, lane 5), but not Triton X-100 (Supplementary Fig. S1,
lanes 3 and 4). This reflected the existence of a cholesterol-depen-
dent membrane microdomain, as prior cholesterol extraction from
the membrane vesicles by the cholesterol sequestering agent
mpCD resulted in the almost complete solubilization of promi-
nin-1 in Lubrol WX (Supplementary Fig. S1 bottom, lanes 5 and 6).

3.3. Extraction of plasma membrane cholesterol promotes the release
of PMVs

We explored next whether the appearance of the PMVs [3] is
affected by changes in the cholesterol level. Specifically, we pre-
treated differentiated Caco-2 cells for 24 h by incubation in various
media predicted to lower cellular cholesterol, and then extracted
membrane cholesterol by incubation of cells for an additional
24 h with mpCD, as specified (Fig. 2a). PMVs present in the second
24 h conditioned medium were analyzed by immunoblotting of the
pellet obtained after ultracentrifugation.

Incubation of cells with complete medium containing 2 mM
mpBCD (condition 4) resulted in a twofold (P<0.015) increase in
vesicle-associated prominin-1 in the medium compared to incuba-
tion with complete medium without mpCD (condition 1) (Fig. 2c).

This effect was enhanced when the mpBCD treatment was per-
formed on cells in which cholesterol supply and biosynthesis had
been reduced by use of delipidated serum and addition of 10 uM
Lovastatin, respectively (condition 6) (Fig. 2b and c). The increase
in vesicle-associated prominin-1 in the medium upon cholesterol
extraction was matched by a decrease in cell-associated promi-
nin-1 (Fig. 2b). Reduction of cholesterol supply and biosynthesis
alone (condition 3) did not cause an increase in vesicle-associated
prominin-1 (Fig. 2c). To exclude that the increase in vesicle-associ-
ated prominin-1 in the medium reflected a general fragmentation
of the plasma membrane, we examined the a-tubulin content of
the cells after the various treatments. No loss of o-tubulin was de-
tected in any condition (Fig. 2d). These data suggested that extrac-
tion of cholesterol from the plasma membrane promoted the
release of PMVs. Finally, it is important to note that under our
experimental conditions, particularly those involving mBCD, no
significant cell death could be observed (data not shown). Together
with the lack of cellular loss of a-tubulin, this suggested that the
effect of mBCD on PMV release was not due to a cytotoxic effect
of the drug.

3.4. Morphology of microvilli upon cholesterol depletion

These observations prompted us to investigate the morphology
of the microvilli of cholesterol-extracted Caco-2 cells. Electron
microscopy of cells grown in complete medium revealed a typical
brush border with densely packed microvilli (Fig. 3a). It should be
noted that their length was not uniform throughout the cell mono-
layer but varied between cells, although for any given single cell
most microvilli had a similar length (Fig. 3a; however, note panel
c). Occasionally, we observed membrane constrictions close to
the tip of microvilli of cells grown in complete medium (Fig. 3b,
¢, arrowheads). Incubation of cells in medium containing delipidat-
ed serum and 10 uM Lovastatin did not significantly alter their
architecture (Fig. 3d).
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Fig. 2. Cholesterol depletion promotes the release of PMVs. (a) Summary of the different conditions. Caco-2 cells grown for 10 dpc in complete medium were exposed to
various media for 0-24 h and 24-48 h, as indicated: complete medium (complete); complete with delipidated FCS instead of FCS (delipidated); complete with delipidated FCS
plus 10 uM Lovastatin (delipidated + Lovastatin); complete with 2 mM mpCD (complete + mpBCD); complete with delipidated FCS plus 2 mM mBCD (delipidated + mpCD);
complete with delipidated FCS plus 10 pM Lovastatin and 2 mM mpCD (delipidated + Lovastatin + mpCD). (b) The 24-48 h medium obtained in the various conditions (a) was
centrifuged at 10000xg, and the resulting supernatant at 110000xg to sediment the PMVs. An aliquot (1/3) of this pellet and of the corresponding cells (1/30) were analyzed
by immunoblotting for prominin-1. (c and d) Quantification of immunoblots obtained in the various conditions. (c) Prominin-1 immunoreactivity in PMVs was determined as
a percentage of total (sum of PMV + cells), and the resulting values are expressed relative to that of condition 1 (5%), which was arbitrarily set to 1. (d) o-Tubulin
immunoreactivity associated with cells is expressed relative to that of condition 1 (arbitrarily set to 1). Numerals in the column bars indicate the number of independent
experiments, each performed in triplicate; column bars show the mean of the independent experiments, error bars indicate S.E.M.

In contrast, extraction of cholesterol with mpCD resulted in dra-
matic changes in microvillar ultrastructure (Fig. 3k), particularly
when this treatment was performed in medium reducing the sup-
ply of cholesterol (delipidated serum, Fig. 31) and inhibiting its bio-
synthesis (Lovastatin, Fig. 3e—j). The magnitude of the effect of
cholesterol extraction varied between cells, but for the microvilli
of any given single cell was very similar. Specifically, we observed
that (i) a brush border was only maintained in rare cases (Fig. 3e),
(ii) the number and length of microvilli was drastically reduced
(Fig. 3j and 1), and (iii) their shape often appeared irregular, with
membrane constrictions at their tips (Fig. 3f, k, arrowheads) or
throughout their entire length (Fig. 3g, i, k, arrowheads) as the
most distinctive feature. In the latter cases, the appearance of the
microvilli was reminiscent of the previously described “pearling”
of tubular cell protrusions and artificial lipid bilayers [21-24].

In addition to this “pearling” of microvilli, there was a striking
appearance of small membrane vesicles in the immediate vicinity
of the microvilli (Fig. 3e, f, I, and k), as has previously been ob-
served upon cholesterol depletion of enterocytes [25]. The size of
these vesicles was very similar to that of the individual “pearl”-like

units of the cholesterol-depleted microvilli, suggesting that the lat-
ter were the precursors to the former. Another morphological
change elicited by cholesterol extraction was the marked increase
in aggregated granular electron-dense material at the microvillar
tip (Fig. 3h, open arrow). Besides the changes in brush border mor-
phology, we noticed an increase in the occurrence of intracellular
multivesicular structures upon extraction of membrane cholesterol
by mBCD (Supplementary Fig. S2 in Supplementary data), in line
with previous observations [25].

4. Discussion

The release of PMVs from microvilli into extracellular fluids is a
widespread phenomenon. However, the underlying mechanism is
unclear. Using prominin-1, we show that the released PMVs are
indistinguishable from their donor membranes with regard to
microdomain organization. Thus, the vesicle-associated promi-
nin-1 showed the same differential solubility/insolubility in Triton
X-100 versus Lubrol WX, and specific interaction with membrane
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Fig. 3. Electron microscopic analysis of microvilli of cholesterol-depleted cells. Caco-2 cells grown for 10 (b, i-1) or 12 (a, c-h) dpc were exposed to various media as in Fig. 2a;
labeling above panels refers to the 24-48 h period. (a-c) Condition 1; (d) condition 3; (e-j) condition 6; (k) condition 4; (1) condition 5. Asterisks in (a) flank junctional
complexes of two adjacent cells; note the difference in microvillar length in these cells grown in complete medium. Arrowheads, membrane constrictions; note that these are
confined to the microvillar tip in complete medium (b, c) and are increasingly observed upon the mpCD treatment (f, g, i, k). Open arrows, aggregated granular electron-dense

material in the vicinity of microvilli. Bars: a, d, e, 400 nm; b, c, f-1, 200 nm.

cholesterol, as previously reported for prominin-1 in microvilli
[12].

As to the cell biological mechanism underlying the release of
PMVs, our study suggests that changes in membrane microdomain
organization can affect it. Specifically, cholesterol depletion, which
has previously been shown to reduce the size of the prominin-1-
containing membrane microdomain [12], was found to cause a
marked increase in the release of PMVs. At the level of the donor
membrane, the morphological correlate of the increased vesicle re-
lease upon cholesterol depletion was a transition in the microvillar
structure from a tubular shape to a “pearling” state, with multiple
membrane constrictions all along their length (Supplementary
Fig. S3 in Supplementary data). When microvilli showed only sin-
gle membrane constrictions, these were typically found near their

tips, suggesting that these were the sites where pearling was initi-
ated. Pearling of tubular cell membranes and lipid bilayer tubes
has previously been shown to reflect the balance of two competing
parameters, curvature and tension [22-24]. In the case of tubular
plasma membrane protrusions, tension is exerted, at least in part,
by the actin cytoskeleton, depolymerization of which (and hence
lowering tension) leads to pearling [22]. The transition from a
tubular shape to a pearling state upon cholesterol depletion ob-
served here, however, is presumably due to increasing curvature,
as tubular membranes exhibit curvature only in two dimensions
whereas pearling membranes do so in three dimensions. Our dem-
onstration that cholesterol depletion, which is known to affect cur-
vature [26-29], causes pearling of microvilli, is consistent with
previous studies on artificial lipid bilayers [23,30].
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Is the influence of membrane cholesterol levels on the occur-
rence of pearling and on the extent of PMVs release physiologically
relevant? It is interesting to note that pearling of microvilli and the
presence of vesicles between microvilli have been observed in the
duodenal brush border of chicks receiving a low residue diet [21],
suggesting that pearling is a physiological intermediate in the re-
lease of vesicles from microvilli. Moreover, the differentiation of
Caco-2 cells that occurs post-confluency and that is associated
with an increase in the release of PMVs [3] is accompanied by a de-
crease in membrane cholesterol levels [31]. Together with the
induction of vesicle fission from artificial lipid bilayer tubes upon
cholesterol removal [24], these observations are consistent with
the possibility that the budding and fission of vesicles from micro-
villi into extracellular fluids is controlled, at least in part, by the le-
vel of membrane cholesterol and the cholesterol-dependent
organization of membrane microdomains. Given that the induction
of vesicle fission from artificial lipid bilayer tubes upon cholesterol
removal is thought to involve phase separation [24], the pearling of
microvilli and increased vesicle release therefrom may also reflect
phase separation. In this context, it should be considered that the
pearling of microvilli observed upon interference with the intra-
microvillar actomyosin system [32] may reflect phase separation
resulting from the clustering of small membrane microdomains
into larger ones. Taken the previous [33,34] and present studies to-
gether, regulating the interplay between cholesterol-dependent
membrane microdomains and the membrane-associated actomyo-
sin system emerges as a potential mechanism controlling the phys-
iological release of microvilli-derived membrane vesicles. Given
that this release has been implicated in cell differentiation, our
data suggest a new role of cholesterol-dependent membrane
microdomains in cell differentiation.
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