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SUMMARY

Studies of homotypic vacuole-vacuole fusion in the
yeast Saccharomyces cerevisiae have been instru-
mental in determining the cellularmachinery required
for eukaryotic membrane fusion and have implicated
the vacuolar H+-ATPase (V-ATPase). The V-ATPase
is a multisubunit, rotary proton pump whose precise
role in homotypic fusion is controversial. Models
formulated from in vitro studies suggest that it is
the proteolipid proton-translocating pore of the
V-ATPase that functions in fusion, with further
studies in worms, flies, zebrafish, and mice appear-
ing to support this model. We present two in vivo
assays and use a mutant V-ATPase subunit to estab-
lish that it is the H+-translocation/vacuole acidifica-
tion function, rather than the physical presence of
the V-ATPase, that promotes homotypic vacuole
fusion in yeast. Furthermore, we show that acidifi-
cation of the yeast vacuole in the absence of the
V-ATPase rescues vacuole-fusion defects. Our
results clarify the in vivo requirements of acidification
for membrane fusion.

INTRODUCTION

Membrane-fusion events are tightly regulated in all eukaryotic

cells through mechanisms conserved across evolution. Homo-

typic fusion of vacuole membranes in the yeast Saccharomyces

cerevisiae has been extensively studied as a model system to

understand this process. The original in vitro assays were based

on incubation of purified vacuoles isolated from two different

yeast strains: one lacking alkaline phosphatase (ALP), the other

lacking the vacuolar-processing enzyme Pep4p. Vacuolar fusion

results in content mixing of the two populations and activation of

the enzymatic activity of ALP via processing by Pep4p, which is

measured by a colorimetric assay (Conradt et al., 1994; Haas
462 Developmental Cell 27, 462–468, November 25, 2013 ª2013 Els
et al., 1994). Such studies have demonstrated many require-

ments for vacuolar membrane fusion, including a requirement

for SNARE proteins (Nichols et al., 1997; Wickner, 2010) and

the vacuolar H+-ATPase (V-ATPase) (Baars et al., 2007; Bayer

et al., 2003; Peters et al., 2001). The V-ATPase is a multisubunit

proton pump (Figure 1A), and initial models suggested that the

integral membrane subcomplex V0, which is responsible for

translocating protons, is required on both membranes for the

final membrane-fusion reaction, possibly by acting as a fusion

pore (Baars et al., 2007; Strasser et al., 2011; Stroupe et al.,

2009). Models for such a physical role for V0 in membrane fusion

based on results from yeast led to a paradigm shift, resulting in

the interpretation of data from worm, fly, zebrafish, and mouse

studies to implicate direct V0 involvement (Scott et al., 2011).

Despite extensive literature on this topic, the role of the

V-ATPase in yeast vacuole-vacuole fusion remains controversial

for several reasons:

(1) It has been suggested that vacuole-vacuole fusion

requires vacuolar acidification (Ungermann et al., 1999),

making it difficult to distinguish the requirement for

V-ATPase proton pumping from its physical presence

on vacuole membranes for membrane fusion. Data

demonstrating that vacuoles lacking V0 do not fuse with

each other (Baars et al., 2007; Bayer et al., 2003; Takeda

et al., 2008) are difficult to interpret because the vacuole is

not acidified, and it lacks an assembled V0. Recently,

point mutations in the proteolipid V0 subunits (Vma3p,

Vma11p, and Vma16p; see Figure 1A) have been gener-

ated that inhibit vacuole fusion 30%–90%, leaving some

acidification activity intact (Strasser et al., 2011). How-

ever, even these mutants have at least a 30%–40%

reduction in proton-pumping activity, and it remains

difficult to separate the two functions.

(2) In vitro data addressing the requirement for V0 subunits in

vacuole-vacuole fusion are contradictory. The require-

ment of both partners in the fusion reaction to contain

the V0 subunit Vph1p is used as evidence that the physical

presence of V0 is necessary on both membranes for

fusion (Baars et al., 2007; Bayer et al., 2003). However,
evier Inc.
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Figure 1. Acidification of the Vacuole Is Required for Vacuole

Morphology Maintenance In Vivo

(A) The V-ATPase is composed of a V1 ATP hydrolytic domain and a V0

membrane domain. The V0 domain is involved in H+ translocation and contains

subunit a and the proteolipid ring composed of three different subunits in

yeast. The highly conserved Arg at position 735 of subunit a is required for

V-ATPase H+ translocation.

(B) Parent (WT; KEBY136), vam3D (ECY157), vph1D (ECY145), and vph1R735Q

(ECY149) cells expressing GFP-ALP (pLG230) as a vacuole maker were

visualized by fluorescent (right column) or differential interference contrast

(DIC) microscopy (left column). Images shown are from a 0.5 mm z stack. Scale

bar, 5 mm.

(C) Quantification of the experiment shown in (A) (n = 900 cells/strain) is

presented. SD is indicated.

See also Figure S1.
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using the same assay and protocol (including the same

parent yeast strains), we find that vacuoles lacking

Vph1p fuse with Vph1p-containing vacuoles (see Fig-

ure S1A available online). Furthermore, vacuoles lacking

the V0 subunit Vma6p have only a modest inhibition of

fusion with Vma6p-containing vacuoles (Baars et al.,

2007; Takeda et al., 2008), and vacuoles lacking proteoli-

pid subunits Vma3p or Vma16p fuse with vacuoles con-

taining intact V-ATPase (Takeda et al., 2008) (Figure S1A).

(3) In vitro reconstitution experiments show that vacuolar

SNAREs, Sec17p, Sec18p, the HOPS complex, ATP

hydrolysis, and GTP-bound Ypt7p are sufficient for

membrane fusion. This implies that components of the
Developme
V-ATPase are not required for membrane fusion, at least

in this reconstituted system (Stroupe et al., 2009).

In this report, we demonstrate the absolute requirement of

acidification in homotypic vacuole fusion by introducing two

assays that assess fusion in vivo. Using these assays in combi-

nation with a point mutation that results in a fully assembled and

properly localized V-ATPase that does not pump protons, we

show that vacuole acidification is required for homotypic vacuole

fusion. Importantly, we use the exogenous vacuole-targeted

H+-translocating inorganic pyrophosphatase from Arabidopsis

thaliana, AVP1, to demonstrate that vacuole-fusion defects can

be rescued by acidification of this organelle.
RESULTS

We set out to determine whether vacuole-vacuole fusion

requires the acidification function of the V-ATPase or the phys-

ical presence of V0. Vacuolar morphology in S. cerevisiae can

be a measure of the balance between vacuole fusion and fission

because strains with fusion defects have highly fragmented

vacuoles (Baars et al., 2007; Strasser et al., 2011; Wada et al.,

1992). In vitro assays have established the requirement of the

SNAREs Vam3p and Nyv1p for homotypic vacuole fusion

(Nichols et al., 1997), and yeast cells lacking Vam3p (vam3D)

exhibit highly fragmented vacuoles using the vacuolar mem-

brane marker GFP-ALP. ALP is a reliable vacuole membrane

marker because, unlike the dye FM4-64, ALP transport to the

vacuole is not affected by defects in vacuole acidification

(Graham et al., 2003; Perzov et al., 2002). vam3D yeast cells

have numerous, small vacuolar vesicles (100% of cells display

seven or more vacuoles), compared to the parent strain where

the majority of cells have one to three vacuoles (Figures 1B

and 1C) (Baars et al., 2007; Darsow et al., 1997; Nichols et al.,

1997). We examined vacuole morphology in strains lacking the

V0 subunit Vph1p, and similar to the vam3D strain, 96% of

vph1D cells have seven or more vacuoles, suggesting a possible

vacuole-fusion defect (Figures 1B and 1C; Baars et al., 2007). To

distinguish the acidification function of the V-ATPase from the

physical presence of the V0 proteolipid channel on vacuoles,

we replaced the genomic copy of VPH1with a mutant version,

vph1R735Q, which allows proper assembly and trafficking of the

V-ATPase to the vacuole but completely abrogates ATP

hydrolysis and proton pumping into this organelle (Kawasaki-

Nishi et al., 2001). To confirm the phenotype of vph1R735Q cells,

we found that Vph1pR735Q was localized to the vacuole (Fig-

ure S1B), and cells expressing vph1R735Q showed growth

defects on media containing ZnCl2 or CaCl2, demonstrating

that, as expected, the assembled V-ATPase complexes contain-

ing Vph1pR735Q are not functional (Figure S1C; Finnigan et al.,

2012). Acidification of yeast vacuoles by the V-ATPase is

required to drive the sequestration of potentially toxic levels of

metal ions such as Zn2+ and Ca2+, and therefore, a growth defect

on this media is a measure of nonacidified vacuoles. As with

vam3D and vph1D strains, 98% of vph1R735Q cells have seven

or more vacuoles (Figure 1C). Our results are not the conse-

quence of strain-specific effects because BY4741 and BJ3505

strains with the vph1R735Q mutation also exhibited highly frag-

mented vacuoles (Figure S1D). These data indicate that it is
ntal Cell 27, 462–468, November 25, 2013 ª2013 Elsevier Inc. 463
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Figure 2. V0-Dependent Proton Pumping Is Required on Only One

Vacuole for Homotypic Fusion In Vivo, as Assessed using an ALP-

Processing Assay

(A–E) Immunoblot analysis was used to assess whether ALP was present in its

pro (pALP) ormALP form in lysates of diploids formed using the assay shown in

(F). Lysates of PEP4 (RPY10) and pep4-3 (SF838-9Da) haploid cells were

included in the analysis to indicate the positions of mALP and pALP. In (A) and

(B), the strains used are indicated. In (C), nyv1D strains (KEBY189 and

KEBY192) were used, and the presence or absence of the CUP1-NYV1

plasmid (pTC5) is indicated. Similarly, in (D) and (E), the strains used were

vma3D (KEBY169 and KEBY171) and vph1D (ECY145 and ECY147), respec-

tively, and the plasmids present were CUP1-VMA3 (pTC6) or CUP1-VPH1

(pGF669), as indicated.

(F) Schematic representation of the ALP-processing assay to identify re-

quirements of homotypic vacuole fusion in vivo.

See also Figure S2.
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the acidification function of the V-ATPase, rather than the

physical presence of the V0 subcomplex, that is required for

homotypic vacuole-vacuole membrane fusion in vivo.

Acidification Function of the V-ATPase Promotes
Vacuole-Vacuole Fusion
To explore further the role of the V-ATPase in membrane fusion

in vivo, we developed two assays, both of which take advantage

of the natural fusion of vacuoles from parent cells that occurs in

the newly formed zygote during the first cell division following

yeast mating (Weisman and Wickner, 1988). In the first assay,

we used ALP (PHO8) and Pep4p, the protease that initiates

ALP cleavage once it reaches the vacuole, to test in vivo vacuole

fusion. This assay is based on the conventional content-mixing

assay, but results are generated in vivo by Pep4p-dependent

cleavage of ALP, as assessed by western blot (Figure 2). The

yeast cells used for this assay have been engineered so that

they do not express genomic copies of ALP (pho8D) or Pep4p

(pep4-3) but produce one or the other from plasmids under the

control of the copper-inducible CUP1 promoter. This strategy
464 Developmental Cell 27, 462–468, November 25, 2013 ª2013 Els
ensures that vacuoles in one parental strain contain ALP, and

vacuoles in the other strain contain Pep4p (Figure 2F). Growth

on media containing copper and subsequent removal of the

copper allowed a pulse of protein to be synthesized and then

chased into the vacuole. Efficient expression and shutoff with

the CUP1 promoter are shown in Figure S2A. Both Pep4p and

ALP are chased to the vacuole without additional protein pro-

duction, ensuring that ALP processing (conversion of pro-ALP

[pALP] to mature ALP [mALP]) is a measure of vacuole-vacuole

fusion and not, for example, endosome-vacuole fusion. The

latter scenario is rendered even more unlikely because Pep4p

and ALP take different transport routes from the Golgi to the

vacuole (Cowles et al., 1997; Piper et al., 1997) (Figure S2B).

Cells of opposite mating types, expressing either ALP or

Pep4p in the vacuole, were shifted to media lacking copper for

24 hr, mated, and diploids selected on plates lacking copper.

For parent strains crossed with each other (wild-type [WT] 3

WT), we observed full processing of pALP to itsmature form after

diploid formation, indicating vacuole-vacuole fusion (Figure 2A).

We also tested strains lacking the vacuolar SNAREs Vam3p or

Nyv1p. We found that vam3D or nyv1D strains crossed with the

parent strain produced mALP, indicating vacuole-vacuole

fusion. No mALP was produced in crosses of either vam3D 3

vam3D or nyv1D 3 nyv1D, indicating a defect in homotypic

vacuole fusion in vivo (Figures 2A and 2B). This is consistent

with results from in vitro experiments showing the requirement

for vacuolar SNAREs on only onemembrane for vacuole-vacuole

fusion (Nichols et al., 1997). To ensure that our results were not

complicated by new synthesis of protein following diploid forma-

tion, we repeated the experiment usingCUP1-NYV1. Removal of

copper from the medium during the assay ensured that no new

synthesis of Nyv1p, like ALP and Pep4p, occurred. As shown

in Figure 2C, the results using CUP1-NYV1 were identical to

those using the deletion strains, once again validating our in vivo

content-mixing assay for vacuole fusion. All further experiments

using this assay were done with CUP1 expression/shutoff of the

gene of interest.

We then used our assay to determine the in vivo requirement

for the V0 in homotypic vacuole fusion. As shown in Figure 2D,

the V0 subunit Vma3p on onemembrane is sufficient for process-

ing of pALP, which is indicative of homotypic vacuole fusion.

However, ALP is not processed if it is expressed in the vma3D

strain, possibly due to the requirement of an acidified environ-

ment to prime ALP for protease cleavage.

We also looked at the requirement of the V0 subunit Vph1p in

vacuole-vacuole fusion in our in vivo content-mixing assay.

Vph1p present on only one membrane was sufficient for ALP

processing to itsmature form, again clearly demonstrating in vivo

that fusion can occur if the V0 subcomplex is present on one

membrane only, in agreement with in vitro results (Figures 2E

and S1A; Takeda et al., 2008).

To substantiate and extend the results of our in vivo content-

mixing assay, we developed a second assay to measure vacu-

ole-vacuole fusion in vivo, this time using live-cell imaging. This

microscopic assay analyzes overlap of fluorescent vacuole

markers in the zygotic bud followingmating. Two parental strains

were transformed with different fluorescent versions of ALP: one

tagged with GFP, and the other with mCherry. Vacuoles in the

large zygotic bud were scored for overlap of red and green
evier Inc.
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Figure 3. Vacuole Acidification Is Required for Fusion In Vivo, as

Assessed with a Microscopic Assay

(A) Schematic representation of a microscopic zygotic bud assay to identify

requirements of homotypic vacuole fusion in vivo. In this schematic, fused

vacuoles are depicted in white, and unfused vacuoles are depicted in green

or red.

(B) Haploid parent cells expressing either GFP-ALP (pLG230) or mCherry-ALP

(pMP2) were visualized by fluorescence or DIC microscopy during mating at

the shmoo stage. Scale bar, 5 mm.

(C) Haploid cells expressing either GFP-ALP or mCherry-ALP were mated in

YEPD and visualized by fluorescence and DIC microscopy. Large budded

zygotes are shown for WT 3 WT (ECY153 and ECY155), vam3D 3 vam3D

(ECY157 and ECY158), vph1D 3 vph1D (ECY145 and ECY147), and

vph1R735Q 3 vph1R735Q (ECY149 and ECY151). Buds are indicated by an

asterisk. Scale bar, 5 mm. Quantification of fusion in the zygotic bud in WT 3

WT (n = 90), vam3D 3 vam3D (n = 81), vph1D 3 vph1D (n = 40), and

vph1R735Q 3 vph1R735Q (n = 51) is shown to the right of the cell images. Black

bars indicate cells with fused vacuoles in the bud, and white bars indicate

zygotic buds with vacuoles that are not fused. SD is indicated.
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fluorophores (Figure 3A). Defects in vacuole fusion are reflected

by numerous small fragmented vacuoles with nonoverlapping

red and green fluorescent signals in the large zygotic bud as

opposed to theWT-fused vacuoles and overlap of red and green

fluorophores seen with fusion-competent vacuoles. To quantify

our assay, vacuoles in the zygotic bud were scored as ‘‘fused’’

if the red and green signals overlapped by visual inspection

and as ‘‘not fused’’ if there was no overlap of the two fluoro-

phores. The total number of cells showing fused or unfused vac-

uoles divided by the total number of cells scored is expressed as
Developme
percent (%) fusion (Figure 3C). To show that vacuole fusion did

not occur until the zygotic bud formed, we observed cells in

the early zygote-fusion stage expressing either GFP-ALP or

mCherry-ALP and saw no overlap between the two fluorophores

(Figure 3B).

Our zygotic bud-fusion assay confirmed that 99% of the

zygotes from WT crosses had fused vacuoles (Figure 3C). In

contrast, vam3D crosses produced highly fragmented vacuoles

with only 4% of cells scored as fused, demonstrating an almost

complete block in vacuole-vacuole fusion in the large zygotic

bud. Similarly, vph1D crosses resulted in fragmented vacuoles

with only 3% fusion scored. Crucially, only 4% of vph1R735Q

zygotes were scored as fused, and the vacuoles were highly

fragmented in the zygotic bud. This confirms our previous obser-

vations of steady-state fragmented vacuole morphology in

vph1R735Q cells and substantiates the conclusion that it is the

proton-pumping activity of Vph1p rather than the physical pres-

ence of V0 that is required for vacuole-vacuole fusion.

Acidification by the Plant Pyrophosphatase in the
Absence of V-ATPase Rescues Vacuole-Fusion Defects
We reasoned that if WT vacuole fusion requires acidification

rather than the physical presence of the V-ATPase, then the frag-

mentation phenotype and fusion defects seen in vph1 mutants

should be rescued by V-ATPase-independent acidification of

the vacuoles. To achieve this, we expressed the vacuole-

targeted H+-translocating inorganic pyrophosphatase from

Arabidopsis thaliana, AVP1, in fusion-defective yeast. AVP1 pro-

tein is present on the vacuolar membrane of plant cells but is not

found in other eukaryotes. It couples cytoplasmic pyrophos-

phate (PPi) hydrolysis to translocation of protons into the vacu-

olar compartment (Baltscheffsky et al., 1999; Sarafian et al.,

1992). AVP1 protein expressed in yeast cells has been shown

to localize to the vacuole membrane and lead to vacuole acidifi-

cation, but only in the absence of the yeast cytoplasmic

inorganic pyrophosphatase, Ipp1p, which otherwise hydrolyzes

cytosolic PPi (Drake et al., 2010; Pérez-Castiñeira et al.,

2011; Perez-Castineira et al., 2002). We examined vacuole

morphology and vacuole pH in yeast expressing AVP1 in place

of the endogenous IPP1. Of the parental ‘‘wild type’’ cells,

84% had one to three vacuoles, and the vacuolar pH measured

using the ratiometric, pH-sensitive dye BCECFwas 5.67 (Figures

4A–4C). This was consistent with our previous vacuole

morphology results (Figure 1) and with measurements of vacu-

olar pH by others (pH 5.5–5.9) (Diakov and Kane, 2010; Diakov

et al., 2013; Martı́nez-Muñoz and Kane, 2008; Plant et al.,

1999; Tarsio et al., 2011). As seen previously, vph1D cells dis-

played fragmented vacuoles, and as expected, 98% of dou-

ble-mutant vph1D ipp1D cells expressing IPP1 also displayed

fragmented vacuoles (Figures 4A and 4B). The vacuolar pH in

the vph1D ipp1D cells expressing IPP1 rose to 6.62 (Figure 4C).

vph1D ipp1D cells expressing both IPP1 andAVP1 had fully frag-

mented vacuoles (data not shown) because the Ipp1 protein very

efficiently hydrolyzes the available cytosolic pyrophosphate

(Sarafian et al., 1992). Importantly, vph1D ipp1D cells expressing

only AVP1 showed significant rescue of vacuole fragmentation,

with 54%of these cells containing one to three vacuoles (Figures

4A and 4B). We measured a vacuolar pH of 6.42 in these cells

(Figure 4C). Thus, expression of AVP1 in cells lacking the
ntal Cell 27, 462–468, November 25, 2013 ª2013 Elsevier Inc. 465
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Figure 4. Expression of Vacuole-Localized Arabidopsis thaliana

Pyrophosphatase AVP1 Rescues the Vacuole-Fusion Defect in Cells

Lacking Vph1p

(A) WT (SF838-1Da), vph1D + p:IPP1 (vph1::hyg ipp1::kanMX, ECY196

expressing plasmid-borne IPP1 [p:IPP1 and pEC139]), and vph1D + p:AVP1

(vph1::hyg ipp1::kanMX, ECY196 with plasmid pLG362 [p:AVP1] swapped for

plasmid pEC139 [see Supplemental Experimental Procedures] and expressing

mCherry-ALP [pGF242]) were visualized using fluorescent and DIC micro-

scopy. Scale bar, 5 mm.

(B) The vacuole morphology of WT (n = 170), vph1D + p:IPP1 (ECY196, n =

213), and vph1D cells + p:AVP1 (ECY196 with plasmid pLG362 swapped for

plasmid pEC139, n = 636) expressing plasmid-borne mCherry-ALP (pGF242)

was quantified. SD is indicated.

(C) Vacuolar pH was measured in WT (n = 4), vph1D + p:IPP1 (ECY196, n = 5),

and vph1D + p:AVP1 (ECY196 with plasmid pLG362 swapped for plasmid

pEC139, n = 5) using BCECF dye. SD is indicated.

(D) Lysates of PEP4 (RPY10) and pep4-3 (SF838-9Da) haploid cells were

included in the analysis to indicate the positions of mALP and pALP in the

in vivo ALP content-mixing assay. Processing of ALP is shown for vph1D

diploids (ECY145 and ECY147), WT diploids (RYP10 and SF838-9Da), WT 3

vph1D diploids, vph1D ipp1D + p:AVP1 diploids (LGY253 and LGY254), and

vph1D ipp1D + p:AVP13 vph1D diploids. Plasmids present in ALP- or Pep4p-

expressing cells in all lanes were pTC1 and pTC2.
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V-ATPase (vph1D cells) decreases vacuolar pH from 6.62 to

6.42. The incomplete rescue of vacuole morphology and rela-

tively modest decrease in vacuolar pH were very likely due to

insufficient AVP1 expression in some cells due to the variable

copy number of the 2m AVP1 plasmid. These observations are

consistent with the previously published ability of AVP1 protein

to acidify yeast vacuoles only in the absence of Ipp1p (Pérez-
466 Developmental Cell 27, 462–468, November 25, 2013 ª2013 Els
Castiñeira et al., 2011) and suggest that sufficient expression

of AVP1 corrects the vacuole-fusion defect of vph1D cells. We

then used our in vivo ALP content-mixing assay (Figure 2F) to

confirm this interpretation. As shown previously, Vph1p is

required on one membrane to promote vacuole fusion, as

assessed by ALP processing (Figure 2). However, the expression

of AVP1 on one or both membranes in vph1D ipp1D cells results

in clear ALP processing (Figure 4D), indicating that expression of

AVP1 can restore vacuole-vacuole fusion even in the complete

absence of the V-ATPase. Together, these data demonstrate

that acidification of yeast vacuoles in the absence of the

V-ATPase is sufficient for promoting homotypic vacuole-vacuole

fusion.

DISCUSSION

In vitro assays of yeast vacuole-vacuole fusion have provided

tremendous insight into the general mechanisms of membrane

fusion. To complement these studies, and to investigate the re-

quirements for membrane fusion in vivo, we have developed

two assays. Both of our assays are based on the premise that

S. cerevisiae vacuoles fuse in vivo during the first cell division

after zygote formation (Weisman and Wickner, 1988). Our first

assay measures content mixing using biochemical protein pro-

cessing, and the second relies on membrane mixing as defined

by the overlap of fluorescent markers. Using these assays, we

have investigated the controversial role of the V-ATPase com-

plex in membrane fusion. In contrast to some previous in vitro

reports, we found that the V0 subcomplex of the V-ATPase is

required on onemembrane, not both, for vacuole-vacuole fusion

in vivo. Furthermore, expression of a V-ATPase complex that

was assembled and targeted to the vacuole but completely

unable to translocate protons indicated that vacuole-vacuole

fusion depends on the proton-translocation activity of the

V-ATPase, and not its physical presence on the vacuole. To

confirm this hypothesis, we expressed the plant pyrophospha-

tase AVP1 in yeast to acidify vacuoles in the absence of the

V-ATPase. Using cells that lacked the V-ATPase but expressed

AVP1, we demonstrated that the acidification of at least one vac-

uole is the essential requirement for vacuole-vacuole fusion.

Our ability to lower the vacuolar pH of vph1D cells and restore

vacuolar morphology and membrane fusion suggests that vacu-

ole acidification promotes vacuole-vacuole fusion. However, the

question remains as to whether it is acidification per se, the

change in proton motive force or membrane potential, or indeed

a more indirect effect (e.g., translocation of a counter-ion) that is

the key requirement for membrane fusion.

In light of our findings, it will be necessary to reevaluate data

from other systems. For example, mutations in the mammalian

V0 sector subunit a genes (orthologous to yeast VPH1) led to

membrane-fusion defects in synaptic vesicle exocytosis (Hie-

singer et al., 2005) and phagocytosis (Peri and Nüsslein-Volhard,

2008), and these results were interpreted to implicate direct V0

sector involvement, rather than defects in acidification. How-

ever, to convincingly separate the role of V0 in acidification

from other more-direct binding roles in membrane fusion, it will

be necessary to prepare H+-translocation dead but stable forms

of the V-ATPase (Perzov et al., 2002). For example, generation of

proton-translocation dead subunit a isoforms (homologous to
evier Inc.
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the Vph1pR735Q mutant used in this study) would eliminate H+

translocation without affecting assembly or targeting of the

resulting V-ATPase. Generation of transgenic animals with

corresponding mutations (e.g., vha100-1 in D. melanogaster;

Hiesinger et al., 2005) would more rigorously test whether it is

the acidification function associated with the a1 subunit or

rather the physical presence of its associated V0 sector that is

responsible for the observed phenotypes. Our findings have

implications for the analysis of membrane fusion in all eukaryotic

systems, and our assays pave the way for the assessment of

factors required for vacuole membrane fusion in vivo. This will

further our understanding of the fundamental process of mem-

brane fusion.

EXPERIMENTAL PROCEDURES

In Vivo ALP-Processing Assay

Transformants were grown on selective minimal media plates (SD-Ura-Leu)

containing 50 mMcopper sulfate. Cells were switched to yeast extract peptone

with dextrose (YEPD) (no copper) for 24 hr prior to setting up crosses. Diploids

were selected on SD-Ade-Lys and grown for 24 hr at 30�C. Cells were then

scraped off the selective plate and prepared for western blotting with

antibodies to ALP.

Zygotic Bud-Fusion Assay

The zygotic bud-fusion assay was performed essentially as described for

in vivo mitochondrial fusion (Mozdy et al., 2000). Live-cell images were

acquired on a Zeiss Axioplan 2 fluorescence microscope with a 1003 objec-

tive, and image processing was done using AxioVision (Zeiss) software.

Images of mating cells were captured, and only large budded zygotes were

quantified. Vacuoles were scored as fused if overlap between red and green

signals was observed in the zygotic bud. Vacuoles were quantified as not

fused if they remained fragmented in the zygotic bud, and the red and green

signals had no appreciable overlap. Quantification is expressed as the

percentage of total cells in each strain scored as fused or not fused and was

performed in three or more independent experiments. SDs are shown. See

additional method details in the Supplemental Experimental Procedures.

Live-Cell Imaging

Live-cell imaging of haploid cells in Figures 1 and S1 was performed by

growing strains overnight in synthetic dextrosemedia to select for the plasmid.

Cells were back-diluted in synthetic dextrose media to an OD600 of 0.5. Expo-

nentially growing cells were collected by centrifugation at 3,000 rpm for 30 s

and resuspended in 100 ml of water for imaging. Vacuole morphology in Fig-

ures 1 and S1 was quantified in 300 cells over 3 different days and categorized

into one to three vacuoles, four to six vacuoles, and seven or more vacuoles,

and SD is indicated. All live-cell images were acquired on a Zeiss Axioplan 2

fluorescence microscope with a 1003 objective, and image processing was

done using AxioVision software.

Rescue of Vacuole Morphology by AVP

Cells were prepared for imaging by overnight growth in synthetic dextrose

media (-Leu-Ura) and dilution to an OD600 of 0.5 in YEPD plus ClonNat. Cells

were grown to an OD600 of 1–1.5 and visualized using fluorescence micro-

scopy. Quantification of vacuole morphology was performed by counting cells

in each indicated category (one to three vacuoles, four to six vacuoles, and

seven or more vacuoles) from images taken on 2 different days with Zeiss

AxioVision software. Numbers of cells in each category are shown as a

percentage of the total number of cells counted, and the SD is indicated.

Vacuolar pH Measurements

Vacuolar pH was measured using the ratiometric pH indicator dye BCECF

(20,70-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) (Life Technologies)

as described by Diakov et al. (2013). Data were collected using a FluoroLog-3

spectrofluorometer and FluorEssence software (HORIBA). See additional

method details in the Supplemental Experimental Procedures.
Developme
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