assumption of impractical unlimited vaccine supply, we developed a generalized methodology based on dynamic stochastic model using the flow of limited vaccine supply to the individuals between two mutually exclusive subgroups (e.g. different age groups or different risk groups) in order to examine the long term impact of different vaccination policies on overall health outcomes from the whole population. In this model, both age dependency and seasonality in FOI were explicitly considered. This study aims to answer two key questions: 1) what is the best vaccination strategy in order to attain maximal quantitative post-vaccination health benefits among two subpopulations? and 2) how different structures of age-specific FOI's influence our selection on the vaccinated population? Most of the time, one needs to have various parameter values in the models targeting spreading of infectious diseases in populations which cannot be estimated accurately. Therefore, a series of scenarios with different FOI's, demographic structures, vaccine efficacy and other model parameters were used in our simulation studies using this stochastic age-structured framework. In summary, our study dynamically acquired both important biomedical and mathematical implications by successfully analyzing the current mass vaccination strategy, evaluating the impact of different prevention and intervention options served as an accurate basis for outcome research that may facilitate further cost-effectiveness analysis.

CONCEPTUAL PAPERS & RESEARCH ON METHODS – Patient-Reported Outcomes Studies

PMCS4

SENSITIVITY OF 15D, EQ-SD AND SF-6D TO DIABETES COMPLICATIONS: THE CASE OF CORONARY HEART DISEASE

Karnasowska-Vaskaita E1, Borchert Z2, Contet C3, De Baets B3, Doku Non
1Hellenic Open University, Patras, Greece, 2Ag. Varvara Health Centre, Heraklion, Crete, Greece, 3Maratzeio General Hospital, Kozani, Greece

OBJECTIVES: Diabetes Mellitus (DM) patients typically suffer from comorbid conditions and thus, health-related quality of life (HRQoL) is difficult to assess. Therefore, validated and tested methods to complete the assessment of HRQoL in this population are necessary. The aim of this study was to analyse the sensitivity of three different preference-based instruments: 15D, EQ-5D, and SF-6D to diabetes complications.

RESULTS: A total of 92 DM patients were included in the study. All participants were measured with ETB (Electronic Telefonic Base) system. This system allowed collecting data in a shorter time period than in a traditional way. Pearson's correlations were calculated between the instruments and the percentage of patients with CHD, which was estimated at 31.99. The regression model indicated a utility crossover at 31.99. The regression model indicated a utility crossover point at 31.99 and predicted that individuals with a utility score less than this would score higher on the SF-6D than on the EQ-5D, and vice versa. The regression model was calculated at 31.99. CONCLUSIONS: The results indicated that the correlation is very low and the correlation is not statistically significant. The results indicated that the correlation is very low and the correlation is not statistically significant. The results indicated that the correlation is very low and the correlation is not statistically significant.