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Osteoprogenitor cells contribute to the development andmaintenance of skeletal tissues. Bats are unique model
taxa whose cellular processes are poorly understood, especially in regards to skeletal biology. Forelimb bones of
bats, unlike those of terrestrial mammals, bend during flight and function in controlled deformation. As a first
step towards understanding the molecular processes governing deposition of this flexible bone matrix, we pro-
vide the first method for isolation and differentiation of cell populations derived from the bonemarrow and cor-
tical bone of bats, and compare results with those harvested from C57BL/6J mice. Osteogenic capacity of these
cells was assessed via absolute quantitative real-time PCR (qPCR) and through quantification of in vitro mineral
deposition. Results indicate the differentiated bone cells of bats display significantly lower gene expression of
known osteogenic markers (Runt-related transcription factor (RUNX2), osteocalcin (BGLAP) and osterix (SP7)),
and deposit a less-mineralizedmatrix comparedwithmurine controls. By characterizing the in vitro performance
of osteoprogenitor cells throughout differentiation andmatrix production, this study lays the ground work for in
vitromanipulations of bat stem and osteoprogenitor cells and extends our understanding of the cellular diversity
across mammals that occupy different habitats.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Osteoprogenitor cells are ubiquitous,multipotent stromal cells capa-
ble of differentiating into multiple cellular lineages [e.g. osteoblasts (re-
sponsible for secretion of the extracellular bone matrix) and osteocytes
(mature bone cells)], and replenish existing local cell populations
(Pittenger et al., 1999; Rahaman and Mao, 2005; Krampera et al.,
2006; Maxson et al., 2012; Lee et al., 2013). Their self-renewal and im-
munosuppressive properties contribute to their importance in the de-
velopment and maintenance of various tissue types (Nombela-Arrieta
et al., 2011; Lee et al., 2013) and their growing potential as therapeutic
agents in the field of regenerative medicine (Paquet-Fifield et al., 2009;
Williams and Hare, 2011; Maxson et al., 2012; Voswinkle et al., 2013;
Reinders and Hoogdujin, 2014).

Cell populations derived from mammalian bone marrow were first
isolated from N40 years ago (Friedenstein et al., 1970), and since then
marrow cells have been successfully cultured from awide variety of tis-
sue sources and from an increasing number of species (e.g., Pittenger et
ussa@neomed.edu
.orman@downstate.edu
r@neomed.edu (L.N. Cooper).
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al., 1999; Erices et al., 2000; Zvaifler et al., 2000; Zuk et al., 2001;
Hatzistergos et al., 2010; Nardi and Camassola, 2011; Baer and Geiger,
2012). Protocols for differentiating osteoprogenitor cell populations
into osteoblasts, have been well characterized in model organisms (i.e.
mice, rats, and guinea-pigs) (e.g., Caplan, 1991; Pereira et al., 1995;
Bruder et al., 1997; Jaiswal and Haynesworth, 1997; Franceschi, 1999).
The process of differentiation requires three steps: 1) commitment to
the osteoblast lineage, 2) proliferation of the committed cells and, 3)
committed cell maturation into matrix-secreting osteoblasts
(Yamaguchi et al., 2000). Many questions remain regarding the extent
of naturally occurring variation in osteoprogenitor cell biology found
in alternative species (e.g., Friedenstein et al., 1970; Pittenger et al.,
1999; Di Nicola et al., 2002; Nardi and Camassola, 2011). This study
characterizes the in vitro performance of differentiated osteoprogenitor
cells of the only flyingmammals, bats, and therefore extends our under-
standing of mammalian cellular diversity.

Bats are the only mammals capable of powered flight. The forelimb
wing bones of bats are compliant and capable of withstanding the con-
trolled deformations produced during wingbeats (Swartz and
Middleton, 2008; Lucas et al., 2014). Gene and protein sequences of
mice and bats share high levels of homology [e.g., bat FGF8 demon-
strates a 97% amino acid sequence conservation the laboratory mouse
(Cretekos et al., 2007)]. As a result, past studies have focused on
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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characterizing spatiotemporal variations in expression of key limb de-
velopment genes (e.g., fibroblast growth factor 8 (FGF8), bonemorpho-
genic protein 2 (BMP2), sonic hedgehog (SHH) and HOXD13) during
wing development (Minina et al., 2001; Sun et al., 2002; Yoon and
Lyons, 2004; Chen et al., 2005; Sears et al., 2006; Cretekos et al., 2007;
Pajni-Underwood et al., 2007; Cretekos et al., 2008; Behringer et al.,
2009; Rasweiler et al., 2009; Cooper and Sears, 2013 and Wang et al.,
2014). Beyond characterizing gene expression, some studies have also
characterized in vitro performance of organs and fibroblasts (De Luca
et al., 2001; Minina et al., 2001; Moratelli et al., 2002; Sears, 2007 &
Weatherbee et al., 2006). However, the osteoprogenitor and/or stem
cells of bats have yet to be studied in a culture system. This study docu-
ments the methods necessary for assays of bat stem cells and may lay
the foundation for future comparative studies to delineate unique cellu-
lar properties of skeletal development and maintenance in bats.

This study augments existing in vivo molecular methods for the
study of stem cells by providing a protocol for the isolation and osteo-
genic differentiation of bone marrow and cortical bone-derived cells
harvested from two bat taxa: Seba's short-tailed bat (Carollia
perspicillata) and the big brown bat (Eptesicus fuscus). Carollia is frugiv-
orous, while Eptesicus is insectivorous. Our overall goal was to compare
the in vitro performance of cells harvested from the cortex andmarrow
of the forelimb bones of male bats to those harvested from the same
bones of male C57BL/6J laboratory mice selected for its well-document-
ed and relatively low bone-mass skeletal phenotype compared to other
strains (Beamer et al., 1996; Halloran et al., 2002 and Ferguson et al.,
2003).We first isolated cells populations from the cortex and marrow
to compare species-specific proliferation rates. After inducing osteogen-
ic differentiation, we harvested cells at three time points (Days 7, 14,
and 21) to assess the composition of the extracellular matrix as well
as quantify expression levels of genes known to play a role in minerali-
zation of that matrix including bone-specific alkaline phosphatase
(ALPL), osterix (SP7), osteonectin (ON), Runt-related transcription
factor 2 (RUNX2), osteocalcin (BGLAP), and osteoprotegrin (OPG).
Results showed that bats and mice shared similar proliferation
rates. In vitro, the cells of bats differed compared to cells of C57BL/6J
mice by producing a less mineralized extracellular matrix, and signifi-
cantly decreasing expression of RUNX2, osteonectin, osteocalcin and
osterix. Taken together, results suggest the differentiated osteoblasts
of bats and mice differ in expression of several genes essential for min-
eral deposition.
Fig. 1. Protocol for the successful isolation and osteogenic differentiation of osteoprogenitor ce
mice.
2. Methods

2.1. Isolation and culture of bat osteoprogenitor cells from bone marrow

The Cooper laboratory at Northeast Ohio Medical University
(NEOMED; Rootstown, Ohio) maintains colonies of Seba's short-tailed
bat (Carollia perspicillata), the big brown bat (Eptesicus fuscus), and
C57BL/6J laboratory mice. Carollia breed well in captivity and were
transferred from a colony at SUNY Downstate maintained by Drs.
Mark Stewart and Rena Orman (Rasweiler and Badwaik, 1996).
Eptesicus were originally transferred from a colony maintained by Dr.
Ellen Covey at the University ofWashington. To avoid complications as-
sociated with pregnancy-related bone-loss, this study focused onmales
only. Radii were obtained post-mortem from four week old C57BL/6J
mice (n = 4). Only adult Carollia (n = 2) and Eptesicus (n = 2) were
used as known-aged pups were unavailable for both taxa. Cell popula-
tions containing osteoprogenitor cells from bonemarrowwere isolated
using previously published protocols (Safadi et al., 2002; Abdelmagid et
al., 2007; Moussa et al., 2014). In brief, surrounding tissues were re-
moved and epiphyses of radii were severed with sterile razor blades
(Fig. 1). Marrow was flushed with basal growth media consisting of
Minimum Essential Medium (MEM) Alpha Medium (Corning Cellgro)
with 10% FBS (ThermoScientific), 1% penicillin-streptomycin (Corning
Cellgro) and 0.1% Amphotericin B (Corning Cellgro). Supernatant was
removed after marrow flush and centrifuged at 1200 rpm at 4 °C for
12 min. Cells were re-suspended in basal growth medium and plated
in a 100 mm cell culture dish incubated in humidified incubator at
37 °C with 5% CO2. Adherent cells were cultured for an additional 7–
10 days until confluent with fresh media being added every third day.

2.2. Isolation and culture of bat osteoprogenitor cells from cortical bone

Radii were isolated andmarrow flushed as described above. Cortical
bonewas then crushed anddiced into 2–5mmpieces and digestedwith
a buffered Collagenase B (Roche) medium (PBS, 0.1% Collagenase B,
0.25% FBS) at 37 °Cwith horizontal shaking for 50min. The supernatant
was collected and filtered through a 70 μm cell strainer (Fisher Scientif-
ic) (Fig. 1). Remaining bone fragments were rinsed twice with washing
buffer (PBS, 0.25% FBS) and the supernatants collected as described
above and pooled. Cells were centrifuged at 1200 rpm at 4 °C for
12 min. Cell pellets were then re-suspended in 10 ml of basal growth
lls located in the marrow (A) or cortex (B) of radii from two species of bats and C57BL/6J



Table 2
Accession numbers of Eptesicus fuscus and Carollia perspicillata sequences used for valida-
tion of designed qPCR primers.

Gene Taxon Accession numbers

Alkaline phosphatase (ALPL) Eptesicus fuscus KX218235
Carollia perspicillata KX218236

Osterix (SP7) Eptesicus fuscus KX228246
Carollia perspicillata KX228247

Runt-related transcription
factor 2 (RUNX2)

Eptesicus fuscus KX218249
Carollia perspicillata KX218250

Osteoprotegerin (OPG) Eptesicus fuscus KX218247
Carollia perspicillata KX218248

Osteonectin (ON) Eptesicus fuscus KX218245
Carollia perspicillata KX218246

Osteocalcin (BGLAP) Eptesicus fuscus KX218237
Carollia perspicillata KX218238

Table 1
Gene and species-specific qPCR primers.

Gene Primer Sequence (5′-3′) Amplicon size (bp) Function

Alkaline phosphatase (ALPL) Alp 490F GTGACTACCACTCGGGTGAAC 95 Indicator of early bone formation.
Alp 585R CTCTGGTGGCATCTCGTTATC

Osterix (SP7) Sp7 28F ATGGCGTCCTCCCTGCTTG 113 Osteoblast differentiation; bone formation
Sp7 141R TGTTGTTGAGTCCCGCAGAG

Runt-related transcription factor 2 (RUNX2) RUNX2 127F CCAACCGAGTCATTTAAGGCT 206 Osteoblast differentiation.
RUNX2 333R GCTCACGTCGCTCATCTTG

Osteoprotegerin (OPG) OPG 95F ACCCAGAAACTGGTCATCAGC 156 Osteoclast differentiation.
OPG 251R CTGCAATACACACACTCATCACT

Osteonectin (ON) ON 728F ACCTGGACTACATCGGACCA 194 Cell proliferation; cell-ECM interaction.
ON 922R CCAGGCGCTTCTCATTCTCA

Osteocalcin (BGLAP) BGLAP 74F CCAGTGGTGCAGAGTCTGAG 189 Inorganic ECM formation.
BGLAP 263R ATGTGGTCAGCCAGTTCGTC
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medium and incubated in a humidified incubator at 37 °C with 5% CO2.
Non-adherent cells were removed after 24 h, and adherent cells were
cultured for an additional 5–7 days, with fresh basal growth medium
added every third day, until cells became confluent.

2.3. Differentiation of osteoprogenitor cells

Once confluent, osteoprogenitor cells of both species harvested from
bonemarrow and cortical bonewere passaged. Plateswere treatedwith
trypsin EDTA (Corning Cellgro) in PBS and incubated at 37 °C with 5%
CO2 until adherent cells began to detach. Trypsin was then deactivated
with the addition of 10 ml of basal growth medium (MEM Alpha medi-
um with 10% FBS (ThermoScientific), 1% penicillin-streptomycin
(Corning Cellgro) and 0.1% Amphotericin B (Corning Cellgro)) and cen-
trifuged at 1200 rpm at 4 °C for 12 min. Cell pellets were then re-
suspended in 10ml of basal growthmediumand countedusing a hemo-
cytometer. Cells were plated in 24-well cell culture plates (cell density
of 5 ×103 cells/cm2 (Baer and Geiger, 2012)), incubated at 37 °C with
5% CO2 and allowed to adhere overnight. The basal growth medium
was then removed and replaced with osteogenic medium (OM; basal
growth medium supplemented with 0.1 μM dextamethasone (Sigma
Aldrich), 10 mM β-glycerophosphate (Sigma Aldrich) and 50 μg/ml
ascorbic acid (Fisher Scientific; Fig. 1). Cells were incubated in a humid-
ified incubator as described above with fresh OM provided every third
day until termination on Days 7, 14 and 21 (Safadi et al., 2002;
Abdelmagid et al., 2007; Moussa et al., 2014; Fig. 1).

2.4. Cell proliferation assay

Cell proliferation was examined by DNA synthesis cell proliferation
method using CyQUANT® NF Cell Proliferation Assay Kit (Invitrogen).
Cell populations from bat and mouse marrow and cortical bone were
plated in 96-well plates at a density of 1000 cells per well and allowed
to grow under the conditions of 37 °C with 5% CO2 for 24 and 48 h.
Cell proliferationwas assessedwith the CYQUANT®kit (Invitrogen) fol-
lowing manufacturer recommended protocols for adherent cells. Brief-
ly, growth medium was removed and cells were incubated with 100 μl
of the dye binding solution (22 μl of Dye in 10 ml 1X HBSS buffer) at
37 °Cwith 5%CO2 for 1 h. Fluorescence intensitywasmeasured at an ex-
citation wavelength of 485 nmwith emission at 530 nm using a BioTek
plate reader.

2.5. Mineral staining

Matrixmineralizationwas assessedwith Von Kossa and Alizarin Red
methods. Von Kossa and Alizarin Red stains identified mineral deposits
in the osteoprogenitor cell-secreted extracellular matrix (Wang et al.,
2006). For Alizarin Red staining, cells were fixed with formalin (Fisher
Scientific) for 1 h. Cells were washed twice with dH2O and incubated
with a 10% Alizarin Red solution (2 g per 100ml, pH 4.2; Sigma Aldrich)
in the dark for 2–5 min. The Alizarin Red solution was aspirated, cells
were rinsed three times with dH2O and a treated with a final wash
with 1% sterile PBS (Amresco®). Alizarin Red stained wells were rinsed
twice more with dH2O and imaged. Cells stained using Von Kossa were
fixed with formalin as described above and washed three times with
dH2O. Cells were then incubated for 45 min under UV light in a 5%
AgNO3 solution (Fisher Scientific). Silver nitrate solution was then aspi-
rated and the cells washed three times with dH2O. Von Kossa stain was
developed using 5% Na2CO3 (in 10% formalin; Fisher Scientific) solution
for 4min and the cells were rinsed twicewith dH2O. The stainwas fixed
with 5% Na2S2O3 (Fisher Scientific) for 2 min and the cells rinsed twice
with dH2O. Images of Alizarin Red and Von Kossa stained cells were
taken on a Nikon Eclipse Ti microscope with NIS Element software
(Nikon).

2.6. RNA extractions and qPCR analysis

Differentiated osteoprogenitor cells harvested from cortex and bone
marrow of bats andmice were terminated at Days 7, 14 and 21 and im-
mediately fixed in RNAlater® (Ambion) and stored at −80 °C. Total
RNA was isolated under RNAse-free conditions (RNAse OUT™,
GBiosciences) following recommended TRI-Reagent® (Ambion) proto-
cols with Turbo DNA-free™ treatment (Ambion). RNAs were quantified
with a Nanodrop® 2000c spectrophotometer (Nanodrop) and integrity
assessed using an ethidium bromide stained 1% agarose gel. cDNA and
no reverse transcriptase controls were synthesized following recom-
mended protocols for the High Capacity cDNA Reverse Transcription
kit (Applied Biosystems) and products normalized to 50 ng total RNA.

Concentrations of osteoblast-specific mRNA target genes alkaline
phosphatase (ALPL), osterix (SP7), osteonectin (ON), Runt-related tran-
scription factor 2 (RUNX2), osteocalcin (BGLAP), and osteoprotegerin
(OPG) were amplified from synthesized Carollia, Eptesicus and C57BL/
6J mouse culture cDNAs using in-house designed gene-specific primers
and quantified via qPCR analyses (Tables 1 and 2). All target genes dem-
onstrated nucleotide sequence homology of 95% or greater between
species. Although relative quantitative real-time PCR (qPCR) is the



Fig. 2. Cells harvested from cortices of all species proliferate faster in vitro compared to
those from bone marrow. Proliferation rates of cortex and marrow osteoprogenitor cells
from Carollia (black), Eptesicus (grey) and C57BL/6J (white) radii, measured by
CYQUANT® dye fluorescence.
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traditionalmethod for analyzing gene expression variation, known fluc-
tuations in housekeeping gene expression, sample rarity, and difficulties
evaluating across species make this method of analysis unreliable
(Thellin et al., 1999; Bustin, 2002; Fernandes et al., 2008). Here, we em-
ploy validated absolute qPCR techniques utilizing gene-specific
Fig. 3. Cells harvested from bats express significantly lower numbers of transcripts of key osteo
andmarrow of Carollia (black), Eptesicus (grey) and C57BL/6J (white) radii. mRNA expression w
(RUNX2), C) osteocalcin (BGLAP), D) osteonectin (ON), E) bone-specific alkaline phosphatase
p ≤ 0.05) compared to C57BL/6J control.
standard curves which permit comparisons of transcript copy number
within an individual and across species (Ball et al., 2013). All qPCR reac-
tions were run in triplicate on an ABI 7900-HT system (Applied
Biosystems)with no reverse transcriptase and primer controls using
SYBR® Select Mastermix for CFX (Applied Biosystems).

2.7. Statistical analyses

Gene-specific dilution curves and linear regression equations were
generated for each target gene and utilized in analyses of bat target
gene expression. Significance of threshold cycle (Ct) values and com-
parisons of copy number expression were calculated using analysis of
variance calculations (ANOVA) and Wald and Wolfowitz tests (Wald
and Wolfowitz, 1940). Amplification efficiency was calculated for all
standard curve assays (Yuan et al., 2007). Percent area fraction analyses
for Von Kossa were performed using ImageJ associated software (NIH),
where data are presented asmean± SEM and p ≤ 0.05 (Schneider et al.,
2012).

3. Results

3.1. Osteoprogenitor cells of bats and mice proliferate at approximately the
same rate

Differences in cell proliferation of cortical- and marrow-derived cell
populations were assessed at the same passage. No species-specific dif-
ferences in proliferation rate were detected in samples derived from
genic markers than those of mice. qPCR analyses of differentiated osteoblasts from cortex
as assessed at Days 7, 14 and 21 for A) osterix (SP7), B) Runt-related transcription factor 2
(ALPL) and F) osteoprotegerin (OPG). Dashed lines denote significant differences (where
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cortical bone (CB, p=0.711) ormarrow (BM, p=0.553). However, dif-
ferences were seen in the proliferation rates between cortical andmed-
ullary derived cells across all taxa. Proliferation rate of cortical bone (CB)
osteoprogenitor cells was significantly greater (Carollia p = 0.0386;
Eptesicus p = 0.0374; C57BL/6J p = 0.0411) than those derived from
bone-marrow (BM, Fig. 2) across all samples.
3.2. Osteoprogenitor cells of bats display significantly lower transcripts of
matrix related genes

Expression levels of matrix related genes in marrow-derived cells
that were plated to a final concentration of 5 x 10(Ball et al., 2013)
cells per well were assessed at three termination time points (Days 7,
14, and 21). No species-specific differences were found in expression
of matrix related genes in these marrow-derived cells until Day 14
(Fig. 3). Absolute qPCR assays at Day 7 showed no significant species-
specific differences, and transcript numbers were the lowest of the
three termination points (ALPL p = 0.703, SP7 p = 0.694, ON p =
0.218, RUNX2 p= 0.667, BGLAP p = 0.361, OPG p= 0.471; Fig. 3). Fur-
thermore, no significant differences were seen in the expression of
bone-specific alkaline phosphatase (ALPL; Day 14 p = 0.668 and Day
21 p = 0.901) and osteoprotegerin (OPG; Day 14 p = 0.633 and Day
21 p = 0.597) in bone marrow derived cells of bats and mice of in all
three sample times (Fig. 3). At Day 14, species-specific differences in ex-
pression were not seen in osteocalcin (BGLAP, p = 0.296) and
osteonectin (ON, p = 0.407). Significant differences in expression of
these two genes was seen at Day 21 (BGLAP, p = 0.042 and ON, p =
0.038; Fig. 3) with higher transcript levels detected in mice. At Days
14 and 21 significantly lower transcript numbers were detected in the
cells harvested from bats and mice in both osterix (SP7, p = 0.047 and
p=0.0481, respectively) and RUNX2 (p=0.043 and p=0.036, respec-
tively; Fig. 3).
Fig. 4.VonKossa stain andAlizarin Red staining of extracellularmatrixmineralization indicate a
at 10×, of Von Kossa (A; black indicative of phosphate and calciumdeposition) andAlizarinRed
differentiated osteoblasts of mice compared to those of bats. ImageJ analysis quantified percen
species (Carollia, black; Eptesicus, grey and C57BL/6J, white). Data presented as mean + SEM w
Similarly expression of cortical-bone derived cells (CB) differed be-
tween species began at 14 days in some matrix-related genes, and
was most pronounced at 21 days. At Day 7 no species-specific differ-
ences in expression were detected (ALPL p = 0.618, Sp7 p = 0.602, ON
p = 0.341, RUNX2 p = 0.611, BGLAP p = 0.220, OPG p = 0.371). Spe-
cies-specific differences in transcript levels were not found between
bone-specific alkaline phosphatase (ALPL) or osteoprotegrin (OPG) on
Day 14 (p = 0.510 and p = 0.302, respectively) or Day 21 (p = 0.490
and p = 0.419, respectively; Fig. 3). Although transcript numbers of
osteocalcin (BGLAP) and osteonectin (ON) lacked significant differences
Day 14 (p = 0.359 and p = 0.407, respectively), results showed signif-
icant differences were detected in both at Day 21 (BGLAP p=0.031, ON
p = 0.026; Fig. 3). At Day 21, the differentiated osteoblast of bats
displayed significantly lower transcript numbers relative to C57BL/6J
murine controls at Days 14 and 21 in both SP7 (p = 0.041 and p =
0.040, respectively) and RUNX2 (p=0.045 and p=0.045, respectively;
Fig. 3). Taken together, these data suggest expression associated with
mineral deposition in osteoprogenitor cells of bats is reduced compared
to that of our murine controls.

3.3. Of bats secrete a less mineralized matrix relative to those of C57BL/6J

Osteoprogenitor-derived osteoblasts secreted mineralized nodules
across all samples (Fig. 4A). At Day 14 same-passage cultures, mineral-
ized nodules were visualized using Von Kossa and Alizarin Red stains.
The number and size of stained nodules were then compared between
taxa. At Day 14, the C57BL/6J-derived cells (controls) showed signifi-
cantly greater numbers and sizes of mineralized nodules compared to
both species of bats, regardless of cite of origin (e.g., marrow, p =
0.031; cortical, p=0.043; Fig. 4A). Area fractions of Alizarin Red stained
mineral deposits of mouse-derived osteoprogenitor cells were also sig-
nificantly greater than those of both species of bats, regardless of cite of
origin (marrow, p = 0.043; cortical, p = 0.046; Fig. 4B).
t Day 14 bats deposit a lessmineralizedmatrix compared tomice. Photomicrographs, taken
(B; red indicative of calciumdeposition) staining showmore intense staining formineral in
t area fraction for each stain based on three independently sampled experiments of each
ith dashed line denoting p ≤ 0.05 when compared to same day C57BL/6J controls.



Fig. 5. Bats and mice differ in expression of osteoblast markers and extracellular matrix mineralization. Transcript copy numbers of known osteogenic markers are significantly lower
(indicated in red) in bats compared to mouse controls and correlate with a reduction in matrix mineralization demonstrated by 10× magnification photomicrograph of Von Kossa
stained Day 14 same passage cultures.
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4. Discussion

Methodologies exist for the isolation, cultivation and differentiation
of mammalian osteoprogenitor cells from a variety of tissue types and
with methods best known for murine cells. However, study of
osteoprogenitor and other stem cell types from alternative species
may provide vital information regarding naturally occurring variation
in cell biology and their ability for adaptation under novel conditions.
Bats provide a unique model for just such an examination. While ex
vivo studies have limitations, they permit the growth of cell populations
and characterization of stem cell biological function. Here, we provide
the first known method for the isolation and osteogenic differentiation
of cell populations from the cortical bone and bonemarrow of bats, and
characterize how proliferation rates, osteogenic gene expression, and
mineral deposition vary compared to a murine control.

Our method for osteoprogenitor cell culture is similar to protocols
for mice (Meirelles and Nardi, 2003; Soleimani and Nadri, 2009; Nardi
and Camassola, 2011; Abdelmagid et al., 2014; Fig. 1). Marrow and cor-
tex-derived cell populations of bats and mice shared similar prolifera-
tion rates. However, proliferation was greater in cells harvested from
cortical bone of bats compared to mice (Fig. 2). Histological staining
and quantification of mineral deposition showed cells harvested from
bats deposited significantly less mineral compared to murine controls,
with the lowest amount deposited by bone marrow-derived bat cells
(Fig. 4). Significantly lower transcript numbers of genes associated
with bone formation (ALPL and SP7), osteoblast and osteoclast differen-
tiation (RUNX2,OPG and SP7) and extracellularmatrix formation and in-
teraction (BGLAP and ON) were detected in bats-derived cells relative to
murine controls (Stein and Lian, 1993; Yao et al., 1994; Bailey et al.,
1999; Delany et al., 2000; Harada and Rodan, 2003; Byers and García,
2004; Tai et al., 2004; Cao et al., 2005; Gregory et al., 2005; Stiehler et
al., 2009; Zhang et al., 2009; Gramoun et al., 2010; Korostishevsky et
al., 2012; Masrour Roudsari and Mahjoub, 2012; Sardiwal et al., 2012;
Sroga and Vashishth, 2012; Pekovits et al., 2013; Koide et al., 2013;
Krӓmer et al., 2014; Krege et al., 2014; Fig. 3). These differences in
gene expression were associated with a less mineralized extracellular
matrix in bats (Fig. 5). Deposition of a lessmineralized extracellularma-
trix, even in vitro, is suggestive of intrinsic, naturally occurring differ-
ences in the auto-regulation of bat osteoprogenitor cell function and
performance. These physiological differences suggest regulation of
osteoprogenitor cell matrix synthesis differs in bats compared to mice.

The wing bones of bats, including the radius studied here, are elon-
gated, complaint bones (Papadimitriou et al., 1996; Swartz, 1997;
Swartz and Middleton, 2008; Bergou et al., 2015). The proximal fore-
limb elements of bats, relative to terrestrial mammals such asmice, dis-
play thinner cortices and the greatest mineral content compared to
distal elements (Papadimitriou et al., 1996; Dumont, 2010; Cooper
and Sears, 2013). These modifications in length, mineral concentration
and extracellular matrix may increase flexibility and create specialized
skeletal microenvironments. It may be that the unusually flexible
bones of bats impart uniquemicro-loads on constituent osteoprogenitor
and stem cells, as documented in other taxa, e.g., rodents, etc. (Gilbert et
al., 2010; Miller et al., 2015). Surprisingly, even in a 2D culture system
with equivalent treatments and lacking the stressors associatedwith lo-
comotion, our study shows the performance of osteoprogenitor cells
harvested from bats differed significantly from mice both in their gene
expression patterns and matrix production. Taken together, these re-
sults suggest that the osteoprogenitor cells of bats display different
autoregulation of matrix secretion, compared to that of mice, regardless
of microenvironment. Until now, the methods required for the study of
bat osteoprogenitor cell activity and/or cell-cell interactions in a culture
systemwere unknown. This study establishes a protocol to successfully
isolate anddifferentiate osteoprogenitor cells frombat cortical bone and
bone marrow.

Furthermore, this study also partially lays the foundation for broader
comparative studies of the molecular cross-talk between bone cells
(osteoclasts, osteoblasts). Imbalances in osteoblast and osteoclast
crosstalk lead to imbalanced cell activity that ultimately negatively im-
pacts skeletal health, integrity and repair (Sims and Martin, 2014;
Weivoda et al., 2015). Some of these imbalances are associated with
senescence-related changes that negatively impact osteoprogenitor
and stem cell differentiation rates and decrease stem cell populations
leading to age-related skeletal fragility (Muraglia et al., 2000; Janzen
et al., 2006; Raggi and Berardi, 2012; Yu and Kang, 2013). Our results
suggest that osteoprogenitor cells of bats are intrinsically different
from mice in their biology and performance. Future work may extend
to quantifying similar characteristics in the hematopoietic stem cells
(HSCs) of bats and mice, and therefore allow for comparative studies
of age-specific bone cell cross-talk. Results may provide novel insights
into potential therapeutic targets for human age-related skeletal disor-
ders including osteoporosis, etc.
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