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a b s t r a c t

This paper studies the M/M/1 machine repair problem with working vacation in which
the server works with different repair rates rather than completely terminating the
repair during a vacation period. We assume that the server begins the working vacation
when the system is empty. The failure times, repair times, and vacation times are all
assumed to be exponentially distributed. We use the MAPLE software to compute steady-
state probabilities and several system performance measures. A cost model is derived to
determine the optimal values of the number of operatingmachines and twodifferent repair
rates simultaneously, and maintain the system availability at a certain level. We use the
direct search method and Newton’s method for unconstrained optimization to repeatedly
find the global minimum value until the system availability constraint is satisfied. Some
numerical examples are provided to illustrate Newton’s method.

© 2009 Published by Elsevier B.V.

1. Introduction

There aremany studies on themachine repair problemswith vacation policy in different frameworks in recent years. But,
to the best of our knowledge, there has been no research that explores machine repair problems combined with working
vacation. In most queueing systems with single/multiple vacations considered in the literature, it is assumed that a server
stops working completely during vacation periods. In this paper, we consider a more general case so that the server can
work at a different repair rate during the vacation period.
We consider the M/M/1 machine repair problem with working vacation in which the server works with different repair

rates rather than completely terminating the repair during a vacation period. Such a vacation has been referred to as the
working vacation (WV) (Servi and Finn [1]). The server begins a working vacation of random length when the system
becomes empty. When a working vacation is over and the system is empty, the server starts another working vacation.
Whenever the server returns from aworking vacation and finds that the system is not empty, the server switches to another
repair rate.
Wang [2] used a recursive method to develop steady-state analytic solutions to the M/M/1 machine repair problemwith

two types of server breakdowns. Wang and Kuo [3] considered the M/Ek/1 machine repair problems with a non-reliable
server. They constructed a profit model to determine the optimum number of operating machines at a maximum profit.
Recently, Wang et al. [4] used the direct search with steepest decent method to find the global maximum value of the
profit function until the availability, balking, and reneging constraints are satisfied. Gupta [5] examined theM/M/1machine
interference problem with warm spares and server vacations with exhaustive service. Gupta [5] proposed an algorithm
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to calculate the steady-state probability distribution of the number of failed machines in the system, and then obtained
the results of various system performance measures. Jain et al. [6] used the recursive method to investigate the bilevel
control policy for themachine repair model withwarm standbys and two repairmen. Machine repair problems and vacation
queueingmodels have been studied by several researchers. It is well known that the queueing systemwith server vacations
is useful tomodel a system inwhich the server has additional task during a vacation. Ke [7] considered themachine inference
problem under two vacation policies with an unreliable server and state-dependent service rate. A comprehensive survey
on the machine interference problem, including vacation model, was examined by Haque and Armstrong [8]. Recently, Ke
andWang [9] applied the matrix-geometric method to derive steady-state solutions for the M/M/Rmachine repair problem
under two vacation policies with two types of spares.
Queueing models with working vacation have been studied by many researchers. For models involving server vacations,

Doshi [10] first conducted a survey on vacation queueing models. The GI/M/1 queues with server vacations have been
analyzed by several authors, such as Chatterjee andMukherjee [11], Karaesmen andGupta [12], and Tian [13–15]. Chatterjee
and Mukherjee [11] investigated GI/M/1 queue with server vacations and exhaustive service discipline. Chatterjee and
Mukherjee [11] utilized the embeddedMarkov chain technique to obtain the steady-state probability distributions of queue
length at pre-arrival and at randomepochs, respectively. Karaesmen andGupta [12] developed the queue length distribution
at arrival and random epochs for a finite capacity GI/M/1 queue with server vacations. Karaesmen and Gupta [12] also
presented heuristic algorithms to calculate the blocking probability. Tian [13–15] analyzed theGI/M/1 queueing systemwith
a single exponential vacation, phase-type vacations, and exponential vacations, respectively. Fuhrmann and Cooper [16]
investigated the M/G/1 queue with generalized vacations, and they demonstrated that the M/G/1 decomposition property
holds. Lee [17] used a combination of the supplementary variable and sample biasing techniques to analyze the M/G/1/N
queue with vacation and exhaustive service discipline. Servi and Finn [1] first introduced the concept of the working
vacation and investigated theM/M/1 queueingmodel with working vacation. Baba [18] studied GI/M/1 queuewithmultiple
working vacations which extended the Servi and Finn model. For the finite capacity GI/M/1/WV queue with multiple
working vacations, Banik et al. [19] derived the system size distributions at pre-arrival and at arbitrary epochs, the blocking
probability and the mean waiting time in the system. Further, Wu and Takagi [20] extended M/M/1/WV queue to an
M/G/1/WV queue. Li et al. [21] examined the GI/M/1 queue with two policies: working vacations and vacation interruption.
The main results in Li et al. [21] are to develop the mean queue length and the mean waiting time by using the matrix
analysis method.
The main objectives of this paper are the following:

(1) apply an efficientMAPLE program to compute the steady-state probabilities and various system performancemeasures;
(2) develop the expected cost function per machine per unit time to determine the joint optimal values ofM , µv and µB at
minimum cost until the system availability constraint is satisfied;

(3) use the direct search method and Newton’s method for unconstrained optimization to find the global minimum value
until the system availability constraint is satisfied.

2. The machine repair model

We consider a machine repair model withM identical operating machines which are maintained by a single repairman.
It is assumed that each of the operating machines fails according to a Poisson process with parameter λ. Each of the
operating machines fails independently of the state of the others. When the system is empty, the server begins a working
vacation, and the vacation duration follows an exponential distribution with mean duration 1/η. When a working vacation
terminates and the system is empty, the server starts another working vacation. Repair times during a vacation period
are according to exponential distribution with mean 1/µv . Repair times during a normal busy period are according to
exponential distribution with mean 1/µB. When an operating machine fails, it is immediately sent to a repair facility where
it is repaired in the order of their breakdowns; that is the first-come, first-served discipline. Failed machines arrive at the
server from a single waiting line. The repairman can repair only one machine at a time and the failed machines have to wait
in the queue until the repairman is free.

3. Steady-state results

We consider an M/M/1 machine repair problem with working vacation. The server works with different repair rates
rather than completely terminates repair service during a normal busy period, and the server begins a working vacation
with mean duration when the system is empty. We first set up the steady-state equations and then use an efficient MAPLE
program to calculate the steady-state probability.

3.1. Steady-state equations

The states of the system are presented by pairs {(i, n)|i = 0, 1; n = 0, 1, 2, . . . ,M}, where i = 0 denotes that the server
is on working vacation, i = 1 denotes that the server is on the normal busy period, and n is the number of failed machines
in the system. We define the following steady-state probabilities as follows:
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Fig. 1. State transition rate diagram for the M/M/1 machine repair problem with working vacation.

P0(n) ≡ probability that there are n failed machines in the system when the server is on working vacation, n =
0, 1, 2, . . . ,M .
P1(n) ≡ probability that there are n failed machines in the system when the server is on normal busy period, n =

1, 2, . . . ,M .
Relating to Fig. 1, steady-state equations of the machine repair model are given by

MλP0(0) = µBP1(1)+ µvP0(1), (1)
[(M − n)λ+ µv + η]P0(n) = (M − n+ 1)λP0(n− 1)+ µvP0(n+ 1), 1 ≤ n ≤ M − 1 (2)
(µv + η)P0(M) = λP0(M − 1), (3)
[(M − 1)λ+ µB]P1(1) = µBP1(2)+ ηP0(1), (4)
[(M − n)λ+ µB]P1(n) = (M − n+ 1)λP1(n− 1)+ µBP1(n+ 1)+ ηP0(n), 2 ≤ n ≤ M − 1 (5)
µBP1(M) = λP1(M − 1)+ ηP0(M). (6)

3.2. Matrix-geometric solutions

A matrix-geometric method is used to analyze the problem further as there is no way of solving (1)–(6) in a recursive
manner to develop the closed-form expressions for the steady-state probabilities P0(n) and P1(n), where n = 0, 1, 2, . . . ,M .
We will implement the matrix-geometric method to simplify the computation of the stationary probabilities in the
following.
The corresponding transition rate matrix Q of this Markov chain has the block-tridiagonal form:

Q =



B̂0 Ĉ0
Â1 B1 C1

A2 B2 C2
A2 B3 C3

. . .
. . .

. . .

A2 BM−1 CM−1
A2 BM


.

The rate matrix Q of this state process is similar to the quasi-birth and death type, and this class of Markov process has been
extensively studied by Neuts [22]. Each element of the matrix Q is listed in the following:

Â1 =
[
µv
µB

]
, A2 =

[
µv 0
0 µB

]
B̂0 = −Mλ, Bn =

[
−(M − n)λ− µv − η η

0 −(M − n)λ− µB

]
, for 1 ≤ n ≤ M,

Ĉ0 = [Mλ, 0], Cn =
[
(M − n)λ 0
0 (M − n)λ

]
= (M − n)λI, for 1 ≤ n ≤ M − 1,

where A1 is a matrix of order 1× 2, Ĉ0 is a matrix of order 2× 1, I is the identity matrix of order 2, A2, Bn(1 ≤ n ≤ M) and
Cn(1 ≤ n ≤ M − 1) are square matrices of order 2.
Let P be the corresponding steady-state probability vector of Q. By partitioning the vector P as P = {P0, P1, P2, . . . ,

PM−1, PM}, where P0 = P0(0) is a nonnegative real number and Pn = {P0(n), P1(n)}, (1 ≤ n ≤ M) is a row vector of
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dimension 2. By solving the steady-state equations PQ = 0, it follows that

P0̂B0 + P1̂A1 = 0,
P0Ĉ0 + P1B1 + P2A2 = 0
Pn−1Cn−1 + PnBn + Pn+1A2 = 0, for 2 ≤ n ≤ M − 1
PM−1CM−1 + PMBM = 0.

Thus, we obtain after routine substitutions:

PM = −PM−1CM−1B−1M = PM−1XM , (7)

Pn = Pn−1Xn, for 2 ≤ n ≤ M − 1, (8)

P1 = −P0Ĉ0(B1 + X2A2), (9)

P0(̂B0 − Ĉ0(B1 + X2A2)̂A1) = 0, (10)

where Xn = −(M − n + 1)λ(Bn + Xn+1A2)−1, 2 ≤ n ≤ M − 1 are square matrices of order 2. Furthermore, we have
XM = −λB−1M .
The limitation part for the proposed approach is that the matrix BM must be nonsingular, that is, the determinant of BM

is not equal to zero. Therefore, the following inequalities must satisfy the proposed approach:

µV + η 6= 0,
µB 6= 0.

Eq. (10) determines P0 up to a multiplicative constant. The other Eqs. (7)–(9) determine PM , PM−1, . . . , P2, P1, up to the
same constant, which is uniquely determined by the following normalizing equation

P0(0)+
K∑
n=1

Pne = 1,

where e is a column vector with each component equal to one. We can solve P0(0), Pn and Pj(n) for j = 0, 1 and 1 ≤ n ≤ M
by using the computer software MAPLE.

4. System performance measures

We define the following system performance measures of the machine repair problem with working vacation.
E[N0] ≡ the expected number of failed machines in the system when the server is on working vacation.
E[N1] ≡ the expected number of failed machines in the system when the server is on normal busy period.
E[N] ≡ the expected number of failed machines in the system.
E[O] ≡ the expected number of operating machines in the system.
MA ≡machine availability (the fraction of the time that the machines are working).
OU ≡ operative utilization (the fraction of the busy repairman).
The expressions for E[N0], E[N1], E[N] and E[O] are obtained as follows:

E[N0] =
M∑
n=1

nP0(n), (11)

E[N1] =
M∑
n=1

nP1(n), (12)

E[N] = E[N0] + E[N1] =
M∑
n=1

n[P0(n)+ P1(n)], (13)

E[O] = M − E[N0] − E[N1] = M −
M∑
n=1

n[P0(n)+ P1(n)]. (14)

The machine availability and the operative utilization are defined as:

MA = 1−
E[N]
M
=
E[O]
M
= 1−

1
M

M∑
n=1

n[P0(n)+ P1(n)], (15)

OU = 1− P0(0). (16)
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Table 1
The machine availabilityMA and the operative utilization OU (µv = 1, µB = 2, η = 0.3).

MA OU
M/λ 0.1 0.2 0.3 0.1 0.2 0.3

1 0.919 0.850 0.790 0.081 0.150 0.210
2 0.914 0.835 0.765 0.160 0.289 0.393
3 0.908 0.819 0.737 0.235 0.414 0.547
4 0.903 0.802 0.710 0.307 0.524 0.670
5 0.900 0.785 0.683 0.376 0.619 0.764
6 0.892 0.767 0.657 0.440 0.699 0.833
7 0.885 0.750 0.634 0.500 0.765 0.884
8 0.879 0.733 0.612 0.556 0.818 0.921
9 0.872 0.716 0.590 0.608 0.860 0.947
10 0.865 0.700 0.568 0.655 0.894 0.966
11 0.858 0.683 0.545 0.697 0.921 0.979
12 0.850 0.667 0.520 0.736 0.942 0.988
13 0.843 0.649 0.493 0.771 0.959 0.993
14 0.835 0.630 0.466 0.802 0.971 0.997
15 0.828 0.610 0.440 0.829 0.981 0.998

Table 2
The machine availabilityMA and the operative utilization OU (µv = 1, µB = 2, λ = 0.2).

MA OU
M/η 0.1 0.2 0.3 0.1 0.2 0.3

1 0.839 0.845 0.850 0.160 0.155 0.150
2 0.821 0.829 0.835 0.310 0.298 0.289
3 0.799 0.810 0.819 0.447 0.428 0.414
4 0.775 0.791 0.802 0.567 0.543 0.524
5 0.749 0.770 0.785 0.671 0.641 0.619
6 0.722 0.750 0.767 0.755 0.722 0.699
7 0.695 0.729 0.750 0.821 0.787 0.765
8 0.670 0.710 0.733 0.870 0.838 0.818
9 0.647 0.692 0.716 0.906 0.878 0.860
10 0.627 0.675 0.700 0.931 0.908 0.894
11 0.611 0.659 0.683 0.949 0.932 0.921
12 0.597 0.644 0.667 0.962 0.950 0.942
13 0.586 0.630 0.649 0.972 0.964 0.959
14 0.576 0.614 0.630 0.980 0.974 0.971
15 0.566 0.597 0.610 0.986 0.983 0.981

We choose µv = 1, µB = 2, η = 0.3, vary the number of operating machines M from 1 to 15, and vary the failure rate
λ from 0.1 to 0.3. We observe from Table 1 that (i) the machine availability MA decreases as M increases; (ii) the machine
availabilityMA decreases as λ increases ; (iii) the operative utilization OU increases asM increases ; and (iv) the operative
utilization OU increases as λ increases.
We select µv = 1, µB = 2, λ = 0.2, vary the number of operating machines M from 1 to 15, and vary the working

vacation rate η from 0.1 to 0.3. From Table 2, we find that (i) the machine availabilityMA decreases asM increases; (ii) the
machine availability MA increases as η increases; (iii) the operative utilization OU increases as M increases; and (iv) the
operative utilization OU decreases as η increases.

5. Cost analysis

We first develop a steady-state expected cost function per machine per unit time for the M/M/1machine repair problem
with working vacation, in which three decision variablesM, µv , and µB are considered. The discrete variableM is required
to be a natural number, and the continuous variables µv and µB are positive numbers. Our main objective is to determine
the optimum number of operating machines M , say M∗ and the optimum value of repair rate (µv, µB), say (µ∗v, µ

∗

B), so as
to minimize this function.

5.1. Cost function

Let Av denote the probability that at least one machine is operating, and A0 represent the minimum fraction of one
machine is operating. We select the following cost elements:
C0 ≡ cost per unit time per failed machine in the system when the server is on working vacation,
C1 ≡ cost per unit time per failed machine in the system when the server is on normal busy period,
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Table 3
The expected cost F(M, µv, µB) for λ = 0.4, 0.5, 0.6.

λ/M 3 4 5 6 7 8 9 10 11

0.4 89.2 71.9 62.4 56.8 53.6 52.0 51.4 51.5 52.2
0.5 92.8 76.2 67.5 62.8 60.5 59.8 60.1 61.1 62.5
0.6 96.3 80.5 72.6 68.7 67.3 67.4 68.3 69.9 72.0

Table 4
The expected cost F(M, µv, µB) for η = 0.4, 0.6, 0.8.

η/M 3 4 5 6 7 8 9 10 11

0.4 92.7 76.1 67.3 62.5 60.1 59.3 59.5 60.4 61.9
0.6 92.6 75.9 67.0 62.1 59.6 58.6 58.7 59.5 61.0
0.8 92.5 75.8 66.8 61.8 59.1 58.0 58.1 58.9 60.3

C2 ≡ fixed cost for every repair rate of the working vacation,
C3 ≡ fixed cost for every repair rate of the normal busy period.
Using the definitions of these cost elements listed above, the total expected cost function per machine per unit time is

given by

F(M, µv, µB) =
C0E[N0] + C1E[N1] + C2µv + C3µB

M
. (17)

The cost minimization problem can be presented mathematically as

Minimize
M,µv,µB

F(M, µv, µB)

Subject to: Av ≥ A0.
The cost parameters in (17) are assumed to be linear in the expected number of the indicated quantity, and it would

have been a hard task to develop analytic results for the optimum value (M∗, µ∗v, µ
∗

B) because the expected cost function is
highly non-linear and complex. We first use the direct search method to find the optimal value of the number of operating
machines M, say M∗ when µv and µB are fixed. Next, we fix M∗ and use Newton’s method to find the optimal value of
(µv, µB), say (µ∗v, µ

∗

B).

5.2. Direct search method

SinceM is a discrete variable,weusedirect substitution of successive values ofM into the cost functionuntil theminimum
value of F(M, µv, µB), say F(M∗, µv, µB) is achieved and the constraint Av ≥ A0 is satisfied. The following numerical results
are provided by considering cost parameters as follows:

C0 = $100/day, C1 = $150/day, C2 = $50/day, C3 = $15/day.

The cost minimization problem can be illustrated mathematically as

F(M∗, µv, µB) = Minimize
M

F(M, µv, µB)

Subject to: Av ≥ A0.

We first fix A0 = 0.9, (µv, µB) = (3, 5), η = 0.3, vary the number of operating machines M from 3 to 11, and choose
different values of λ = 0.4, 0.5, 0.6.We observe from Table 3 that a minimum expected cost per day (a) of $51.4 is achieved
atM∗ = 9 for λ = 0.4, (b) of $59.8 is achieved atM∗ = 8 for λ = 0.5, (c) of $67.3 is achieved atM∗ = 7 for λ = 0.6. Fig. 2
depicts the various values of λ on (i) the expected cost F(M, µv, µB), and (ii) the optimal number of operating machines
Mto be assigned to the server.
Next, we fix A0 = 0.9, (µv, µB) = (3, 5), λ = 0.5, vary the number of operating machines M from 3 to 11, and choose

different values of η = 0.4, 0.6, 0.8. We can see from Table 4 that a minimum expected cost per day (a) of $59.3 is achieved
atM∗ = 8 for η = 0.4, (b) of $58.6 is achieved atM∗ = 8 for η = 0.6, (c) of $58.0 is achieved atM∗ = 8 for η = 0.8. Fig. 3
plots the different values of η on (i) the expected cost F(M, µv, µB), and (ii) the optimal number of operating machinesMto
be assigned to the server.
Moreover, the minimum expected cost F(M, µv, µB) and the values of the system performance measures Av ,

E[N0], E[N1], E[O], MA and OU, at the optimum values M∗are shown in Table 5 for different values of (λ, η). From Table 5,
we find that (i) F(M∗, µv, µB) increases as λ increases or η decreases; (ii) M∗ decreases as λ increases; and (iii) η rarely
affectsM∗ when λ is fixed.
The minimum expected cost F(M, µv, µB) and the values of the system performance measures Av , E[N0], E[N1], E[O],

MA and OU, at the optimum values M∗ are shown in Table 6 for different values of (µv, µB). It appears from Table 6 that
(i) F(M∗, µv, µB) decreases as µv or µB increases; and (ii)M∗ increases as µv or µB increases.



K.-H. Wang et al. / Journal of Computational and Applied Mathematics 233 (2009) 449–458 455

λ =0.4

λ =0.5

λ =0.6

η   = 0.3
μ

V
 = 3.0

μ
B
 = 5.0

20

40

60

80

100

120

F(
M

,μ
v,μ

B)

0

140

3 4 5 6 7 8 9 10 11

M

Fig. 2. The expected cost F(M, µv, µB) for λ = 0.4, 0.5, 0.6.

η =0.4

η =0.6

η =0.8

λ   = 0.5
μ

V
 = 3.0

μ
B
 = 5.0

55

60

65

70

75

80

85

90

95

3 4 5 6 7 8 9 10 11

M

50

100

F(
M

,μ
v,μ

B)

Fig. 3. The expected cost F(M, µv, µB) for η = 0.4, 0.6, 0.8.

Table 5
System performance measures of the machine repair problem with working vacation (µv = 3, µB = 5).

(λ, η) (0.4, 0.3) (0.5, 0.3) (0.6, 0.3) (0.5, 0.4) (0.5, 0.6) (0.5, 0.8)

M∗ 9 8 7 8 8 8
F(M∗, µv, µB) 51.36 59.78 67.29 59.30 58.58 58.05
Av 0.9997 0.9987 0.9961 0.9995 0.9993 0.9995
E[N0] 1.575 1.654 1.633 1.463 1.190 1.004
E[N1] 0.531 0.586 0.551 0.687 0.831 0.927
E[O] 6.893 5.761 4.815 5.850 5.979 6.069
MA 0.766 0.720 0.688 0.731 0.747 0.759
OU 0.795 0.825 0.830 0.814 0.798 0.785

Table 6
System performance measures of the machine repair problem with working vacation (λ = 0.5, η = 0.3).

(µv, µB) (1.5, 4.0) (2.0, 4.0) (2.5, 4.0) (3.0, 4.5) (3.0, 5.0) (3.0, 5.5)

M∗ 6 6 7 8 8 9
F(M∗, µv, µB) 65.70 63.46 61.91 60.27 59.78 59.60
Av 0.9810 0.9907 0.9964 0.9987 0.9987 0.99904
E[N0] 1.718 1.472 1.494 1.581 1.654 1.958
E[N1] 0.583 0.490 0.660 0.710 0.586 0.720
E[O] 3.700 4.038 4.846 5.709 5.761 6.321
MA 0.617 0.673 0.692 0.714 0.720 0.702
OU 0.860 0.813 0.827 0.832 0.825 0.864
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Table 7
Newton-Quasi method in searching the optimal solution (λ = 0.6, η = 0.3).

No. of Iterations 0 1 2 3 4

F(M∗, µv, µB) 67.2914 66.7762 66.7758 66.7758 66.7758
Av 0.99608 0.99804 0.99807 0.99807 0.99807
M∗ 7 7 7 7 7
µv 3.0 3.613186 3.628003 3.628037 3.628037
µB 5.0 5.192347 5.180117 5.180171 5.180171

Table 8
Newton-Quasi method in searching the optimal solution (λ = 0.5, η = 0.3).

No. of iterations 0 1 2 3 4

F(M∗, µv, µB) 63.4587 62.1104 62.1029 62.1029 62.1029
Av 0.99907 0.99651 0.99671 0.99671 0.99671
M∗ 6 6 6 6 6
µv 2.0 2.765030 2.821053 2.821766 2.821766
µB 4.0 4.135571 4.086191 4.087125 4.087126

Table 9
Newton-Quasi method in searching the optimal solution from Table 5 (µv, µB) = (3.0, 5.0).

(λ, η) (0.4, 0.3) (0.5, 0.3) (0.5, 0.4) (0.5, 0.6) (0.5, 0.8)

M∗ 9 8 8 8 8

F(M∗, µv, µB) 51.3592 59.7780 59.2983 58.5765 58.0530
Av 0.99973 0.99873 0.99897 0.99928 0.99945
No. of iteration 4 3 4 5 5
A∗v 0.99993 0.99960 0.99953 0.99932 0.99883
µ∗v 3.8565 3.8551 3.5758 2.9520 2.2037
µ∗B 5.1508 5.2854 5.6086 6.0890 6.4337
F(M∗, µ∗v, µ

∗

B) 50.3936 58.8005 58.6625 57.8100 56.4284

A∗v is the value of Av after iterations.

5.3. Newton’s method

We fix M∗ and use Newton’s method for unconstrained optimization to globally search (µv, µB) until the minimum
value of F(M∗, µv, µB), say F(M∗, µ∗v, µ

∗

B) and the constraint Av ≥ A0 is satisfied. The cost minimization problem can be
illustrated mathematically as

F(M∗, µ∗v, µ
∗

B) = Minimize
µv,µB

F(M∗, µv, µB) (18)

Subject to: Av ≥ A0.

The steps of Newton’s method for unconstrained optimization can be described as follows:

1. Set i = 0, and−→µi = [µv, µB]T.
2. Set the initial trial solution for−→µi , and compute F(−→µi ), where µv > 0 and µB > 0.
3. Compute the cost gradient

−→
∇ F(−→µi ) = [∂F/∂µv, ∂F/∂µB]T|−→µi and the cost Hessian matrix

H(−→µ ) =
[
∂2F/∂µ2v ∂2F/∂µv∂µB

∂2F/∂µB∂µv ∂2F/∂µ2B

]
.

4. Find the new trial solution−→µ i+1 =
−→µi − [H(−→µ )]−1

−→
∇ F(−→µi ).

5. Set i = i+ 1 and repeat steps 3–4 until Av ≥ A0 and Max(|∂F/∂µv|, |∂F/∂µB|) < ε, where ε = 10−7 is the tolerance.
6. Find the global minimum value F(−→µi ) = F(µ∗v, µ

∗

B).

Two examples are provided to illustrate the above optimization procedure shown in Tables 7 and 8, respectively. We
first use the results in Table 5, that is, we choose (λ, η) = (0.6, 0.3), and select the initial trial solution (M∗, µv, µB) =
(7, 3.0, 5.0)with initial value F(M∗, µv, µB) = 67.29. Applying Newton’s method, we see from Table 7 that after only four
iterations, the minimum expected cost converges at this solution (µ∗v, µ

∗

B) = (3.628037, 5.180171) with value 66.7758.
Next, we utilize the results in Table 6, that is, we fix (λ, η) = (0.5, 0.3), and choose the initial trial solution (M∗, µv, µB) =
(6, 2.0, 4.0) with initial value F(M∗, µv, µB) = 63.46. By using Newton’s method, we obtain from Table 8 that after only
four iterations, theminimumexpected cost converges at the solution (µ∗v, µ

∗

B) = (2.821766, 4.087126)with value 62.1029.
In addition,we also provide other numerical results fromTables 5 and 6 by usingNewton’smethod shown in Tables 9 and 10,
respectively. From Tables 9 and 10, it is obvious that the expected cost can be reduced essentially by using Newton’smethod.
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Table 10
Newton-Quasi method in searching the optimal solution from Table 6 (λ = 0.5, η = 0.3).

(µv, µB) (1.5, 4.0) (2.5, 4.0) (3.0, 4.5) (3.0, 5.0) (3.0, 5.5)

M∗ 6 7 8 8 9
F(M∗, µv, µB) 65.6958 61.9104 60.2714 59.7780 59.5969
Av 0.98104 0.99640 0.99867 0.99873 0.99904
No. of iteration 4 4 4 3 4
A∗v 0.99671 0.99885 0.99960 0.99960 0.99986
µ∗v 2.8218 3.3387 3.8551 3.8551 4.3709
µ∗B 4.08713 4.6897 5.2854 5.2854 5.8754
F(M∗, µ∗v, µ

∗

B) 62.1029 60.2975 58.8005 58.8005 57.5318

A∗v is the value of Av after iterations.
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Fig. 4. Plot of F(M∗, µv, µB) for λ = 0.6, η = 0.3,M∗ = 7.
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Fig. 5. Plot of F(M∗, µv, µB) for λ = 0.5, η = 0.3,M∗ = 6.

We finally vary the values of µv and µB, consider two cases: (1) M∗ = 7, (λ, η) = (0.6, 0.3); (2) M∗ = 6, (λ, η) =
(0.5, 0.3), and the values of µv and µB range from 1.0 to 15.0. The numerical results of F(M∗, µv, µB) for the two cases are
depicted in Figs. 4 and 5. The global minimum values F(M∗, µv, µB) for cases 1–2 are shown in Figs. 4 and 5, respectively.

6. Conclusions

In this paper, we considered the M/M/1 machine repair problems with working vacation, in which the server remains
working with different repair rates rather than completely terminating the repair during a vacation period. We first
established the steady-state equations and applied a matrix-geometric method to derive the steady-state probabilities.
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Various system performance measures, such as the expected number of failed machines, the expected number of operating
machines, machine availability, and operative utilization, were also calculated. We then developed the expected cost
function per machine per unit time to determine the joint optimal values ofM ,µv andµB at minimum cost until the system
availability constraint is satisfied. In addition, we used the direct search method and Newton’s method for unconstrained
optimization to determine the optimal values (M∗, µ∗v, µ

∗

B), which satisfy the system availability constraint.
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