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Let M be a linear manifold in H, OH,, where H, and H, are Hilbert spaces. 
Two notions of least-squares solutions for the multi-valued linear operator equation 
(inclusion) y E M(x) are introduced and investigated. The main results include (i) 
equivalent conditions for least-squares solvability, (ii) properties of a least-squares 
solution, (iii) characterizations of the set of all least-squares solutions in terms of 
algebraic operator parts and generalized inverses of finear manifolds, and (iv) best 
approximation properties of generalized inverses and operator parts of multi-valued 
linear operators. The principal tools in this investigation are an abstract adjoint 
theory, orthogonal operator parts, and orthogonal generalized inverses of linear 
manifolds in Hilbert spaces. 

1. INTRODUCTION 

Let M be a linear manifold in H, @ H,, where H, and H, are Hilbert 
spaces. We view M as a multi-valued linear operator (or as a linear relation) 
by taking M(x) := { y ( {x, y} E M}. The domain, range, and null space of M 
are defined, respectively, by 

DomM:= (xEH,/ {x,y}EMforsomeyEH,}, 

RangeM:={yEH,/ {x,y}EMforsomexEH,}, 

Null M := {x E H, ( {x, 0} E M). 
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In this paper, we introduce and investigate two notions of least-squares 
solutions (LSS) for the multi-valued linear operator equation (or inclusion) 

Y E M(x), 

where y E H, is given. If M(0) = {O}, then M is (the graph of) a single- 
valued linear operator from H, to H,. We are primarily interested in the 
situation when this is not the case. We shall refer to a “single-valued linear 
operator” simply as an “operator.” 

The main results which are developed in Section 3 include (i) equivalent 
conditions for least-squares solvability, (ii) characterizations of the set of all 
least-squares solutions in terms of algebraic operator parts and generalized 
inverses of multi-valued linear operators, (iii) properties of a least-squares 
solution, and (iv) best approximation properties of generalized inverses and 
operator parts for multi-valued mappings. The crucial tools in this 
development are an abstract adjoint theory (or adjoint subspaces), 
orthogonal operator parts and orthogonal generalized inverses of linear 
manifolds in Hilbert spaces. The essential aspects of these tools that are 
needed in the proofs are delineated in Section 2. 

Throughout this paper, H,, H,, and H, denote Hilbert spaces. The inner 
product in any of these spaces is denoted by ( , ) and the induced norm by 
j]. )I. The following are standard notations (see ] 1 I), but for convenience we 
define them. For any sets A, B c H, @ H, and Y c H, @ H, , 

~Y:={{~,YJEH,OH,I{~,~)EY,(Z,Y}E~}, 

wf := {{x,aY} I {X,Y} EA}, a E c:, 

A$B:=(a+b/aEA,bEB}, 

A+B:=({x,y+z)((x,y}EA,{x,z)EB}. 

The adjoint (subspace) of A c H, @ H, is defined by 

~*:={{Y,-~)E:H,OH,/(~,YJE~~J, 

where A’ denotes the orthogonal complement of A. Useful properties of 
adjoints of linear manifolds are: 

A** =AC 

@A)” = J./l’* 

where AC denotes the closure of A, 

for A E 6, 

(AB)” 1 B*A *, (A + B)* x.4” + B*. 
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2. OPERATOR PARTS OF SUBSPACES 

Let M be a vector space in H, @ H,, the (external) direct sum of two 
Hilbert spaces H, , H,. A vector space R c H, @ H, is called an algebraic 
operator part of M if R is the graph of a linear operator such that M is the 
(internal) algebraic direct sum of R and {O} 0 M(0). If an algebraic operator 
part is also (topologically) closed in H, 0 H,, then it is called an operator 
part. These concepts were introduced by E. A. Coddington, and have been 
extensively studied in [ 1, 31. (Recall that a vector space V is said to be the 
internal direct sum of subspaces S, and S, of V if every element u E V can 
be uniquely written as u = b1 + v2, where v, E S, and v2 E S,. In contrast, if 
Y, and V, are given vector spaces, then the vector space V of all ordered 
pairs (ui, vJ, where Vi E Vi, with the standard algebraic operations, is called 
the external direct sum of V, and V,. It is well known that if V is the 
internal direct sum of S, and S,, then V is isomorphic to the external direct 
sum of S, and S,. From now on we shall drop the adjectives “external” and 
“internal” for direct sums.) 

We next introduce a notation S,. Suppose that M(0) is closed in H, and 
let 9 denote the orthogonal projector from H, onto M(0). Then we define 

S, := ]graph(l-.Y)]M 

It is easy to check that S, is an algebraic operator part of M such that S,, is 
orthogonal to lo} 0 M(O), and Dom S,V = Dom IV, Range S,, = 
(Range M) f7 (M(O))‘. Moreover, S,,, is closed if and only if M is closed. We 
emphasize here that throughout this paper, the notation S,$, is reserved for 
the above algebraic operator part of M only when M(0) is closed. It is clear 
from the definition that S,, = AS, for any d f? II:. 

PROPOSITION 2.1. (1) Let A, B be vector spaces in fl, @ Hz, such that 
A(O), B(0) are closed. Then: (i) (A $ B)(O) = A(0) 4 B(0) + Range(S,, - S,). 
(ii) If (A $ B)(O) is closed, then 

S,+R={{g,(Z-.~)(SA(a)+S,(g-a)))(gEDomA$DomB 

andaEDomAsuchthatg-aEDomB}, 

where .9 is the orthogonal projector from H, onto (A i B)(O). (iii) If 
A(0) $ B(0) is closed, then 

S .1 +* = (mW - -4)(S, + se), 

where 2 is the orthogonal projector from H, onto (A + B)(O) = A (0) 4 B(0). 
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(2) Suppose that A c H, @ H, and B c H, @ H, are vector spaces 
such that A(O), B(0) are closed. Then: (i) (AB)(O) = A(0) $ S,(B(O)n 
Dom A), orthogonal sum. (ii) if (AB)(O) is closed, rhen 

S,,= {(g,(Z-Y)S,(S,(g)+k}jkEB(O)andgEDomB 

such that S,(g) + k E Dom A}, where .L? is the 

orthogonal projector from H, onto (AB)(O). 

Proof: Take x E (A $ B)(O). Then x = a, + b, for some a, such that 
{a,, a,} E A, (-a,, b,} E B. Since S, and S, are algebraic operator parts of 
A and B, respectively, it follows that a, = S,4(a,) + k, , 6, = -S,(a,) + k, for 
some k, E A(O), k, E B(0). Thus 

x = S,(a,) - S,(a,) + k, + k, E A(0) $ B(0) 4 Range(S, - S,). 

Hence 
(A $ B)(O) c A(0) $ B(0) 4 Range(S, - S,). 

It is easy to check that 

(A 4 B)(O) 3 A(0) $ B(0) $ Range(S, - S,). 

This proves (l-i). TO prove (ii) of (1) let .4 be as in the theorem. Then 

St,,,= {{g,V-.Wh)}/ {g,h)EA iB}. (*) 

Now (g,hJEA/Bifandonlyif 

gEDomA/DomB, h = S,(a,) + S,(b,) + k, + kz 

for some k, E A(O), k, E B(O), a, E Dom A, b, E Dom B such that 
a, + b, = g. Since A(0) $ B(0) c (A $ B)(O), (I - .P)(k, + k,) = 0. Thus (*) 
combined with the above argument proves (ii) of (I). We now prove (iii) of 
(I). Let .I? be as in the theorem. Then 

s .4tn = {k, V---W)\ I ig, hi EA + B\. (:I:*) 

Take (g,h}EAfB. Then gEDomAnDomB and h=p+q for some 
p,qsuchthat (g,p}EA, (g,q}EB. Let 

p=S,k)+k,, q = S,(g) + kz 

for some k, E A(O), k, E B(0). Then 

(I- -4(h) = U - .-4(s, + s,)(g) 

as k, + k, E (A + B)(O). This together with (*+) yields (iii) of (I). Part (2) 
can be proved in a similar way. m 
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DEFINITION. Let M c H, @ H, be a vector space such that Null M is 
closed. Let .P be the orthogonal projector from H, onto Null M, and .Jp ’ the 
orthogonal projector from H, onto Null M*. Let M- ’ be the inverse relation 
of M. Define a vector space M# by 

M’r := [graph(Z--.Y)] AC’[graph(Z-.Y’)]. 

Then M# is called the orthogonal generalized inverse of M. (If M is the 
graph of a closed densely defined linear operator, then M# is precisely the 
graph of the Moore-Penrose inverse of that operator.) 

The study of generalized inverses of multi-valued linear operators in 
Banach space was initiated by the authors in [3], where a comprehensive 
theory is developed with applications to differential subspaces and general 
boundary-value problems. In this paper, we will only need elementary 
properties of the orthogonal generalized inverse. It is proved in [ 3 ] that M# 
is a linear operator such that 

M# = S,+,_, i (Null M” @ {O}), direct sum, 

Dom W = Range M $ Null M*, 

Range W = Range S,-, = (Dom M) C’I (Null M)‘. 

Moreover, if M is closed, then M# is closed and (M#)* is the orthogonal 
generalized inverse of M*. Furthermore, when M is closed, M# is continuous 
if and only if Range M is closed. 

PROPOSITION 2.2. Let M c H, @ H, be a vector space such that Null M 
is closed. Let 9 and Y”+ be the orthogonal projectors from H, and H, onto 
Null M and Null M*, respectively. Then 

M@={(x,(I-,Y’)(x)+s}IsEM(O),xEDomM#}, 

WM= {{x,(Z-.P)(x)}]xEDomM}. 

ProoJ This can be found in [3 ]. m 

The preceding properties of generalized inverses of multi-valued linear 
operators should be contrasted with those in the case of an operator; see IS]. 
In particular, it should be noted from Proposition 2.2 that in the case when 
M(0) # {O), MW is not a single-valued orthogonal projector. 
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3. LEAST-SQUARES SOLUTIONS OF MULTI-VALUED 
LINEAR OPERATOR EQUATIONS 

DEFINITION. Let M c 23, 0 H, be an arbitrary given vector space. Let 
y E H,. Then u E H, is called a least-squares solution (LSS) of the inclusion 
y E M(x) if u E Dom M and 

4~~ Range W = II Y - z II 

for some z E M(u), where d(y, Range M) is the distance between y and 
Range M. 

Note that if such a z exists, then it is unique. Of course, u need not be 
unique. Also, if M is an operator, then the above definition coincides with 
the usual definition of a least-squares solution of an operator equation. 

PROPOSITION 3.1. [I] Let y E H,. Then the following statements are 
equivalent: 

(i) y E M(x) has a LSS. 
(ii) (1 -Y+)(y) E Range M, where .P+ is the orthogonal 

projector from H, onto Null M*. 

(iii) y E Null M* $ Range M. 

[II] Let y E H,. Then the following statements are equivalent: 

(i) y E M*(x) has a LSS. 
(ii) (I- .9)(y) E Range M*, where .P is the orthogonal projector 

from H, onto Null MC. 

(iii) y E Null MC $ Range M*. 

Proof. [I] Assume (i). Let u be a LSS of y E M(x). Then u E Dom M 
and d( y, Range M) = 11 y - z I(, z E M(u). Now d( y, Range M) = 
d( y, (Range M)C) = I/ y - (I- 9’ )(y)]]. It follows from the best approx- 
imation property of an orthogonal projection in Hilbert space that z := 
(I- ,P’) y E M(u). Thus, (i) implies (ii). Now assume (ii). Then 
(I-9+)y=z for some zERangeM. Thus, y=.4’(y)+zENullM*/ 
Range M, and so (ii) implies (iii). To prove that (iii) implies (i), let 
y=k+z, z E M(u) for some uE DomM, k E Null M*. Then 
d( y, Range M) = (I 9 + (y)]] = ]].P + (k)ll = ]I k\l = I] y - z/I. Thus u is a LSS. 
This completes the proof of [I]. Part [II] is the dual of [I]; it follows from it 
by replacing M by M* and by noting that M* * = MC. 1 

Remark. Note that Null M* 4 Range M is always dense in H,. It is 
closed if and only if Range M is closed. 

640/3X/4-7 
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PROPOSITION 3.2. Let .P and .Y’+ be as in Proposition 3.1. 

[I] Let y E H, be given. Then the following statements are 
equivalent: 

(i) u E H, is a LSS of y E M(x). 
(ii) u E Dom M and (I - ,P’)( y) E M(u). 

(iii) u E Dom M and y E M(u) 4 Null M*. 
(iv) u E Dom M and M(u) c y $ (Range M)‘. 

[II] Let y E H, be given. Then the following statements are 
equivalent: 

(i) u E H, and u is a LSS ofy E M*(x). 
(ii) u E Dom M* and (I - 9)(y) E M*(u). 

(iii) u E Dom M* and y E M*(u) $ Null M’. 
(iv) u E Dom M* and M*(u) c y $ (Range M*)‘. 

Proof: Assume (i). Then d(y, Range M) = /] y - z]] for some z E M(u) 
and hence y-z=.?‘(y). Thus, (I--.P’)(y)EM(u) and so (i) implies (ii). 
Assume (ii) holds. Since d( y, Range M) = (] y - (I- 9’ )(y)]] and 
(I- 9’)(y) EM(u), it follows that u is a LSS. Thus (ii) implies (i). It is 
clear that (ii) implies (iii). Also, since (Range M)‘= Null M*, (iii) implies 
(iv). Finally to show that (iv) implies (i), let k = z -y for some z E M(u), 
k E (Range M)‘. Then d(y,RangeM)=]],P+(y)((=](.P+(z-k)]]= 
(l9+(k)lJ = )I y - z/I. Th’ IS s h ows that u is a LSS and completes the proof of 
[I]. Again, part [II] is the dual of part [I]. I 

Remark. Suppose that M is an operator. If Dom M* = H,, or 
equivalently, MC is an operator and Dom M* is closed, then (I-iii) of 
Proposition 3.2 can be rewritten as follows: u is a LSS of Mx = y if and only 
if M*Mu = M*y, which is the usual “normal equation” characterization for 
a least-squares solution for, say, a bounded linear operator equation in 
Hilbert space. Of course, this characterization is false if Dom M* # H,. 

We now characterize the set of all least-squares solutions in terms of 
algebraic operator parts and generalized inverses of multi-valued linear 
operators. 

THEOREM 3.3. Assume that y E Range M $ Null M* and let 9”+ be the 
orthogonal projector from H, onto Null M*. Then we have the following: 

(1) (i) For any algebraic operator part R of M-‘, the coset 

R(I--9+)(y)/NullM 

is the set of all least-squares solutions of y E M(x). 
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(ii) if Null M is closed, then W(y) i Null M is the set of all least- 
squares solutions of y E M(x). 

(iii) Zf Null M is closed and y E Range M, then M#( y) $ Null M is 
the set of all solutions of y E M(x). 

(2) Assume that Null M is closed. Then 

(i) II M%)II < II u II f or all least-squares solutions u of y E M(x); 
equality holds only zf u = M#( y). 

(ii) Assume further that M(0) is closed. Then 

d(y, Range M) = II Y - S,,,fl( y) - -V - ST+ )(y)ll, 

where Y is the orthogonal projector from H, onto M(0). Moreover, the map 

on Dom M# into H, is continuous. 

Proof. (i) of (1). It follows from Proposition 3.2 that u is a least- 
squares solution of y E M(x) if and only if (u, (Z-Y+)(y)} E M, or 
equivalently, (Z - <P+)(y) E Range M and u = R(Z - ,9+)(y) + k for some 
k E Null M. Since y E Range M 4 Null M*, (I - 9’ )(y) E Range M = 
Dom R. Thus 

R(I- .P+)( y) $ Null M 

is the set of all least-squares solutions of y E M(x). 

(ii) of (1). Since Null M is closed, S,,,-, is an algebraic operator part 
of M-l. Thus by taking R as S,-, in (i), we see that 

is the set of all least-squares solutions. 
(iii) of (1). Since S,-, is an algebraic operator part of M- ‘, 

S,,,-,(y) $ Null M is the set of all solutions of y E M(x). Since y E Range M, 
y= (Z-Y+)(y). Thus 

and so W(y) $ Null M is the set of all solutions of y E M(x). 

(i) of (2). Let u be a least-squares solution of y E M(x). Then 
u = M#( y) + k for some k E Null M. Since M”(y) E (Null M)‘, it follows 
that 

11412 = II~(YII* + Ilkl12 2 IIM%I12~ 
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Suppose u is a least-squares solution of y E M(x) such that I( uI/ < IIM#(y)ll. 
We can write u as w(y) + k for some k E Null M. It follows that 
‘IyidJl + IlklIz G II~(Y)II 2, and so k = 0. Thus u = M#(y). This proves 
10 . 

(ii) of(2). Since M#( y) is a least-squares solution of y E M(x), 

d(y,RangeM)=lI~-sll 

for some s E M(M#(y)). S ince M(0) is closed, S,,, is an algebraic operator 
part of 44. Therefore, since {&F(y), s} E M, it follows that 

S,M#(s) = (I - L.?)(s), 

and hence 

s = S,W(s) + 9(s). 

On the other hand, by the best approximation property of an orthogonal 
projection in Hilbert space, s = (I - ,9’)(y). Hence, 

s = S,&,Jw+yy) + (I-Y+)(y). 

NOW, the map defined on Dom M# in the theorem is continuous as it 
coincides with the map x N (I - .P’)(x) on Dom M#. a 

Another generalization of the notion of a least-squares solution to the case 
of a multi-valued operator that seems natural is the following: Let g be a 
given element in Hz. An element u E H, is called an almost least-squares 
solution of gE M(x) if d(g, RangeM) = d(g,M(u)). Clearly both the 
concept of an almost LSS and LSS in the earlier sense reduce to the concept 
of LSS in the case of a (single-valued) operator. 

Suppose that S is a (nonclosed) dense vector space in H,. Define M := 
(0) @ S and take any g in H, such that g 6? S. Then Range A4 $ Null M* = 
S $ S’ = S. Thus by part [I] of Proposition 3.1 (or directly from the 
definition) g E M(x) has no least-squares solution. However, 

d(g, Range M) = dk, S) = d(g, M(O)), 

so that the zero vector is an almost least-squares solution of g E M(x). This 
example shows that the concepts of a least-squares solution and an “almost” 
least-squares solution are different, even though they agree in the case of a 
single-valued operator. In the following we will compare these two concepts 
more closely. 

THEOREM 3.4. Let g E H,, u E Dom M be given. Let R be an arbitrary, 
but fixed algebraic operator part of M. Then 
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(1) 4&wwd)=Ilg-w or some s E M(u) if and only if g - R(u) E 
M(0) $ (M(O))‘. Moreover, ifM(0) is closed, then it is always true that 

d(g, M(u)) = II g - s/I for some s E M(u). 

(2) Assume that g - R(u) E M(0) + (M(0))‘. Then 

9(g) + (I - -q R(u) E M(u), 

dk, M(u)) = II g - 9(g) - V - 3) R(u)ll> 

where 9 is the orthogonal projector from H, onto (M(O))‘. 

(3) Assume that M(0) is closed. Then 

T(g) + S,(u) E M(u), 

d(g, M(u)) = II g - T(g) - S&N, 

where 9 is the same as the above. 

Proof: (1) Let R be an arbitrary, but fixed algebraic operator part of 
M. Then for u E Dom M, 

M(u) = R(u) i M(0). 

It follows that 

d(g, M(u)) = II g - sll for some s E M(u) 

if and only if 

4g - R(u), M(O)) = 11 g - R(u) - kll (*) 

for some k E M(0). Define M, := {0) @ M(0). Then M(0) = Range M, . By 
Proposition 3.1, (*) holds for some k E M(0) if and only if g - R(u) belongs 
to 

Range M, $ Null(M,)* = M(0) $ (M(0))‘. 

This proves the first part of (1). To establish the last part, we choose R to be 

where .4?B is the orthogonal projector from H, onto M(0) which is closed by 
assumption. Then R(u) E (M(0))‘. It follows that g - R(u) E M(0) $ (M(O))- 
if and only if g E M(0) $ (M(0))L. 
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(2) Let 2 be as in the theorem. Then 

dk, Wu)) = 4g - R(u), M(O)) = IlV - -wg - W))ll 
= II g - 1-Q) + v - -;“I R(u>lll. 
=llg-RR(u)-kll 

for some k E M(0). Since such a k is unique, it follows that .9(g) - ;‘R(u) = 
k E M(0). Thus 

.2(g) + (I - 2) R(u) E R(u) i M(O) = M(u). 

(3) Since M(0) is closed, S,W is an algebraic operator part of M. Thus 
the result follows from (2) by replacing R by S,,, and noting that 
(I-.Y)S,=S,. 4 

COROLLARY 3.5. Let M c H, @ H, be a vector space and g E Hz. 

(1) If u is a least-squares solution of g E M(x), then u is an “almost” 
least-squares solution of g E M(x). 

(2) Assume that M(0) is closed. Then u is a least-squares solution of 
g E M(x) if and only ifit is an “almost” least-squares solution of g E M(x). 

Proof: (1) Suppose that u E Dom M and 

dk, Range M) = II g - z/I 

for some z E M(u). Since M(u) c Range M, d(g, Range M) < d(g, M(u)). 
Thus 

II g - 2 II = d(g, Range MI < dk, M(u)) < II g - z I/, 

and hence u is an “almost” least-squares solution of g E M(x). 

(2) Assume that 

d(g, Range M) = 4g, M(u)). 

Since M(0) is closed, by Theorem 3.4, d(g, M(u)) = I( g - zlj for some 
z E M(u). It follows that 

dk, Range W = II g - z IL z E M(u). 

Thus u is a least-squares solution of g E M(x). This together with the result 
of (1) completes the proof of (2). 1 

Some of the preceding results develop vector extremal properties (i.e., in 
terms of WY) of the orthogonal generalized inverse of MC H, @ Hz under 
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some mild assumptions. The authors have also obtained operator extremal 
properties of I’@, extending some of the results of [2] to multi-valued 
operators. These results will appear elsewhere. The authors have also 
investigated iterative and regularization methods for equations (or 
inclusions) involving nondensely defined and/or multi-valued linear 
operators in Hilbert spaces (see, e.g., [4]). 
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