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We present a new perturbative formulation of non-equilibrium thermal field theory, based upon non-
homogeneous free propagators and time-dependent vertices. The resulting time-dependent diagrammatic
perturbation series are free of pinch singularities without the need for quasi-particle approximation or
effective resummation of finite widths. After arriving at a physically meaningful definition of particle

number densities, we derive master time evolution equations for statistical distribution functions, which
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are valid to all orders in perturbation theory and to all orders in a gradient expansion. For a scalar
model, we perform a perturbative loopwise truncation of these evolution equations, whilst still capturing
fast transient behaviour, which is found to be dominated by energy-violating processes, leading to the

non-Markovian evolution of memory effects.

© 2013 Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

The description of out-of-equilibrium many-body field-theoretic
systems is of increasing relevance in theoretical and experimen-
tal physics at the density frontier. Examples range from the early
Universe to the deconfined phase of QCD, the quark-gluon plasma,
relevant at heavy-ion colliders, such as RHIC and the LHC as well as
the internal dynamics of compact astro-physical phenomena and
condensed matter systems.

In this Letter, we present the key concepts of a new pertur-
bative approach to non-equilibrium thermal quantum field theory,
where master time evolution equations for macroscopic observ-
ables are derived from first principles. A comprehensive exposition
of this new formulation is provided in [1]. In contrast to semi-
classical approaches based on the Boltzmann equation [2-9], this
new approach allows the systematic incorporation of finite-width
and off-shell effects without the need for effective resummations.
Furthermore, having a well-defined underlying perturbation the-
ory that is free of pinch singularities, these time evolution equa-
tions may be truncated in a perturbative loopwise sense, whilst
retaining all orders of the time behaviour. Several studies appeared
in the literature [10-40] proposing quantum-corrected transport
equations, based upon systems of Kadanoff-Baym equations [41],
functional renormalization group approaches [42] or expansion of
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the Liouville-von Neumann equation [43,44]. Whilst retaining all
orders in perturbation theory, the existing approaches often rely
on the truncation of gradient expansions [45,46] in time deriva-
tives, quasi-particle approximations or ad hoc ansaetze in order
to obtain calculable expressions or extract meaningful observables.
In this new perturbative formalism, the loopwise-truncated evolu-
tion equations are built from non-homogeneous free propagators
and time-dependent vertices. This diagrammatic approach encodes
both spatial and temporal inhomogeneity already from tree-level,
without resorting to any such approximations.

2. Canonical quantization

We begin by highlighting the details of the canonical quantiza-
tion of a real scalar field pertinent to a perturbative treatment of
non-equilibrium thermal field theory.

The time-independent Schrodinger-picture field operator, de-
noted by a subscript S, may be written in the familiar plane-wave
decomposition

. d? 1 - -
ds(x; t;) =/ (an; F(p)(as(l); fi)elp'x-i-az(l); te PX), (1)

where E(p) = +/p? + M2 and a];(p; t;) and as(p;f;) are the usual
single-particle creation and annihilation operators. It is essential
to emphasize that we define the Schrodinger, Heisenberg and in-
teraction (Dirac) pictures to be coincident at the finite microscopic

boundary time t;, i.e.

Ds(x; £j) = Pu(ti, X; t) = Di(ti, X; §). (2)
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It is at this picture-independent boundary time f; that initial con-
ditions must be specified. The dependence upon the boundary
time t; is separated from other arguments by a semi-colon.

The time-dependent interaction-picture operator &®;(x; f;) is ob-
tained via the unitary transformation

®y(x; ) = S 00—1) g x; Tyye~tHS o), 3)

where Hg is the free part of the Hamiltonian in the Schrodinger
picture. This yields

dp 1
(2m)3 2E(p)
+al (p, 0; Fp)elE@Xoe=iPX) (4)

Pi(x; b)) = (ar(p, 0; Ty)e~"FProelPx

where a;(p, Xo; fi) = ai(p, 0; {;)e~E®*0 and its Hermitian conjugate
are the time-dependent interaction-picture annihilation and cre-
ation operators. These operators satisfy the canonical commutation
relation

[ar(p. xo: 7). alT(D/, Xo: ti)]
= (27)*2E(@)3" (p —p)e” P00, (5)

with all other commutators vanishing. Note the presence of an
overall phase e E®®~%) iy (5) for xo # Xp.

In quantum statistical mechanics, we are interested in the
Ensemble Expectation Values (EEVs) of operators at a fixed mi-
croscopic time of observation t - Such EEVs are obtained by taking
the trace with the density operator p(tf; ), i.e.

(o) = Z7 1O Tr p(Ey; Ti)e, (6)

where Z(t) =Trp(ts; t;) is the partition function, which is time-
dependent in the presence of external sources. We have introduced
the macroscopic time t =t f —t;, which is the interval between the
microscopic boundary and observation times.

Consider the following observable, which is the EEV of a two-
point product of field operators:
oy, It =271 O Trpp; i@ Ep, x: s,y ). (7)
As shown in [1], it is not necessary to specify the picture in which
the operators of the RHS of (7) are to be interpreted, since all op-
erators are evaluated at equal times. In addition, the observable O
is invariant under simultaneous time translations of the bound-
ary and observation times and depends only on the macroscopic
time t: OX,y,&f; &) = ORX,y, i — £;;0) = OX,y, t). Notice that
O depends upon 7 independent coordinates: the spatial coordi-
nates x and y and the macroscopic time t.

The density operator ,o(ff; t;) of a time-dependent and spatially
inhomogeneous background is non-diagonal in the Fock space and
contains an intractable incoherent sum of all possible n to m multi-
particle correlations, see [1]. We may account for our ignorance of
the exact form of this density operator by defining the bilinear
EEVs

(@@, tr:tal (0, Er: B)), = @0)*2E@)® (p - p')
1 1 / ,
+2E2(PEZ(P)f(p. P, t),  (8a)
~ ~ ~ ~ 1 1
(@l (0, Ep: B)ar(p, Ef: T)), = 2E2(E2 (p) f (. ', 1) (8b)
consistent with the canonical commutation relation (5), where
fp,p',t) = f*@',p,t). The statistical distribution function

f(p,p’,t) is related to the particle number density n(q, X, t) via
the Wigner transform

d3 ‘
n(Q. X, t) = / ﬁe“le(quQ/Z, q-Q/2.0). 9)

Imt
#0) = & Cy
= — Ret
e .
2(1) — Ei*ie c 2(1/2) :. tf—16/2
macroscopic time t = ReZ(u) — t;
initial conditions: observation: }
macroscopic time t = 0 macroscopic time t = ty — t;

Fig. 1. The closed-time path, C = C; U C_. The relationship between microscopic
and macroscopic times is indicated by a dashed black arrow.

where we have introduced the relative and central momenta Q =
p—p and q = (p + p')/2, conjugate to the central and relative
coordinates X = (x +y)/2 and R = x —y, respectively. Observe
that spatial homogeneity is broken by the explicit dependence of
f(,p',t) on the two three-momenta p and p’. In the thermody-
namic equilibrium limit, we have the correspondence f(p,p’,t) —
fea®@, P) = 27)*% (p—p') fo(E(P)), where fp(x) = (e/* —1)""is
the Bose-Einstein distribution function and B is the inverse ther-
modynamic temperature.

3. Schwinger-Keldysh CTP formalism

We require a path-integral approach to generating EEVs for
products of field operators. Such an approach is provided by the
Schwinger-Keldysh CTP formalism [47,48].

In order to obtain a generating functional of EEVs, we insert
unitary evolution operators to the left and right of the density op-
erator in the partition function Z(t) =Tr p(f; £;), yielding

_ 4 - .
Z[p, Ju, ] =Ti[Te o X027 G 7))
% [Teifg[ d*x J+(x)<1>H<x)] (10)

in the Heisenberg picture, where £2; is the temporally-bounded
spacetime hypervolume [—t/2,t/2] x R3. We stress that (10) dif-
fers fundamentally from existing interpretations of the CTP formal-
ism [49,50]. Specifically, the Heisenberg-picture density operator
pH(ff;fi), which is explicitly time-dependent in the presence of
the external sources J., is evaluated at the time of observation ff
and not the initial time t;. In our approach, the role of the unitary
evolution operators is to enable us to generate EEVs for products
of field operators as given in (7) by functional differentiation with
respect to the external sources. The resulting EEVs are evaluated at
the time of observation.

We may interpret the evolution operators in (10) as defining a
closed contour C =C4 UC_ in the complex-time plane (t-plane,
t € C), as shown in Fig. 1, which is the union of two anti-parallel
branches: Cy, running from  to £y —i€/2; and C_, running from
tf —i€/2 back to f; — ie. A small imaginary part € = 0% is added
to separate the two, essentially coincident, branches. We may in-
troduce an explicit parametrization of this contour z(u) [1], where
u increases monotonically along C, which allows the definition of
a path-ordering operator T¢. We emphasize that, in our formalism,
this contour evolves in time, with each branch having length t.

Following the notation of [49,50], we denote fields confined to
the positive and negative branches of the CTP contour by @ (x) =
@ (x° € C4+,x). We then define the doublets

% (x) = (P1(x), P_(x)),
a(X) = Ny PP (%) = (P4(%), —P_ (%)),

(11a)
(11b)
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where the CTP indices a,b = 1,2 and nq, = diag(1,—1) is an
SO(1,1) ‘metric.’

Inserting into (10) complete sets of eigenstates of the Heisen-
berg field operator, we derive a path-integral representation of the
CTP generating functional [1], which depends on the path-ordered
propagator

INP(x, y, 51 B) = (Te[@(x: E®® (y: T)]),
I[AF(X y.ipit) Ac(x.y. tf,t,)] (12)
A (x, y,tf t) Ap(x, Y. teiti)

For x°,y° € C,, the path-ordering Tc is equivalent to the stan-
dard time-ordering T and we obtain the time-ordered Feynman
propagator iAf(x, y,ts;&j). On the other hand, for x°, y° e C_,
Tc is equivalent to anti-time-ordering T and we obtain the anti-
time-ordered Dyson propagator iAD(x,y,ff;fi). For x% € C; and
y® e C_, x0 is always ‘earlier’ than yO, yielding the absolutely-
ordered negative-frequency Wightman propagator iA_(x, y,t f3 t).
Conversely, for y° € C, and x° € C_, we obtain the positive-
frequency Wightman propagator iA (x, y,y; t).

By means of a Legendre transform of the CTP generating func-
tional [1], we derive the respective Cornwall-Jackiw-Tomboulis ef-
fective action [51], from which the CTP Schwinger-Dyson equation
Ay i E) = A% y) + Hap . . Eri ) (13)
is obtained, where A&f (*,y,tf;t) and Agl’)_1(x, y) are the re-
summed and free inverse CTP propagators, respectively, and
Hay(x, y,T5;§) is the CTP self-energy, analogous in form to (12).

4. Master time evolution equations for particle number densities

In order to count both on-shell and off-shell contributions
systematically, we ‘measure’ the number of charges, rather than
quanta of energy. This avoids any need to identify ‘single-particle’

energies by means of a quasi-particle approximation. We begin by
relating the Noether charge

Qxo: t) = —i/d3X(7rH(x; t)®Pu(x; t;) —H.c.) (14)

to a charge density operator Q(q, X, Xo; £;) via

- 3 d3q -
oot = [ € [ 5 0@ X Xoif, (15)

where 7y (x; ;) is the conjugate momentum operator to ®y(x; t;).
By taking the equal-time EEV of Q(q, X, Xo; ;) and extracting the
positive- and negative-frequency particle components, we arrive at
the following definition of the particle number density in terms of
off-shell propagators [1]:

n(q, X, t) = 11m 2/ 440 (;234 e—iQX
x 0(qo)qoi A< (q-l—g,q Q ot 0) (16)

using the translational invariance of the CTP contour.
By partially inverting the CTP Schwinger-Dyson equation
n (13), we derive the following master t1me evolution equation

for the statistical distribution function f(q+ 5.q— ,t) [1]:
Q Q
0 =,q— —,t
: f <q+ 545
dgo dQo o—iQot Q Q
-2 0 0 Alg+—=,9——=.,t;0
/f o Im q-Q9(qo) 20475

dqo dQo _jq,¢ Q Q
+f o e o (#(ax Foa- 5 oxo)
7ola- 2 gy Lo
+ 7 (q—?,q—f—?,t,()))
_ [ 990 dQo _iqq Q Q|
_//2n o 09(q)< <q+2 q 2,t,0>

+%*<q—%,q+%,t;0)), (17)

where we have introduced

<q+Q,q e tO)

d*k Q
=— )’ 1773((]-{- Lk, t; 0)

xiA<<k,q—E,t; O), (18a)

Q Q
%(q#—;,q—?,t,o)

1 d*k Q . Q
W ill. <q+ ?,k,t,O)lA<(k,q — ?,t, O)

—ill. (q—i—Q ktO)( ><k,q—%,t;0>
—21A7><k q-— Q tO))}

It is important to emphasize that (17) provides a self-consistent
time evolution equation for f valid to all orders in perturbation the-
ory and to all orders in gradient expansion. The terms on the LHS
of (17) may be associated with the total derivative in the phase
space (X, p), which appears in the classical Boltzmann transport
equation [52]. The expression .%# in (18a) is the force term, gener-
ated by the potential due to the dispersive part of the self-energy,
and the % in (18b) are the collision terms.

(18b)

5. Non-homogeneous diagrammatics

Let us consider a simple scalar theory, with one heavy real
scalar field @ and one light pair of complex scalar fields (xT, x),
described by the Lagrangian

1 1
L= Eaﬂcbaﬂcb - 51\/12@2 + ooty —m2xTx

—goxTx -, (19)

where the ellipsis contains omitted self-interactions. This model
yields the following set of modified Feynman rules:

e Sum over all topologically distinct diagrams at a given order
in perturbation theory.
e Assign to each @-propagator line a factor of

P oy __:A0ab ’T 7
ao———»—i——»—ob =iAg (pvp,tf7t1)~
The set of non-homogeneous free propagators is listed in Ta-
ble 1.
e Assign to each y-propagator line a factor of

/

p p

.\ 0.ab -
. \ =iAY®(p, p'.tr: bi).
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Table 1

The non-homogeneous free scalar propagators, where f(p,p’,t) = O(po)a(pé)f(p, p.t)+ 9(—p0)0(—p6)f*(—p, —p’,t), 8(po) is the unit step function and &(po) is the

signum function.

Propagator Double-momentum representation

Feynman (Dyson)

+ (—)ve-freq. Wightman
Retarded (advanced) I8 (P2 P) = e =i
Pauli-Jordan

Hadamard

Principal-part iy (p,p)= P L Qm)*s@(p—p)

iA%(p, p') = 2me(po)s (p* — MH2m)*s™@ (p — p')
ial(p. p'. T3 = 2n5<p2 — M%) 2m)48@ (p — p') + 2712po|V28(p? — M2 (p, p', )€ PoPOT 277 2p [V/25(p'2 — M)

iAYp) (P, P13 ) = ity @) 48 (p — p') + 2 |2pol V25 (p? — M) (p, p', )€ P —P0)%s 211 2 1/25(p'2 — M2)
iA% _ (p. P, Eyi Fi) = 20(+(—)p0)d(p? — M2)2)*8@ (p — p') + 27 |2po| /28(p? — M) f (. p', 0)e!Po—Polts 277 |2} |1/25(p'2 — M?)
7z Q)@ (p — p)

The double lines occurring in the CTP propagators reflect the
violation of three-momentum due to the non-homogeneous
statistical distribution function f(p,p’,t).

e Assign to each three-point vertex a factor of

b

3
X = _ignabc(2ﬂ)45t(4) (Z p:’) »

a--»-
n i=1
C
where Ngpe.. =1, a=b=---=1; Ngpe.. =—1,a=b=---=
2 and 7gpc... = 0 otherwise. Due to the finite upper and

lower bounds on the interaction-dependent time integrals, the
energy-momentum delta function is replaced by

3 3
5§4><Zpi) E&<Zpo,i)66)(p—p’) (20)
i=1 i=1

in which energy conservation is systematically violated by the
analytic weight function

RN

This violation of energy conservation, shown diagrammatically
by the dotted line terminated in a cross, results from the
uncertainty principle, since the observation of the system is
made over a finite time interval. We ignore additional sta-
tistical contributions to vertices that result from a possible
non-Gaussian density operator (for a discussion, see [1]).

e Associate with each external vertex a phase

eipOEf ,

where pg is the energy flowing into the vertex. This phase re-
sults from the proper consideration of the Wick contraction
and field-particle duality relations.

e Contract all internal CTP indices.

e Integrate with the measure

d*p
@m)*
over the four-momentum associated with each contracted pair
of CTP indices.

e Consider the combinatorial symmetry factors, where appropri-
ate.

These non-homogeneous Feynman rules encode the absolute
spacetime dependence of the system starting from tree level.

6. Absence of pinch singularities

The perturbation series built from the non-homogeneous Feyn-
man rules in Section 5 are free of the pinch singularities previously
thought to spoil such perturbative treatments of non-equilibrium
field theory, see e.g. [25,53-55]. In our formulation, this absence
of pinch singularities is ensured by two factors: (i) the violation
of energy conservation at early times and (ii) the statistical distri-
bution functions in free CTP propagators are evaluated at the time
of observation. The latter (ii) is in contrast to existing approaches
in which free propagators do not evolve and depend only on the
initial distributions.

Consider the following one-loop insertion to the propagator:

iA(l)’ab(p, p/’ Ef; fz) _ iAO'aC(p, p/, Ef; E)
+in%(p, q. t, 8)il (q.q . E: B)
X l'AO’db(q/,p,,tf,ti). (22)

Potential pinch singularities arise from terms like

8(p* — M?)8(po — pp)8(p'* — M?). (23)

However, at early times, energy is not conserved through the loop
insertion. As a result, these terms are analytic, becoming

8(p* — M?)8¢(po — py)s(p'% — M?), (24)

where & (po — pg) is given in (21). At late times, t — o0,
Jim 8 (po — po) = 8(Po — po) (25)

and energy conservation is restored. However, in the same limit
the system must have thermalized. In this case, the statistical
distribution functions appearing in free propagators will be the
equilibrium distributions for which pinch singularities are known
to cancel by virtue of the Kubo-Martin-Schwinger (KMS) rela-
tion [56]. At intermediate times, pinch singularities grow like a
power law in t, which will always occur more slowly than the ex-
ponential approach to equilibrium. Thus, the perturbation series is
free of pinch singularities for all times [1].

Given the systematic diagrammatics of this approach, we may
therefore truncate the master time evolution equations in (17) in a
perturbative loopwise sense. If the statistical distribution functions
are tempered for all times, any ultra-violet divergences may be
renormalized by the usual zero-temperature counter-terms, whilst
infra-red divergences may be regularized by the partial resumma-
tion of thermal masses, see [1].

7. Time-dependent one-loop width

To illustrate the distinctive features of our perturbative formal-
ism, let us consider two isolated but coincident subsystems .%%
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(¢) 2 — 1 Landau damping

Fig. 3. The four evanescent processes contributing to the one-loop time-dependent
@ width.

and .#y, both separately in thermodynamic equilibrium and at
the same temperature T = 10 GeV with the interactions switched
off. The subsystem .# contains only the field @ with mass M =
1 GeV and %, only the x fields of mass m =0.01 GeV. At t =0,
we turn on the interactions and allow the system . = % U .
to re-thermalize.

The one-loop non-local @ self-energy is shown in Fig. 2. Ne-
glecting back-reaction on the subsystem ./, the one-loop time-
dependent @ width is then given by the following integral:

> [egg
E1E;

a1,0==%1

)
o @b= 647r31v1

x sinc[(qo — a1 E1 — o2 E2)t ]
x (14 fe(@1E1) + fo(a2E2)), (26)

where E; = E; (k) = VK> +m? and E; = Ey(q — k). The vio-
lation of energy conservation, due to the sinc function in (26),
leads to otherwise-forbidden contributions from o1, @y = —1 (to-
tal annihilation) and o1 = —a; (Landau damping). In addition, the
kinematically-allowed phase space for 1 — 2 decays is expanded.
These evanescent processes are shown in Fig. 3, where we have
defined the evanescent action

u=(qo —o1E1 —azEx)t, (27)

quantifying the degree of energy non-conservation. For t — oo, we
recover the known equilibrium result, since
—aEx)t] =68(q0 — a1E1 — aaE).

(28)

t
lim — sinc[(qo — o1 E1
t—o00 JT

In Fig. 4, we plot the ratio

riqaql, 0

~(1)
(gl t) = —=2
D
riP(ql, t — o)

(29)

of the time-dependent one-loop @ width to its late-time equilib-
rium value as a function of Mt for g2 = M?. In addition, we plot
the separate contributions of the processes shown in Fig. 3.

8. Non-Markovian oscillations

In Fig. 4, we observe that the oscillations in the & width
have time-dependent frequencies. This non-Markovian behaviour
is inherent to truly out-of-equilibrium quantum systems, exhibit-
ing so-called memory effects. Moreover, due to the Lorentz boost of
ultra-violet modes relative to the rest frame of the heat bath, these
memory effects persist for timescales much longer than the 1/M
that would be expected for effects resulting from the uncertainty
principle.

In terms of the evanescent action u in (27) and in the high-
temperature limit T > M, we may show quantitatively that the
frequencies of these non-Markovian oscillations are given by

b
o (q,u,t)

— o — GO~ 1aP +mi —m)qu(®) +bay Q@O ~ g, mi, m3)
2@ —1a1?) ‘
(30a)
®y (@, u,b)
_ (@(® —1a* —mf +m3)qu(t) — baglq1' > (g5 ¢) — 1>, m], m3)
23 —la?) ’
(30b)
with b, ag = £1, A(x, y,2) = (x* — y2 — z2)2 — 4y?72. In addition,
we have introduced the evanescent energy
u
Qu®=qo— (31)

and we have quoted the result with different masses my and mj,
for generality. Notice that in the limit t — oo, g, (t) — qo and we
obtain the usual time-independent kinematics. To the best of our
knowledge, such a quantitative analysis of the non-Markovian evo-
lution of memory effects has not been reported previously in the
literature.

9. Loopwise-truncated time evolution equations

Truncating the master time evolution equation (17) to leading
order in a perturbative loopwise expansion, we obtain the follow-
ing one-loop transport equation for the @ statistical distribution
function:

8tf4>(|‘5l| t)

d’k 1 1 1
Z /(271)3 2E¢(q) 2E, (k) 2E, (@ — k)

0,0

x % sinc[(«¢Ea (q) — a1 Ex (K) — a2E 5 (q — K))t/2]
{m +2Si[(€Ee(q) + 1 Ex (K) + 2 Ey (q — K))t/2]}
{[6(=) + fo(lalt)]

x [0@n)(1+ fy (1Kl ) +6(—ar) fy (K|, t)]

x [0(@2) (1 + fy (1a—KI,t)) +0(—a2) fy (1a — KI, 1) ]

—[6@@) + fo(lal,t)]
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|gl=10 Gev
T T T ~  1.500p T
! 1 0
-
1.3fF — |gl=1 GeVv N o= 1.000{Hw
I lg =10 Gev ] 1.°
Fo 05000 1' A
1.2 -=~ 1g1=100 GeV - ME/1000
3 : : 5 |lg|=10 Gev
N [ ] 8 0.20 T
]
E‘ 1.1F -1 8 0.10 E
N
= i ] = 0.00
[ = [ ® _0.10b L
o 1.0fF 3 o1z
- ] ME/1000
- ’ -
’
- / 7 Igl=10 Gev
L 7 7 o 0.01fr T
, .
0.9F}, -1 1
F 1y -1 ™
-1/ 1 = 0.00
5 - -]
0.8 PR R N N T TR T T N T T T T T T N N N SN T TR T T T T N1 Ir_| _0.01:7 :|l >
0 1 3
ME/1000

Mt /1000

Fig. 4. Left: the ratio I_“qgl) versus Mt for on-shell decays with |q| =1 GeV (solid black), 10 GeV (blue, in the web version, dotted) and 100 GeV (red, in the web version,
dashed). Right: separate contributions to I:q()” for |q| = 10 GeV. Landau-damping contributions are equal up to numerical errors.

x [01) fy (IKI.t) +6(—a1) (1 + f5 (K|, 1))]
x [0(a2) f5 (1 — K. t) +0(—a2) (1 + f (la—KI.t))]}.
(32)

where o, o1, o = 1. The second and third lines of (32) encode
the early-time violation of energy conservation. Replacing these
lines by the Markovian approximation

2m0()8(Eo (@) — a1 E1(K) — a2E2(q — k), (33)

we recover the semi-classical Boltzmann equation. However, given
the equilibrium initial conditions of our model, this artificial im-
position of energy conservation along with the properties of the
Bose-Einstein distribution ensure that the RHS of (32) is zero for
all times. Thus, the semi-classical Boltzmann equation cannot de-
scribe the re-thermalization of our simple model. This is true also
for gradient expansions of Kadanoff-Baym equations when trun-
cated to zeroth order in time derivatives. Hence, it is only when
energy-violating effects are systematically considered, as in this
new perturbative approach with all gradients included, that the
dynamics of this re-thermalization is properly captured.

It is clear that (32) describes only decay and inverse decay
processes in the topologies shown in Fig. 3. However, higher-
multiplicity decays and scatterings can be systematically incor-
porated by consistently truncating the master time evolution
equation in (17) to a higher number of loops.

10. Conclusions

We have obtained master time evolution equations for parti-
cle number densities that are valid to all orders in perturbation
theory and to all orders in gradient expansion. The underlying
perturbation series are built from non-homogeneous free propaga-
tors and explicitly time-dependent vertices. Due to the systematic
treatment of finite boundary and observation times, these dia-
grammatic series remain free of pinch singularities for all times.

We are therefore able to truncate the time evolution equations in
a perturbative loopwise sense, whilst keeping all orders in gradi-
ent expansion and capturing the dynamics on all timescales. This
includes the prompt transient behaviour, which we have shown
to be dominated by energy-violating processes that lead to non-
Markovian evolution of memory effects. By virtue of our approach,
we have been able to provide the first quantitative analysis of
these memory effects.

The foreseeable applications of this new formalism span high-
energy physics, astro-particle physics, cosmology and condensed
matter physics. Dedicated studies of such applications will be the
subject of future works.
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