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Abstract 

The study of risk aversion of an agent confronted by a risk situations with several parameters is an important topic of risk theory. 

It is tackled traditionally with probabilistic methods. When these do not offer an appropriate shaping we can use Zadeh’s 

possibility theory . In this paper a possibilistic model of risk aversion with several parameters is proposed. The notion of 

possibilistic risk premium vector is introduced as a measure of an agent’s risk aversion to a situation with several risk parameters. 

The main result of the paper is an approximate calculation formula of this indicator. The way we can apply this model in risk 

aversion evaluation in grid computing is sketched out. 
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1. Introduction

In economic and financial activity risk situations with several parameters often appear. An agent’s risk aversion 

to such situations is a topic which concerned several authors [9], [16], [17], [19], etc. They tackled this topic by 

probabilistic methods. The risk situation with several parameters is represented by a random vector, and the agent’s 

attitude to risk is represented by a multidimensional utility function. 

In [9] the notion of risk premium vector was introduced as a measure of multidimensional risk aversion. It 

generalizes the notion of risk premium studied by Arrow [1] and Pratt [21] for unidimensional risk. 

Probability theory can describe appropriately only those situations of uncertainty for which the events occur with 

a big frequency and for which we have large databases. For other phenomena of uncertainty possibility theory 

initiated by Zadeh in [25] and developed mainly by Dubois and Prade [7], [8] is preferred. 

Possibilistic models were successfully applied in decision making problems in conditions of uncertainty, fuzzy 

neural networks, fuzzy cooperative games, portfolio problem, etc. (see [3], [8], [12], [20]). 

In [13], [15] two possibilistic models of unidimensional risk aversion have been proposed. The study of 

multidimensional risk aversion by possibilistic methods has been started in [14] by defining a notion of possibilistic 

risk premium and by proving an approximate calculation formula. 

The transition from probabilistic models to possibilistic models has two main components: random variables are 

replaced with fuzzy variables and probabilistic indicators (expected value, variance, covariance, etc.) are replaced 
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with possibilistic indicators. To define possibilistic risk premium the notion of possibilistic expected utility had to be 

first introduced (see [13]-[15]).  

This paper treats multidimensional possibilistic risk aversion from a more general perspective, similar to that of 

[9]. Fuzzy numbers are the most important class of possibilistic distributions. They are often chosen to represent 

situations of uncertainty. In our case risk parameters will be represented by fuzzy numbers. The main concept of the 

paper is possibilistic risk premium vector associated with a possibilistic vector, a weighting function and a 

multidimensional utility function. This indicator measure the aversion of an agent in front of a risk situation with 

several parameters. For the particular case when all components of this vector are equal, the notion of possibilistic 

risk premium of [14] is found. 

The paper is organized as follows. Section 2 recalls the definition of fuzzy numbers and the main indicators 

associated with them: expected value, variance and covariance. In Section 3 the notion of multidimensional 

possibilistic expected utility by means of -level sets is introduced. By particularization, possibilistic expected value 

[2], [11] and some notions of possibilistic variance and covariance [2], [11], [26] are obtained from it. These 

indicators will be used in the next section to evaluate multidimensional possibilistic risk premium. 

Section 4 develops a model of possibilistic risk aversion with several parameters. The mathematical framework 

of this possibilistic model is specified by a possibilistic vector (representing the risk situation), a multidimensional 

utility function (representing the attitude of an agent to a risk situation) and a weighting function. Using 

multidimensional possibilistic expected utility the notion of possibilistic risk premium vector is defined as a measure 

of an agent’s risk aversion to a risk situation with several parameters. The main result of the paper is an approximate 

calculation formula of this risk indicator. The formula expresses this indicator in terms of utility function, 

possibilistic expected value and possibilistic covariance. 

Section 5 contains an application of this model to evaluate risk aversion in grid computing. 

2.  Possibil istic indicators of fuzzy numbers 

In this section we recall the definition of fuzzy number and some of its properties. By [2], [3], [10], [11], [26] we 

will present some of the possibilistic indicators associated with fuzzy numbers (expected value, variance, 

covariance) needed to formulate definitions and results of multidimensional possibilistic risk aversion theory (see 

Section 4). 

Let X  be a set of states. A fuzzy subset of X  (=fuzzy set) is a function A : X [0,1] . For any x X the 

number A(x) is the degree of membership of x to A . 

Let A  be a fuzzy set in X . A is normal if there exists x X such that A(x) = 1. The support of A is defined by 

sup(A) = x X{ | A(x) > 0} . 

In the following we consider that X  is the set R of real numbers. For any [0,1] , the –level set of a fuzzy 

set A  in R is defined by 

 

[A] =
x R{ | A(x) } if > 0

cl(sup(A)) if = 0
 

 

(cl(sup(A)) is the topological closure of the set sup(A) R ). 

A fuzzy number is a fuzzy set of R normal, fuzzy convex, continuous and with bounded support. 

Let A  be a fuzzy number and [0,1] . Then [A] is a closed and convex subset of R. We denote 

a1( ) =min[A] and a2 ( ) =max[A] . Hence, [A] = [a1( ),a2 ( )]  for all [0,1] . 
A non–negative and monotone increasing function f :[0,1] R is a weighting function if it satisfies the 

normality condition  

 

f ( )d =1
0

1
. 
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We fix a fuzzy number A  and a weighting function f. Assume that[A] = [a1( ),a2 ( )]  for all [0,1] . 

The possibilistic expected value of A  w.r.t. f was defined in [11], [20] by 

 

E( f ,A) =
1

2
(a1( )+ a2 ( )) f (0

1
)d

. 

The possibilistic variance of A  w.r.t. f is defined by 

 

Var( f ,A) =
1

2
[(a1( ) E( f ,A))2 + (a2 ( ) E( f ,A))2 ] f ( )d
0

1

. 

 

If f ( ) = 2 for any [0,1] , then E(f,A ) is the crisp possibilistic mean value introduced in [2], p. 318, and 

Var(f,A ) is the second possibilistic variance defined in [2], p. 324. 

Let A,B be two fuzzy numbers and f a weighting function. Assume that[A] = [a1( ),a2 ( )]  and 

[B] = [b1( ),b2 ( )] for all [0,1] . The possibilistic covariance Cov(f, A ,B) of A  and B w.r.t. f is defined in 

[26], p. 261 by 

 

Cov( f ,A,B) =
1

2
[(a1( ) E( f ,A))(b1( ) E( f ,B))+ (a2 (0

1
) E( f ,A))(b2 ( ) E( f ,B))] f ( )d

If f ( ) = 2 for any [0,1] , then Cov(f, A ,B) is the second possibilistic covariance defined in [2] p. 324. 

A triangular fuzzy number A = (a, , ) is defined by the function ]1,0[:RA : 

A(t) =

1
a t

if a t a

1
t a

if a t a +

0 otherwise
 

      

     If =  then the triangular fuzzy number A is called symmetric and it is denoted A=(a, ).

 

 

Recall from [7] that if ),,(aA = then [A] = [a (1 ) ,a + (1 ) ]  for all [0,1] , 

hence a1( ) = a (1 ) ,a2 ( ) = a + (1 ) .  

Assume that f ( ) = 2 for all [0,1] . Then E( f ,A) = a +
6 .  

     If ),(aA = then aAfE =),( .  

A possibilistic vector has the form (A 1, . . . ,A n) where A 1, . . . ,An are fuzzy numbers.
 

3.  Possibil istic expected util ity: the multidimensional case 

Probability theory of multidimensional risk aversion is built on the notion of expected utility (by [9]). We 

consider a risk situation with n parameters represented by a random vectorX = (X1,...,Xn ) . If u :Rn R is a 

continuous utility function then u(X1,...,Xn ) is a random variable. The expected value E(u(X1,...,Xn )) of 

u(X1,...,Xn ) is called X ’s expected utility w.r.t. u. 
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We consider a risk situation with n parameters for which a possibilistic modeling is needed (e.g., when we have 

few data on risk situation). Then the risk situation will be described by a possibilistic vector. By definition, an n–

dimensional possibilistic vector has the form A = (A1,...,An )  where A1,...,An are fuzzy numbers. Then 

A1,...,An describe n risk parameters. 

To develop a theory of risk aversion corresponding to this case an appropriate notion of possibilistic expected 

utility is needed. 

Let f :[0,1] R be a weighting function and g :Rn R a continuous function.We consider a possibilistic 

vector (A1,...,An )where [A] = [ai ( ),bi ( )] for any i = 1, . . . ,n and [0,1] . We define the possibilistic 

expected utility of (A1,...,An )w.r.t. f and g by 

E( f ,g(A1,...,An )) =
1

2
[g(a1( ),...,an ( ))+ g(b1( ),...,bn ( ))] f ( )d0

1
. 

If n = 1 we obtain the notion of possibilistic expected utility of [13]. For n = 1 and g(x) = x for each x Rwe 

have E(f, g(A )) = E(f,A ). 
Remark 3.1  Let n = 2 and g(x, y) = (x  E(f,A1))(y  E(f,A2)) for any x, y R . Then E(f, g(A1,A2)) = 

cov(f,A1,A2). 

In this section in the following we fix a possibilistic vector (A1, . . . ,An) and a weighting function 

f :[0,1] R . Assume that [Ai ] = [ai ( ),bi ( )]  for any [0,1] . 
The following propositions will be used in the next section to prove an approximate calculation formula for the 

possibilistic risk premium vector. 

Proposition 3.2  Let g :Rn R, h :Rn R be two continuous functions and a,b R . We consider the 

function u :Rn R defined byu(x1,..., xn ) = ag(x1,..., xn )+ bh(x1,..., xn ) for any (x1,..., xn ) Rn
. Then 

E( f ,u(A1,...,An )) = aE( f ,g(A1,...,An ))+ bE( f ,h(A1,...,An )) .  

Proposition 3.3  Let g :Rn R, h :Rn R  be two continuous functions such that 

g(x1,..., xn ) h(x1,..., xn )  for any (x1,..., xn ) Rn
. ThenE( f ,g(A1,...,An )) E( f ,h(A1,...,An )) . 

Proposition 3.4  Let n continuous functions gi :R R, i =1,...,n and a1,...,an R . We consider the 

function g :Rn R  defined by g(x1,..., xn ) = aigi (xi )i=1

n
for any (x1,..., xn ) Rn

. Then 

E( f ,g(A1,...,An )) = aiE( f ,gi (Ai )i=1

n
) .  

Proposition 3.5  Let n2
 continuous functions gij :R

2 R, i, j =1,...,n and aij R, i, j =1,...,n . We 

consider the function g :Rn R  defined 
 

=

=

n

ji

jiijijn xxgaxxg

1,

1 ),(),...,( for any (x1,..., xn ) Rn
. Then 

=

=

n

ji

jiijijn AAgfEaAAgfE

1,

1 )),(,()),...,(,( . 

4.  Multidimensional possibil istic risk aversion 

In this section we will introduce the possibilistic risk premium vector as a measure of risk aversion of an agent to 

a possibilistic risk situation with several parameters. Then we prove an approximate calculation formula of this 

indicator.  

We recall first some elements of multidimensional probabilistic risk aversion [9], [16], [17], [19], etc. They will 

be the inspiring source for the notions and results on multidimensional possibilistic risk aversion from this section. 

The setting in which probability theory of multidimensional risk aversion is developed has two components: 
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• a random vector X = (X1,...,Xn ) representing a risk situation with n parameters; 

• a utility function u :Rn R , which describes the agent’s attitude to the risk situation. 

Assume that the utility function has the class C2
 and is strictly increasing in each argument. 

An element x = (x1,..., xn ) Rn
is called a commodity vector. For the utility function u :Rn Rwe denote 

for any i, j = 1, . . . ,n: 

ui (x1,..., xn ) =
u(x1,..., xn )

xi
, uij (x1,..., xn ) =

2u(x1,..., xn )

xi x j
 

 

     In vectorial notation we have ui (x) =
u(x)

xi
, uij (x) =

2u(x)

xi x j
. 

From [9] we recall the notion of risk premium vector. 

Definition 4.1  A risk premium vector (X,u) = ( 1,..., n ) (associated with the random vector X and the 

utility function u) is defined as a solution of the equation: 

(1) E(u(X1,...,Xn )) = u(E(X1) 1,...,E(Xn ) n ) . 

By [9] equation (1) can have several solutions ( 1,..., n ) . 

We denote ei = E(Xi ) for i= 1, . . . ,n. 

Proposition 4.2  [9] An approximate solution of equation (1) is given by 

(2) i

1

2

1

uj (e)
Cov(Xi,Xj )uij (e) for i =1,...,nj=1

n
. 

To build a possibility theory of multidimensional risk aversion we consider a setting with the following components: 

• a weighting function f :[0,1] R;  

• a possibilistic vector A = (A1,...,An );  

• an n–dimensional utility function RRu
n

:  
     The possibilistic vector Amodels the risk situation and the utility function u describes the agent’s attitude to A . 

      We introduce now the notion of possibilistic risk premium vector. 

Definition 4.3  A possibilistic risk premium vector (A, f ,u) = ( 1,..., n ) (associated with the possibilistic 

vector A , the weighting function f and the utility function u) is defined as a solution of the equation 

(3) E( f ,u(A1,...,An )) = u(E( f ,A1) 1,...,E( f ,An ) pn ) . 
E( f ,u(A1,...,An )) is the possibilistic expected utility introduced in the previous section. 

Definition 4.3 can be confronted with Definition 4.1. The utility function u appears in both definitions, but the 

probabilistic expected value (resp. probabilistic expected utility) of Definition 4.1 was replaced by possibilistic 

expected value (resp. possibilistic expected utility). 

Equation (3) does not have a unique solution = ( 1,..., n ) .  

A possibilistic risk premium vector = ( 1,..., n )  is an indicator of risk aversion of the agent represented by 

u. Equality (3) expresses that agent u is willing to pay the amount 
n

,...,1 to realize the possibilistic expected utility  

)),...,(,( 1 nAAufE . 

 In [14] a notion of possibilistic risk premium was defined as follows. 

      Definition 4.4  A possibilistic risk premium  = (A, f ,u) (associated with A ,f and u) is a solution of the 

equation 

(4) E( f ,u(A1,...,An )) = u(E( f ,A1) ,...,E( f ,An ) p ) . 

If  is a possibilistic risk premium associated with A , f and u, then = ( ,...., ) is a possibilistic risk 
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premium vector associated with A , f and u. 

Remark 4.5  In equations (3) and (4) assume that E( f ,u(A1,...,An )) is finite. 

Remark 4.6  (4) is an equation in and it can have several solutions. To see it let us consider the bidimensional 

possibilistic vector (A 1, A 2) and a utility function u(x1, x2) = x1x2. Then equation (4) becomes 

 

)),(,()),()(),(( 2121 AAufEAfEAfE =  

Taking f ( ) = 2 for [0,1] and A1 = (r1, 1), A2 = (r2, 2 )we haveE( f ,A1) = r1, E( f ,A2 ) = r2  and 

+++=

1

0

2211221121 )])1()()1(())1()()1([()),(,( drrrrAAufE   

Then equation (4) takes the form )),(,())(( 2121 AAufErr = and we can determine distinct solutions. 

In the unidimensional case if the utility function RRu
n

: is injective then the solution of (4) is unique. 

We denote mi = E( f ,Ai ), i =1,...,n and m = (m1,...,mn ) . 

Proposition 4.7  An approximate solution of equation (3) is given by 

(5) i
0 1

2

1

ui (m)
Cov( f ,Ai,Aj )uij (m) for i =1,...,n.j=1

n
 

Proof . By applying the Taylor formula for RRu
n

: and by neglecting the Taylor remainder of second order, 

one obtains: 

u(x) u(m) (xi mi )
u(m)

xi
+
1

2
(xi mi )(x j mj )i, j=1

n

i=1

n
2u(m)

xi x j
.  

With the notations from the beginning of the section this relation can be written 

u(x) u(m) (xi mi )ui (m)+
1

2
(xi mi )(x j mj )i, j=1

n

i=1

n
uij (m).  

Consider the functions RRg
n

: and RRh
n

: defined by 

g(x) = (xi mi )ui (m);i=1

n

 

h(x) = (xi mi )(x j mj )uij (m).i, j=1

n

 

According to Proposition 3.2 we have 

(6) E( f ,u(A1,...,An )) u(m) E( f ,g(A1,...,An ))+
1

2
E( f ,h(A1,...,An )).  

We consider the functions gi :R R, i =1,...,n defined by 

iiii mxxg =)(  for any Rxi .  

Then g(x) = ui (m)gi (xi )i=1

n
for any x Rn

. By Proposition 3.4 we have 

E( f ,g(A1,...,An )) = ui (m)E( f ,gi (Ai )).i=1

n
 

By Proposition 3.2 E( f ,gi (A)) = E( f ,Ai ) mi = 0 for any i =1,...,n . 

Therefore E( f ,g(A1,...,An )) = 0 . Replacing in (6) it follows  

(7) )),...,(,(
2

1
)()),...,(,( 11 nn AAhfEmuAAufE +  

A straightforward application of Proposition 3.5 and Remark 3.1 shows that 

=

+

n

ji

jiijn AAfCovmumuAAufE

1,

1 ),,()(
2

1
)()),...,(,(  
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Thus (7) becomes 

(8) 

=

+

n

ji

jiijn AAfCovmumuAAufE

1,

1 ),,()(
2

1
)()),...,(,(  

By applying again the Taylor formula and omitting the Taylor remainder of first order, it follows that for all 

1,..., n R we have 

(9) u(m1 1,...,mn n ) u(m) iui (m).i=1

n

 

If 1
0,..., n

0
are real numbers defined in (5), then a simple calculation shows that 

(10) i
0ui (m)i=1

n
=

1

2
uij (m)Cov( f ,Ai,Aj ).i, j=1

n

 

Relations (8), (9) and (10) show that 

E( f ,u(A1,...,An )) u(m1 1
0,...,mn n

0 )  

therefore ( 1
0,..., n

0 )  is an approximate solution of equation (4). 

 

Remark 4.8  The previous proposition is the possibilistic version of Proposition 4.2. We remark that the 

probabilistic covariances Cov(X i,X j) appear in (2), and the possibilistic covariances Cov(f,A i,A j) appear in (5). 

Proposition 4.9  An approximate solution of equation (4) is given by 

(11) 

=

=

n

i

i

n

ji

ijji

mu

muAAfCov

1

1,0

)(

)(),,(

2

1
 

 

Proof . We will use relation (8) of the proof of Proposition 4.7. By applying the Taylor formula and omitting the 

Taylor remainder of the first order, it follows for any R  

u(m1 ,...,mn ) u(m) ui (m).i=1

n

 

In particular, for =
0

 

(12) u(m1
0,...,mn

0 ) u(m) 0 ui (m).i=1

n

 

Using (8), (11), (12) it follows easily that 

E( f ,u(A1,...,An )) u(m1
0,...,mn

0 ) , 

therefore
0

is an approximate solution of equation (4).  

In [9] the notation 

(13) rij (x) =
uij (x)

ui (x)
for any x Rn

 

is introduced. With this notation, the approximate solution ( 1
0,..., n

0 ) of equation (3)given by (5) is written as 

(14) i
0
=
1

2
Cov( f ,Ai,Aj )r

ij (m).
j=1

n

 

Example 4.10  We consider the family of utility functions from Example 3.1 of [9] 

u(x1, x2 ) = 1[e
x1 + e x2 ] 2e

x1 x2
, where 1, 2 are two real parameters. 

Let A1 = (r1, 1, 1) and A2 = (r2, 2, 2 )  be triangular fuzzy numbers and f ( ) = 2 , [0,1]  be a 

weighting function. By [26], in this case we have 
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m1 = E( f ,A1) = r1 +
1 1

6
;m2 = E( f ,A2 ) = r2 +

2 2

6
; 

18
),,(),( 11

2
1

2
1

111

++
== AAfCovAfVar ; 

18
),,(),( 22

2
2

2
2

222

++
== AAfCovAfVar ; 

Cov( f ,A1,A2 ) = Cov( f ,A2,A1) =
1 2 + 1 2 + ( 1 + 1)( 2 + 2 )

36
.  

By formula (14), an approximate solution of the equation ),()),(,( 221121 = mmuAAufE will have the form 

(15) 

=

=

2

1

0 )(),,(
2

1

j

ij
jii mrAAfCov , i=1,2.  

In (9) one found that 1)( =xr
ii  and 

21

2)(
+

=
jx

ij

e

xr  for ji . Thus (15) is written as 

21

22211212111
2
1

2
112

211
0
1

272

))((

36
)(),,(

2

1
),(

2

1

+

++++
+

++
=+=

m
e

mrAAfCovAfVar  

 

21

22211212122
2
2

2
221

122
0
2

172

))((

36
)(),,(

2

1
),(

2

1

+

++++
+

++
=+=

m
e

mrAAfCovAfVar  

5.  Possibil istic risk aversion in grid computing 

Grid computing techniques present a lot of interest for commercial applications [6]. In the management of a grid, 

risk phenomena with several parameters related to the functioning of grid’s nodes might appear. The study of risk 

aversion w.r.t.the functioning of the grid leads to the choice of a multidimensional model. Next we propose a model 

based on the topic developed in the previous section. 

We consider a grid composed of n nodes N1, . . . ,Nn. Assume that the risk situation generated by node Ni is 

described by the fuzzy number A i. The possibilistic vector (A1, . . . ,An) will represent the functioning of the grid 

overall (regarding the risk situation). The way nodes Ni, Nj are interrelated is given by Cov(f,A i,A j) where f is a 

conveniently chosen weighting function. 

An agent’s attitude to the risk situation of the grid is expressed by the utility function u :Rn R . 

In this context possibilistic risk premium vector evaluates the agent’s risk aversion  to risk situation (A1, . . . , An) 

. The approximate calculation of this indicator is done by the formula of Proposition 4.7. 

Example 5.1  Consider a grid composed of n nodes N1, . . . ,Nn. The risk situation of node Ni is described by the 

triangular fuzzy number Ai = (ai, i, i ) : 

+=

otherwise

ataif
at

ataif
ta

tA iii
i

i

iii
i

i

i

,0

,1

,1

)(

 

Assume that the weighting function f :[0,1] R  and the utility functionu :Rn R are defined 

by f ( ) = 2 for [0,1]andu(x1,..., xn ) = e 2(x1+...+xn ) for any (x1,..., xn ) Rn
. 

Notice that u has the class C 2 
and is strictly increasing in each argument. A simple calculation shows that for 

any (x1,..., xn ) Rn
and i, j =1,...,n  we have 



Irina Georgescu et al. / Procedia Computer Science 4 (2011) 1735–1744 1743

ui (x1,..., xn ) = 2e
2(x1+...+xn )

uij (x1,..., xn ) = 4e 2(x1+...+xn )
 

and therefore 
uij (x1,..., xn )

ui (x1,..., xn )
= 2 . 

Then by Proposition 4.7 an approximate value of possibilistic risk premium vector associated with this possibilistic 

context of risk is given by 

i
0
=

1

2

1

ui (m)
Cov( f ,Ai,Aj )uij (m) =j=1

n
Cov( f ,Ai,Aj ), i =1,...,nj=1

n
. 

By [26], )])(([
36

1
),,( jjiijijiji AAfCov ++++= for any i, j =1,...,n . Thus  

i
0
=
1

36
[ i j + i j + ( i + i )( j + j )]j=1

n
 

= ==

++++=
n

j

n

j
jjii

n

j
jiji

1 11
)]()([

36

1
         for ni ,...,1= . 

6.  Conclusions  

  In this paper a possibilistic model of risk aversion of an agent confronted by a risk situation with several 

parameters has been proposed. 

  The main contributions of the paper are: 

- the study of a notion of possibilistic expected utility associated with a possibilistic vector whose components 

are fuzzy numbers; 

- the definition and the approximate calculation of possibilistic risk premium vector and possibilistic risk 

premium associated with a possibilistic vector and an n-dimensional utility function; 

- the sketch of a possible application of this model in the evaluation of risk aversion which can appear in the 

functioning of a grid. 

The mentioned results are a first step to the study of possibilistic risk aversion with several parameters. We 

mention the following problems which can be the object of future investigations: 

- to obtain a Pratt type theorem to compare the risk aversion of two agents to a risk situations with several 

parameters; 

- to compare multidimensional risk situations (possibilistic versions of Diamond- Stieglitz theory); 

- applications in the analysis of portfolio problem (including experimental results); 

- the treatment of risk aversion with mixed parameters (some described by random variables, some described 

by fuzzy numbers) . 
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