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Abstract Lens regeneration in adult newts is possible by trans-
differentiation of the pigment epithelial cells (PECs) of the dorsal
iris. The same cells in the ventral iris are not capable of such a
process. To understand this difference in regenerative compe-
tency, we examined gene expression of 373 genes in the intact
dorsal and ventral irises as well as in irises during the process
of lens regeneration. We found similar signatures of gene expres-
sion in dorsal and ventral with several cases of even higher levels
in the ventral iris. Such transcriptional activity in the regenera-
tion-incompetent ventral iris was unexpected and calls for a revi-
sion of our views about mechanisms of lens regeneration
induction.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The pigment epithelial cells (PECs) possess a remarkable

plasticity and are able to transdifferentiate to retinal or lens

cells [1,2]. This ability is most impressive in adult newts where

after lens removal, PECs from the dorsal iris dedifferentiate

and then redifferentiate to a different cell type to regenerate

the removed lens [3]. Interestingly, PECs from the ventral iris

do not participate in lens regeneration. Consequently, it has

been thought that induction events, such as re-entry of the cell

cycle and transcriptional activation, must take place exclu-

sively in the dorsal iris [4–6]. Such a process would ensure that

only one lens can be regenerated. However, it has been shown

that ventral PECs do re-enter the cell cycle, although their rate

of re-entry appears to be lower than dorsal PECs. An unre-

solved issue is whether there are factors expressed specifically

in the dorsal iris that regulate lens regeneration. If such factors

exist, their function could be studied in the ventral iris in an

attempt to induce it to transdifferentiate to a lens, thus possibly

opening the way for lens induction in other animals as well. In

a previous study we showed that six-3 over-expression as well

as BMP pathway inhibition were able to elicit a lens from the

ventral iris [6]. But surprisingly these factors were not dorsal-

specific. They are expressed in the intact ventral iris and in

the ventral iris after lens removal. The same was true for

pax-6 expression. Both six-3 and pax-6 are considered to act
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as eye master genes and it is surprising that they would be ac-

tive in a developmentally inactive tissue. We reasoned, there-

fore, that in order for regeneration to occur from the dorsal

iris the expression of these genes had to be elevated specifically

in the dorsal iris. To determine on a more global level whether

differential gene expression is important for lens regeneration

from the dorsal iris, we decided to study gene expression using

a custom newt microarray containing 373 genes, known to be

expressed in regenerating tissues. This set of cDNAs should be

able to provide us with concrete information about patterns of

gene expression in the newt iris and their correlation to the

mechanisms of lens transdifferentiation.
2. Materials and methods

2.1. Microarray analysis
Microarray slides containing quadruplicate spots of 521 cDNA frag-

ments representing 373 regeneration-enriched newt genes were pre-
pared at the Huntsman Cancer Institute Microarray Core Facility at
the University of Utah. These cDNAs were isolated from regeneration
blastema. Tissues were collected from the intact dorsal and ventral iris
as well as from irises at 8 days postlentectomy and were flash frozen in
liquid nitrogen. RNA was extracted from these tissues, amplified, and
purified using a RiboAmp RNA amplification procedure from Arctu-
rus Engineering. Preparation of the probes, hybridization, and data
collection was performed as previously described [7]. Intensity data
from low-quality spots were removed and the values of the remaining
spots for each cDNA fragment were averaged and log2 ratios were cal-
culated between the lentectomized and control samples. We observed
no significant spatial variation on any of the microarrays and the med-
ian intensity value for each array was nearly identical, so no further
normalization was performed. Spots with a signal less than 20% great-
er than the background signal were eliminated from further analysis.
The data were analyzed using Spotfire DecisionSite for Functional
Genomics (Spotfire Inc.).

In the tables (see Section 3), we have averaged all signals for a given
gene (if multiple cDNAs for a given gene were present on the micro-
array) that appear to have produced a reliable signal. We did not
include in these averages results that did not appear to produce reliable
signals. We have included the following comparisons: regenerating
dorsal vs. normal dorsal (RD:ND); regenerating ventral vs. normal
ventral (RV:NV); normal dorsal vs. normal ventral (ND:NV); regener-
ating ventral vs. regenerating dorsal (RV:RD). We have included all
genes that exhibited a differential expression pattern where the average
ratio was |x| P 0.7 (log2 scale) in at least one of the four comparisons
(RD:ND, RV:NV, ND:NV, and RV:RD).

2.2. QPCR design
For our experiments iCycler iQ Real-Time Detection System and

SYBR Green Supermix (#170-8882) from Bio-Rad were used. Also
for cDNA synthesis iScript cDNA Synthesis Kit (Bio-Rad#170-
8882) was used and RNA for cDNA synthesis meets the following
requirements: Purity – A260/A280 = 2; Integrity: It should be two clear
bands of rRNA on denaturing agarose gel electrophoresis; gDNA
blished by Elsevier B.V. All rights reserved.
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Table 1
Primers used for QPCR validation

Probes Primers Tm (IDT) Product size

1 Jun B F TACAGAAAGGAGCCATCCACACTC 58.1 194
R CCCACCTCGCAAACAGAACAAA 58.0

2 Glucosamine, GN65 F GTATCAAACCCAACCAGACCAAGA 56.7 159
R ATCGCCAAGTCCCATTCCA 56.4

3 Actin-related protein 2/3 complex subunit 1B F CGAAAGCAACCGCATTGTGACCT 60.3 185
R AGCAGATGGAAATAACCCTGGAAC 56.8

4 MMP3/10a F CAATCCATCCATCTGTGACCCAAC 57.6 246
R TCAAATCCCTGAAGAGCCCA 55.8

5 MMP9 F AGGCTGCGAACAGTAGATGAG 56.4 171
R GACCAACAATCACCATAGACGGCA 59.0

6 DD223d unknown No homology F ATGGGTGGATAGGGCAAGGA 57.9 165
R ACCGAGTGTGAAGCGAGCAAA 59.1

7 Small EDRK-rich factor 1A (spliced) F TTCAACGAAAGCAGAGGCAAAGGG 59.8 198
R GCAACAGACGGACGAATACCAAGA 58.8

8 Tubulin – homolog of Mus alpha 6 F TGCACACAGAGCAACAGACCAGAA 60.5 171
R TGGAGAAGGTATGGAGGAAGGAGA 58.3

9 Epithelial-cadherin F ATGAAGAAGGTGGTGGAGGAGAAG 58.0 139
R GCTGGGCGAGGACGGTATTG 60.4

10 Cardial a2 actin F CACCATCTCCAGAGTCCAG 54.5 130
R TCGTGAGAAGATGACACAGAT 53.2

11 Profilin 2 F TACGGCTGAAGAGGTCG 53.8 180
R AACGGCAATGCTGACTG 53.3

12 Tubulin a2 F GTGCTGGACCGAATGC 54.0 140
R GACTTCTTGCCATAATCTACAG 50.8

13 Vimentin F CATCAACCTGGAGTTCAAG 50.6 213
R GTCCACCTGCCTGCG 56.8

14 Galectin 9 F GCCTCAGCGATGGGAC 56.1 134
R CGAAAAGCGTGGATTGA 50.2

15 Stromal cell-derived factor 2 F AACAATCAGGAAGTCAGCG 52.7 153
R TTCCCCTGTAATGGTCAAG 51.7

16 Cathepsin L F GGCTTATGGACCAGGCT 54.5 130
R GTGTCATTGGCAGAGTTGT 53.0
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contamination: It should be difference in at least 12 cycles between
‘‘minus’’ and ‘‘plus’’ controls during QPCR. We compared gene
expression between 4 cDNA libraries: intact dorsal (ND), intact ven-
tral (NV), 8th day of regeneration dorsal (RD), 8th day of regeneration
ventral (RV). Each experimental point was done in triplicate. The 16
genes that we selected to validate are listed in Table 1. Since the pur-
pose of this experiment is to validate the microarray patterns, these
genes were selected randomly. For normalization an internal control
(house-keeping gene rpL27) was used. Data analysis was done with
the Pfaffl [8] and Ramakers et al. [9] methods.
3. Results

3.1. Regulation in dorsal or ventral iris

These comparisons were undertaken in order to see differences

between the intact irises and irises during lens regeneration. In

other words, to examine differences in gene expression in dorsal

or ventral irises, due to initiation of the regeneration process.
3.1.1. Comparison between intact normal dorsal iris (ND)

with dorsal iris during regeneration (RD). Several genes that

are responsible for tissue remodeling [10], such as MMP9,

galectin, cathepsin, collagenase, TIMP1 seem to be up-regu-

lated during dedifferentiation. This is to be expected, since

the process of dedifferentiation is marked by loss of pigmenta-

tion and remodeling. Other genes that seem to be up-regulated

are several cytoskeletal protein coding genes and H+ transport-

ing ATPase (Table 2). Very few genes (mainly those with no

known homology) seem to be down-regulated during dediffer-

entiation (Table 3).

3.1.2. Comparison between intact normal ventral iris (NV)

with ventral iris during regeneration (RV). Interestingly, dur-

ing the regeneration process, genes that were found to be up-

regulated in the dorsal iris were up-regulated in the ventral iris

as well, even though the ventral iris does not contribute to

regeneration (Table 2).



Table 2
Differentially regulated genes along the dorsal-ventral irises

Gene name/homology RD:ND RV:NV ND:NV RV:RD

No homology 2.191792079 1.960721314 �0.562404657 0.87964592
1.923385139 1.817683645 0.047084251 0.372243203
1.71490151 1.53721827 �0.067776697 0.54341548

Interferon regulatory factor I 1.651564559 1.733963983 �0.353343165 0.492271273
1.562679276 1.057754098 0.273350158 0.433858952

No homology 1.532512331 1.609600262 �0.122136189 0.592606709
1.355308533 1.061093452 0.078541035 0.284224289

No homology 1.202847378 0.659383629 �0.366737067 0.851760652
No homology 1.143917295 0.861587837 0.109822359 0.122632849
No homology 1.121170787 1.247927814 �0.044346187 0.590618464
Immune responsive protein 1 1.071896328 1.011308878 �0.181549422 0.461738048
Notophthalmus collagenase 1.051188823 1.89155884 0.348338623 0.771725988
Variable lymphocyte receptor-like gene 1.030488005 1.08710777 �0.058943765 0.539614276
No homology 1.012759776 1.279508446 0.269605432 0.936472627
Ferritin, heavy poly peptide 1 1.003957285 0.737356601 �0.026277219 0.029549368
No homology 0.995830619 1.665737417 0.39783504 0.629604895
No homology 0.957327579 0.71595014 �0.150120588 �0.252898881

0.939628073 0.995304883 0.300033962 0.529686404
Guanylate nucleotide binding protein 4 0.931329266 0.621388933 �0.023979163 0.311224023
Chloride channel, nucleotide sensitive 1A 0.924293056 0.923079567 0.194495527 0.388262391
Fibulin 2-like 0.919413455 0.844231686 �0.278215132 0.081287866
ATPase, H+ transporting, lysosomal subunit C 0.879010059 0.90228957 0.195570658 0.457332666
Heterogeneous nuclear ribonucleoprotein M 0.877881952 1.28836317 0.726537303 0.95044215
TIMP1 0.870079701 0.630342976 �0.262315589 0.330327295
Myosin alkali light 1av 0.865387859 1.154470223 0.257250823 0.316279634

0.816549876 0.115953498 �0.37314796 �0.619858232
No homology 0.800798377 0.545831494 �0.137608799 0.239403937
No homology 0.78082676 0.92880451 n.i.s. 0.490733899
Cold-inducible RNA binding protein 0.763822662 0.521449971 0.614936176 0.113921291
No homology 0.753151452 0.458873499 �0.156463562 0.158091757
No homology 0.738826266 0.441089922 0.328856367 0.04084412
Complement component C1q alpha 0.717487556 0.641492573 �0.353938445 0.524274582
No homology 0.700008141 0.775154589 0.056304667 0.2384327
DnaJ (Hsp40) homolog, subfamily B, member 6 0.697791599 1.006592194 0.211569931 0.96371162
No homology 0.672231019 1.082291441 �0.102798506 0.455060128
Eukaryotic translation elongation factor 1 beta 2 0.648320051 0.563452824 0.297154248 0.854822912
Baculoviral IAP-repeat containing protein 2 0.636873105 0.865064872 0.001148684 0.689535548
Peptidoglycan recognition protein (MGC108330) 0.628512689 0.800828097 �0.117144625 0.255973372
Proteaosome subunit c3 0.600187196 0.752581655 0.279316544 0.551659886
ATPase, H+ transporting, lysosomal, V1 subunit H 0.592192437 0.712815726 0.117596349 0.515885679
Ribosomal protein S27 (metallopanstimulin) 0.546530648 0.71809839 0.447298697 0.507360789

0.532309318 0.873907848 0.155217038 0.51591953
Elafin-like #1 0.51178992 1.312530046 �0.194203378 0.674307611

0.495849702 1.109973725 0.173445474 1.241963232
No homology 0.371960932 0.89926198 �0.288685503 0.370437547
No homology 0.359600734 0.639129506 0.713875768 0.838533325

0.333039523 0.730058863 0.509058129 0.808423229
Ribosomal protein 37a 0.303486829 0.626880839 0.441573623 0.773118847

0.293609402 0.791912237 �0.320245044 0.324199607
Hypoxia induced gene 1 (MGC81854) 0.22962918 0.646389747 0.32344754 1.073069123
Type 1 cytoskeletal 12 keratin (LOC398464) 0.214832825 1.550596186 n.i.s. 1.334083584
No homology 0.10690408 0.372469666 0.304385429 0.885329548
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit f, isoform 2 0.04104392 0.770203615 0.724251123 1.015193939
Annexin A1-1 �0.018194988 0.078180618 0.429699386 0.848230467

0.630902393 0.23357597 �0.244516502 �0.40175653

0.334316825 �0.21143992 �0.124565511 �0.45911250
�0.296380454 �0.20507679 �0.319848861 0.161319802

0.226281857 �018471720 0.004111931 �0.24288805
0.232857232 0.119469382 0.001670135 0.072639419

Genes in red (satisfying |x| > 0.7; see Section 2) and in blue (not in that category) were selected for QPCR analysis. (For interpretation of the
references to colour in this table legend, the reader is referred to the web version of this article.)
n.i.s.: non-interpretable signal.
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3.2. Regulation along the dorsal-ventral axis

These comparisons were undertaken in order to see differences

between the regeneration-competent dorsal iris and the regener-

ation-incompetent ventral iris both before and after lentectomy.
3.2.1. Comparison between ND and NV. Overall we can see

that levels of gene expression along ND and NV vary little

with some genes possibly expressed at slightly higher levels in

the dorsal iris (i.e. heterogeneous nuclear ribonucleoprotein M



Table 3
Genes showing mostly down-regulation

Gene name/homology RD:ND RV:NV ND:NV RV:RD

No homology �1.775609109 �0.290882313 �0.096283064 n.i.s.
No homology �1.259259341 n.i.s. n.i.s. n.i.s.
No homology �0.965052409 n.i.s. n.i.s. n.i.s.
No homology �0.711734613 �0.601414161 �0.650479871 n.i.s.
No homology �0.687275516 �0.766315475 �0.644919129 n.i.s.
Osteonectin (secreted protein, acidic, cysteine-rich) �0.435398869 �0.77103128 �0.020573987 �0.037651281
Ly-6/urokinase-type plasminogen activator receptor (uPAR) superfamily �0.157042582 �0.826111357 n.i.s. �0.230658717

Actin, alpha 2, smooth muscle, aorta �0.104519399 �0.912041524 �0.463272337 �0.351769044
Solute carrier family 25, adenine nucleotide transporter 0.067273669 �0.704719724 �0.141566425 �0.132409871
No homology n.i.s. �0.92004439 n.i.s. n.i.s.
No homology n.i.s. n.i.s. �0.74627459 n.i.s.

Genes in red (satisfying |x| > 0.7; see Section 2) were selected for QPCR analysis. (For interpretation of the references to colour in this table legend,
the reader is referred to the web version of this article.)
n.i.s.: non-interpretable signal.
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and ATP synthase, H+ transporting, mitochondrial F0 complex,

subunit f, isoform 2).

3.2.2. Comparison between RD and RV. A quite surprising

picture emerges by comparing the ventral iris (RV) and dorsal

iris (RD) during regeneration. Several of these genes appear to

be expressed at slightly higher levels in the ventral iris, even

though RV does not contribute to lens regeneration. Clearly,

MMP9, galectin, cathepsin, and collagenase and are among

several genes that are up-regulated in RV (Table 2).

3.3. Validation by real-time QPCR

We selected 16 genes based on the microarray data for ver-

ification of expression by QPCR. QPCR is an independent

technique that is commonly used to verify microarray data.

We show that all the selected genes were expressed in a similar

manner when examined by QPCR. Microarray data indicated

that 12 of these 16 genes exhibited differential expression be-

tween regenerating and intact tissues at the level of |x| P 0.7

(log2 scale) as described in the methods (marked red in Tables

2 and 3). These were: MMP9, alpha6 tubulin, galectin, cathep-

sin L, stromal cell-derived factor 2, profilin 2, junb, DD223d (no

homology), small EDRK-rich factor, alpha2 actin, MMP3/10a

and actin related. All of them, except small EDRK, are in good

agreement with the microarray data and clearly verify the up-

regulation in the ventral iris as well (Fig. 1). We also selected

four other genes, which do not fall into this category and do

not show such variation in regulation by microarray analysis.

These genes were: cadherin, tubulin alpha2, vimentin and gluco-

samine (marked blue in Table 2). As expected, the QPCR data

agree in general with the microarray values (the reader should

note that in some cases the values are too small for any differ-

ence to be significant). Overall the QPCR data confirmed the

main conclusion of the microarray data, i.e., that similar activ-

ity exists in the dorsal and in the ventral iris.
4. Discussion

In this paper we have examined the expression of 373 newt

genes in the iris of the adult newt before and after lentectomy.

The dorsal iris PECs are responsible for lens regeneration via

transdifferentiation, while, interestingly, the ventral counter-

parts never participate in the process of regeneration [4,6].

The reason for this difference in PEC response has not yet been
elucidated. Understanding the molecular mechanisms underly-

ing this difference in response to lentectomy would provide in-

sights as to why regeneration is not possible from the ventral

iris as well as from irises of other animals, including mammals.

Given the fact that the ventral iris cells do undergo some

regeneration-related activities, such as cell cycle re-entry, it is

important to examine genetic activity in these cells. In a previ-

ous study we have shown that regulatory genes, such as six-3,

BMPs and pax-6, which are involved in induction of lens

regeneration, are expressed in the ventral iris as well, indicating

that the presence of such regulatory genes alone might not be a

sufficient for regeneration. Rather, up-regulation over normal

levels might be the key for induction of lens regeneration.

These surprising results prompted us to question how wide-

spread this kind of gene regulation might be in the ventral iris.

To answer this question, we employed microarray analysis

using an available array of 373 newt genes that were known

to be enriched for genes expressed in the regeneration blastema

[7]. Even though the limited number of cDNAs in the micro-

array might provide some bias, we did find that several genes

are in fact up-regulated in both dorsal and ventral iris during

regeneration. What is more striking is that several of these

genes are involved in tissue remodeling, such as MMP9,

TIMP, collagenase and cathepsin. These factors are known to

be regulated in response to injury or amputation of the limb

in order to re-organize the extracellular matrix and lead to

dedifferentiation. Our data clearly show that the ventral iris

undergoes similar events, even though it does not contribute

to regeneration. These observations provide a new paradigm

in the field of lens regeneration in which the ventral iris is

not a passive tissue, as it was thought to be, but undergoes sim-

ilar events as the regeneration-competent dorsal iris at least as

it is judged from the gene expression signatures that we ob-

served. This might suggest different mechanisms for lens regen-

eration. In one, both dorsal and ventral iris initiate the same

events in response to lens removal, but then there is an inhib-

itor in the ventral iris that prevents the completion of the

regenerative process. Alternatively, completion of regeneration

might be prevented by the lack of one or more factors required

for the final stages of the regenerative process or that up-regu-

lation of gene expression in the ventral iris may be a mecha-

nism of negative regulation in the dorsal iris. Finally,

another possibility is that up-regulation over normal gene

expression levels is required for the formation of a new lens.



Fig. 1. Examination of 16 genes (marked red and blue in Tables 1 and 2; see Section 2 for criteria and text) by QPCR. The same comparisons as in
the tables are presented. Note the general patterns of similar regulation in the dorsal and the ventral iris as well. Most of these genes were up-
regulated during regeneration in both the dorsal and ventral iris. Only actin alpha 2 was down-regulated during regeneration.
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We can now start designing experiments to determine which of

these mechanisms might be controlling lens regeneration. For

example, a comparative study with other animals incapable

of lens regeneration, such as axolotl and mice, might provide

useful information. Answers to these questions would help ex-

plain why higher animals are unable to regenerate their lenses

and could lead to new methods for inducing lens regeneration.

In a more general sense, given that the adult newt is capable of

regenerating its retina through transdifferentiation of the reti-

nal pigment epithelial cells, the results of our studies might also

be applicable to retinal regeneration. If so, the study of the

mechanisms of lens regeneration in newts could have an im-

pact for the treatment of several diseases that lead to blindness.
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