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This note is a sequal to the first note with the same title in these Pro
ceedings, the contents of which are assumed to be known. 

5. The Fatou property 

We recall that nonnegative functions in M are denoted by u, v, .... 
The notation Un t u will mean that Un(x) t u(x) as n --+ oo almost every
where on X. The main topic in this section is a certain property which 
a function seminorm e may or may not possess, and which turns out to 
be stronger than the Riesz-Fischer property. 

Definition 5.1 (Fatou property). The function seminorm e is said to 
have the Fatou property whenever Un t u implies e(un) t e(u). 

(Weak Fatou property). The function seminorm e is said to have the 
weak Fatou property whenever Un t u and lim e(un)<oo implies that 
e(u)<oo. 

(Fatou null property). The function seminorm e is said to have the Fatou 
null property whenever it follows from Un t u and e( Un) = 0 for all n E N 
that e(u) = 0. 

The reason why these various properties are called Fatou properties 
will become clear from Theorem 5.7. Note that any function norm has 
the Fatou null property. 

Lemma 5. 2. The Fatou property implies the weak Fatou property, 
and the weak Fatou property implies the Fatou null property. 

Proof. The first statement is evident. For the proof of the second 
statement, assume that e has the weak Fatou property, and Un t u with 
e(un)=O for all n EN. If e(u)>O we set Vn=nUn, so Vn tv and e(vn)=O 
for all n EN. Since v-;.nun>kun for all n-;.k, we have v-;.ku for every 
kEN, so e(v)>ke(u), which implies e(v)=oo. Hence, Vntv, e(vn)=O for 
all n EN, and e(v) = oo; this contradicts the hypothesis that e has the 
weak Fatou property. 

1) Work on this paper was supported by the National Science Foundation of 
the U.S.A. under grant NSF-G 19914 to the California Institute of Technology. 
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Theorem 5.3. If e has the weak Fatou property, and hence surely 
if e has the Fatou property, then e has the Riesz-Fischer property, and so 
Le is th~n complete. 

Pro of. Let e have the weak Fatou property, and ze(un) < oo. Set
ting Sn=Ul + ... +un, we have e(sn) < ze(un) for all n EN, so lim e(sn) <oo. 
Since sn t zun, it follows from the weak Fatou property that e(zun) < oo. 

The proof shows that the weak Fatou property implies the Riesz
Fischer property in the strong sense that ze(un) < oo implies e(zun') < oo 
for every choice of Un' = un(n EN). 

It will be proved now that the Fatou property is preserved under the 
formation of suprema. The same does not hold for the weak Fatou 
property (cf. Example 5.6 (iii)). 

Theorem 5.4. If eT is a function seminorm with the Fatou property 
for every -r in the index set {-r}, then e=sup eT has the Fatou property. 

Proof. It was already observed in section 3 that e =sup eT is a function 
seminorm. Let untu. Since it is evident that <X=lime(un)<e(u), it 
will be sufficient·to show that <X>{3 for any f3<e(u). Hence, let f3<e(u). 
Then eT(u)>{3 for some 't' E {-r}, so eAun)>{3 for all n:>no since eT has the 
Fatou property. It follows that e(un)>{3 for all n:>no, and so surely 
<X=lim e(un)>f3. 

Theorem 5.5 (Amemiya's theorem, [1]). The function seminorm e 
has the weak Fatou property if and only if there exists a finite constant k:;;;. 1 
SUCh that Un t U implies (!(U) < k lim (](Un). 

Proof. If there exists such a constant k then e has evidently the 
weak Fatou property. Assume now that e has the weak Fatou property, 
but there exists no such k. Then there exists for every k E N a sequence 
Unk t U11; (as n--+ oo) such that 

(1) 

It is impossible that limn e(unk) = 0 for some k, since in view of the Fatou 
null property (which follows from the weak Fatou property) this would 
imply e(uk) = 0, in contradiction to (1). Hence, multiplying by suitable 
constants, we may assume that limn e(unk) = k-2, and so e(uk) > k for every 
kEN. Now, let Vn=Unl +un2+ ... +unn for all n EN. Then Vn tv and 
lim e( Vn) < Zk limn e( Unk) < zk-2 < oo. But v =sup Vn:;;;. supn Unk = Uk; for 
all k EN, so e(v) = oo. This contradicts the hypothesis that e has the 
weak Fatou property. 

The weak Fatou property was introduced, for (partially) ordered 
vectorspaces, by I. AMEMIYA [1]; in the first papers on general Banach 
function spaces it was always assumed that e has the Fatou property. 
The Fatou null property, which will play an important part in the develop-
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ment of the theory, is introduced here for the first time in print, as far 
as we are aware. 

Example 5.6. (i) The weak Fatou property does not imply the 
Fatou property. Indeed, let X =N, f-l discrete measure, and 

e(u)=sup u(n)+a lim sup u(n}, 

where a is a positive constant. Obviously, e is a function norm, and e(~·:).;;;; 
.;;;;(a+1)JJuJJeo where llulleo=sup u(n) is the leo norm of u. 

Let the sequence { Uk; k E N} be defined by uk( n) = 1 for n.;;;; k and 
uk(n) = 0 for n> k. Then e(uk) = 1 for every k, and Uk t u with u(n) = 1 
for every n. Hence e( Uk} t I, but e( u} = I +a> I. This shows that e does 
not have the Fatou property. 

We shall prove now that uktu implies e(u).;;;;(a+I)lime(uk) for 
every sequence {uk; k EN}, and it will follow then immediately that e 
has the weak Fatou property. For the proof we may assume that 
lim e(uk)<oo. Since Uk t u, we have lluklleo t llulleo, and lluklleo is bounded 
since lime(uk)<oo. Hence, given e>O, we have llulleo<lluklleo+e for 
k > ko. It follows that 

e(u) <(a+ 1)llulleo <(a+ I)lluklleo +(a+ 1}e <(a+ 1)e(uk) +(a+ 1)e 

for k;;.ko, and so e(u).;;;;(a+1) lime(uk). The particular sequence {uk} 
considered in the preceding paragraph shows that k =a+ I is the best 
constant in Amemiya's theorem for this example. 

(ii) The Fatou null property does not imply the weak Fatou property. 
Indeed, any function norm e has the Fatou null property, but if Le is 
not complete (e.g. as in Example 4.9 (ii}}, then e does not have the weak 
Fatou property (since the weak Fatou property implies completeness of 
Le by Theorem 5.3). 

(iii) The weak Fatou property is not always preserved under formation 
of suprema. Indeed, let X =N, f-l discrete measure, and let the sequence 
{em; m E N} of function norms be defined by 

em(u) =sup u(n) +m lim sup u(n). 

We set e=supem· Obviously, e(u)=supu(n) if limsupu(n)=O and 
e(u) = oo if lim sup u(n) > 0. In view of (i) every em has the weak Fatou 
property, but e does not possess this property as shown by the sequence 
{uk; kEN} satisfying uk(n)=1 for n.;;;;k and Uk(n)=O for n>k. 

(iv) The Riesz-Fischer property does not imply the weak Fatou 
property, not even for norms. Indeed, let e be the same function norm 
as in the preceding part (iii). Evidently, Le is isomorphic (algebraically 
and isometrically) to the subspace (co) of leo, and hence Le is complete. 
It follows that e has the Riesz-Fischer property. But, as shown in (iii}, 
e does not have the weak Fatou property. 

(v) For seminorms the Riesz-Fischer property and the Fatou null 
property are independent. Indeed, every norm has the Fatou null property 
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but there exist norms which do not possess the Riesz-Fischer property. 
Conversely, if X =N, fl discrete measure, and e(u) =lim sup u(n), then e 
has the Riesz-Fischer property but not the Fatou null property. Another 
example is the Marcinkiewicz space with exponent p (I ,;;;: p < oo) in 
Example 4.9 (iv). In this example the seminorm e has the Riesz-Fischer 
property, but not the Fatou null property as shown by the sequence 
Un(X) =X[ -n,n](X). 

The next theorem, due to its parallelism to Fatou's well-known lemma 
for integrals, will show why the Fatou property is called by that name. 

Theorem 5. 7. The function seminorm e has the weak Fatou property 
if and only if there exists a finite constant k > I such that 

Q(lim inf Un) < k lim inf Q(Un) 

for every sequence {un; n EN}. The seminorm e has the Fatou property if 
and only if this inequality is always satisfied with k = I. 

Proof. If e has the weak Fatou property there exists, by Amemiya's 
theorem, a finite constant k;> I such that Vn tv implies e(v) .;;;;k lim e(vn). 
Now, let {un; n EN} be an arbitrary sequence. We set Vn=inf(un,Un+b ... ) 
for every n EN. Then Vn t lim inf Un and so e(lim inf un) .;;;;k lim e(vn). 
But e(vn)<e(uk) for all k;>n, so e(vn)<liminfe(uk) for every n EN. 
It follows that 

Q(lim inf Un) < k lim Q(Vn) < k lim inf Q(Un)· 

Conversely, if e(lim inf Un) < k lim inf e(un) for some finite k >I and 
every sequence {un}, then the particular case that Un t u shows that e 
has the weak Fatou property. 

If e has the Fatou property, then the inequality for increasing sequences 
holds with k= I, and the above proof shows then that the inequality for 
arbitrary sequences holds as well with k =I. Conversely, if e(lim inf un),;;;: 
,;;;lim inf e(un) holds for arbitrary sequences, then in particular for 
increasing sequences, so e has the Fatou property. 

If e has the Fatou property, then 

(2) 

for any u EM+ and any sequence En t E. It may be asked whether (2) 
is already sufficient in order that e have the Fatou property. The answer 
is no as shown by the following example. Let X consist of one point with 
f!(X)=I, and let e(u)=O for u finite and e(u)=oo for U=OO. Then (2) 
holds but e does not have the Fatou property. We shall prove now that 
if e satisfies (2) and possesses, besides that, the Fatou null property, 
then e has the Fatou property. A similar theorem for the weak Fatou 
property will be proved later (in section 7). 

11 Series A 
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Lemma 5.8. lfu E M+andE={x: u(x)= +=}, theneithere(uxE)=O 
or e(uxE)==. If e has the Fatou null property, then e(uxE)=O if and only 
if (!(XE) = 0 (and, hence, (!(UXE) = CXl if and only if f!(XE) > 0). 

Proof. Since ~-uxE=UXE it follows easily that =·e(uxE)=e(uxE), 
and so e(uxE) is either zero or+=. It is evident that e(uxE)=O implies 
e(XE) = 0. Conversely, if (! has the Fatou null property, then e(XE) = 0 
implies (!(UXE) = 0. 

Theorem 5. 9. The following conditions on the semi norm e are 
equivalent : 

(i) e has the Fatou property. 

(ii) e has the Fatou null property, and e(uXEn) t e(uxE) for any u EM+ 
and any sequence En t E. 

Proof. It is evident that (i) implies (ii). Conversely, let (ii) hold, and 
assume that un t u. We have to show that e(un) t e(u). Let 

E={x: u(x)= +=}. 

There are two cases, either e(uxE)<= or e(uxE)==. If e(uxE)<=, then 
e(uxE)=O by the preceding lemma (i.e., E is now a strong e-null set), 
so that making u and all Un zero onE affects neither e(u) nor any of the 
e(un)· Hence, we may assume that u is finitevalued. Let D={x: u(x)>O}, 
0<e<1, and En={x: Un(x)>(1-e)u(x)}. Then En t D, so 

(!(UXEn) t e(u), 

and it follows that 

(!(Un):>(1-e)(!(UXEn) t (1-e)e(u). 

This shows that lim e(un);;;. (1-e)e(u) for all such e, so e(un) t e(u). 
In the second case we have e(uxE)==. Then e(u)==, and e(XE)>O 

by the preceding lemma (since e has the Fatou null property). Note 
that Un t =on E. We choose any ~X>O, and let Fn={x: Un(x)>~X} n E. 
Then F n t E, so e(XFn) t e(XE). It follows that e(un);;;. 1Xf!(XFn) t 1Xf!(XE), 
so lime(un)>~Xf!(XE) for every ~X>O. But then lime(un)==, and so 
e(un) t e(u). 

In the remainder of this section we investigate the properties of a 
seminorm e having the Fatou null property. In this case any e-null set E, 
i.e. any set E satisfying e(XE) = 0, is a strong e-null set, and hence 
e(/xE) = 0 for any I EM (indeed, e(/xE) = e( CXl• XE) = 0). Obviously, countable 
unions of e-null sets are now e-null sets. · ; 

Theorem 5. l 0. Given the function seminorm e with the Fatou nult 
property, there exists a maximal e-null set Xo, i.e. a e-null set Xo such that 
Y =X -Xo does not have any e-null subset of positive measure. The set 
Xo is p,-uniquely determined. 



153 

Proof. Assume first that /l(X) < =, and let IX= sup {!l(E): e(XE) = 0}. 
Then, since finite unions of e-null sets are e-null sets, there exists an 
ascending sequence {En; n EN} with e(XEn) = 0 for all n and !l(En) t IX. 

Let En t Eo. Then e(XEo) = 0 in view of the Fatou null property, and 
!l(Eo) =IX, so by the definition of IX the set X- Eo does not have any 
e-null subset of positive measure. It follows easily that Eo is !l-uniquely 
determined. 

If /l(X) = =, we set X= Ui"' Xk with all Xk disjoint and of finite measure. 
Each Xk has a wuniquely determined maximal e-null subset Ek. It follows 
easily that Xo= Ui"'Ek is the desired maximal e-null set in X. 

It is an immediate consequence that I _ g holds if and only if I= g 
holds almost everywhere on Y =X -Xo. Furthermore, e(/)=e(/xy) for 
every IE M. Hence, there is no loss of generality if we delete Xo from X 
and consider only the restriction of each function on the set Y =X -Xo. 
In other words, instead of the equivalence class [/] we consider the 
common restriction on Y of all g E [f]. The function seminorm e becomes 
then a function norm on the collection of all "'-measurable functions 
on Y. In the particular case that e has the Riesz-Fischer property (i.e., 
the case that Le is complete) we have therefore e(zvn) < ze(vn) for any 
sequence {vn; n EN} defined on Y (cf. Theorem 4.2). But then, if {un;n EN} 
is any given sequence of nonnegative functions on X, we have just as 
well that e(zun) < ze(un), since e(u) = e(uxy) for any u. Hence, the 
functions Un 1 appearing in the Riesz-Fischer inequality e(zun') < ze(un) 
for seminorms may now be chosen arbitrarily subject only to the con
dition that un' Un for every n EN. Conversely, it is easy to show that 
if the seminorm e has the Riesz-Fischer property in this strong sense, 
then e has the Fatou null property. 

California Institute of Technology
Utrecht State University and 
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