Results of 52 coronary lesions (LAD: 38, LCX: 6, RCA: 8), 12 were hemodynamically significant (FFRversion < 0.80). FFRrange identified these lesions with an accuracy of 90%, sensitivity of 67%, specificity of 98%, positive predictive value of 89%, and negative predictive value of 91%. Correlation between FFRversion (mean: 0.84 ± 0.12) and FFRrange (mean: 0.86: 0.09) was r = 0.82 (see fig. 1).

Conclusions: Model-based determination of coronary FFR based on invasive angiography has a high diagnostic accuracy when compared to invasive FFR. Further research will be performed to refine models and obtain further verification of the method.

TCT-356
Deferral Versus Performance of Coronary Intervention Based on Coronary Pressure-Derived Fractional Flow Reserve: Systematic Review and Meta-analysis
Bruno R. Nascimento1, Ana Flavia L Belfort2, Gabriel T. Pereira2, Antonio Laiz P Ribeiro1, Guilherme Rafael S Athayde1
1Hospital das Clinicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 2Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 3Hospital das Clinicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Background: Fractional flow reserve (FFR) has been proposed as the gold standard to assess functional severity of coronary artery stenosis and to stratify which lesions should be subjected to coronary intervention (PCI). Our aim was to determine the safety of using FFR as a decision-making tool for deferral or performance of PCI, based on data from published studies.

Methods: Systematic review by independent researchers was performed in PubMed and EMBASE including papers indexed until October 11th 2013 that used FFR (0.75 or 0.80) to determine in which lesions PCI should be performed or deferred. Outcomes of interest were death, myocardial infarction (AMI) and new revascularization (RV). Comprehensive Meta Analysis was used to pool study results and for meta-regression.

Results: A total of 60 abstracts remained and 19 papers (12 observational studies and 7 randomized-controlled trials) were included for analysis, totaling 3,097 patients (3,796 lesions). Nine papers had two arms (PCI and deferral) and 10 had only the deferral arm; FFR cut-off was 0.75 in 15 studies, and 0.80 in 4. Weighted mean follow-up time was 21.2 months (6.9 to 53). In indirect comparisons, PCI and Deferral groups had similar death: 2.2% (95% CI: 1.1-3.2%) and 2.8% (95% CI: 1.6-4.0%), respectively (p = 0.41), and AMI rates: 1.5% (95% CI: 0.8-2.3%) in the PCI group vs. 1.9% (95% CI: 0.9-3.9%) in the deferral group (p = 0.31); with no difference in RV (1.0% vs. 1.2%, respectively; p = 0.50). A number of new lesion-related deaths occurred in the deferral arm: 3.0% compared to deferral: 2.5% (p = 0.50). No other co-factors (age, hypertension, diabetes, FFR cut-off) influenced the outcomes.

Conclusions: Based on pooled data, FFR seems to be a safe and useful tool to determine lesions to be treated. Higher RV rates were observed in the PCI groups, speculatively related to restenosis. This data, however, should be parsimoniously interpreted, given the considerable heterogeneity of the studies published so far.

TCT-337
Quantitative assessment of microcirculatory resistance in infarct-related and non-infarct-related coronary arteries in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention
Dejan Orlic1, Branko Relešin1, Dejan Milasinovic1, Milorad Zivkovic1, Zlatko Mehmedbegovic1, Vladimir Dedovic1, Goran Stankovic1, Zlatko Meleti, Branko Dedovic1, Milan Dedovic1, Goran Stankovic1
1Clinical Center of Serbia, Belgrade, Serbia

Background: It has been shown that index of microcirculatory resistance (IMR) in infarct-related artery is an predictor of infarct size and recovery of left ventricular function in patients with ST-segment elevation myocardial infarction (STEMI) treated by primary percutaneous coronary intervention (PCI). However, microcirculatory resistance in non-infarct-related arteries remains unknown in patients with STEMI.

Methods: In order to quantitatively assess microcirculatory resistance in infarct and non-infarct territories, we determined IMR in infarct-related and non-infarct-related coronary arteries with no critical stenosis (diameter stenosis < 70% in non-infarct-related artery). We aimed to determine whether IMR in infarct-related artery is an predictor of infarct size and recovery of left ventricular function in patients with STEMI.

Results: IMR in infarct-related artery was significantly increased as compared with IMR in non-infarct-related arteries: median 32.5 U (range 7.4 to 162.1) vs. 20.3 U (range 7.9 to 49.9; P = 0.001) in an adjacent vessel and 32.5 vs. 22.6 (range 5.9 to 105.1; P = 0.0022) in artery giving collateral blood supply to the infarct-related artery. Corrected IMR was also increased compared to IMR in non-infarct-related artery: 29.9 U (range 10.3 to 112.2) vs. 20.3 U; P < 0.001 and 29.9 vs. 22.6 U; P = 0.0047. The IMR values in the adjacent vessel and vessel giving collateral blood supply to infarct-related artery were similar (20.3 vs 22.6 U; P = 0.32).

Conclusions: Microcirculatory resistance is elevated in the territory of infarct-related artery as compared with non-infarct-related arteries in patients with STEMI. There is no difference in the microcirculatory resistance between vessel adjacent to infarct-related artery and vessel giving collateral blood supply to infarct-related artery.

TCT-338
Abstract Withdrawn