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Abstract

Maximum power point tracking (MPPT) is aimed in all photovoltaic (PV) applications. The Constant Voltage (CV) based MPPT
technique is considered one of the most commonly-used techniques in PV systems. This paper is aimed at enhancing the
performance of the CV technique using PI controller with gains determined by the genetic algorithm (GA). The proposed method
has been evaluated by numerical simulation using MATLAB under different atmospheric conditions. For evaluation and
comparison analysis, the CV based MPPT technique with PI gains determined by the trial and error (TAE) have been presented.
Performance assessment covers time response and MPPT efficiency. The results show performance improvement by fast time
response and high MPPT efficiency as compared to the CV technique with gains determined by the TAE.
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1. Introduction

NOWADAYES, solar cells are an attractive source of energy. Plentiful and everywhere, this source can be
exploited to provide power to a variety of devices - from small mobile computers to large automobiles and power
plants. This broad user base requires solutions tuned to financial and efficiency requirements of particular
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applications [1]. The operating point of a PV module is located at the intersection of its I — V curve with the load-
line. This operating point may be far from the maximum power point (MPP) with a subsequent loss of a significant
part of the available solar power. A MPP tracker is used to achieve optimum matching between the PV module and
the load characteristics. The performance of various MPPT techniques was compared before [2]. It is concluded that
the CV technique is the simplest MPPT technique as it needs only one sensor to measure the module output voltage
[1,3-5]. However, it suffers low accuracy, and it requires more than one sensor to increase its accuracy. Normally,
the CV technique uses a dc — dc converter preceded by PI controller with gains Kp and K;. The PI controller is used
to determine the duty ratio d of the dc — dc converter by regulating the error signal AV between module output
voltage Vpy and a reference voltage Vier. The reference voltage is assumed equal to the voltage Vi corresponding to
MPP at standard test conditions (STC) as given in the data sheet provide by the manufacturer of the PV module [5].
The suitable gains of the PI controller are usually determined using time-consuming trial and error (TAE) [6-9].
However, systematic determination of the gains of the PI controller were reported in the literature for many research
areas except the CV based MPPT technique for PV applications [10—12].

Thus, the purpose of this paper is to determine accurately the PI controller gains by genetic algorithm (GA) based
determination method to enhance the accuracy of the CV technique. The performance of the tracker was checked
with gains determined by GA against that with gains determined by TAE. Thus, this study is organized as follows;
Section 2 presents proposed GA-determination of gains. Next, the tracker system is described in section 3. After that,
the results and discussion are presented in section 4. Finally, the conclusions of the study are reported in section 5.

2. Proposed GA-determination of the PI Controller Gains

The GA is based on minimization of the fitness function expressed as:
Fitness Fun = J'(AV Ydt (1)

where AV is the difference between Vpy and Vier. GA operates on a population of the PI controller gains in order to
compute the corresponding fitness function value for each pair of K, and Ki;. In order to predict a population for new
generation, four processing steps named, scaling, selection, crossover and mutation have to be executed [13]. The
procedure of the population generation continues until a termination criterion is satisfied where optimum gains are
determined. This procedure is described in flow chart in Fig. 1.

3. Investigated Tracker System
3.1. PV Mathematical Model
The single diode model is the most commonly-used in power electronics studies due to its parameterization

depends only on provided information by data sheet [14]. This model consists of a current source, a diode, and series
and parallel resistances. The characteristics of a PV module can be gotten from the 2" Kirchhoff law as in Eq. 2 [15]:
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where V and | are the voltage and current of the PV module, respectively. ns is the number of series connected cells
in the module. Iyh and |, are the photo-generated current and the dark saturation current. V; is the junction thermal
voltage. Rs and Rsy are the series and shunt resistances. The model represented by Eq. 2 has five unknown
parameters: lpn, lo, Vi, Rs and Rsh. The objective is to estimate these unknown parameters under STC from the data
sheet provided by the manufacturer. PV data-sheet provides only four information about its output electrical
characteristics at STC, which are short-circuit current ls, open circuit voltage Vo, operating voltage and current at
MPP (Vm, Im), and ns. Three equations are obtained by substituting these information in Eq. 2. The fourth equation is
obtained at MPP where dP/dV is equal to zero. Then, the fifth equation is gotten by approximating that Rsy equals to
inverse of the slope dI/dV at (0, lsc). Solving these five formulated equations determines the unknown parameters of
the PV module at STC. After that, the influence of temperature and radiation is expressed by Egs. (3 —9) [14,15].

3.2. Boost Mathematical Model

To extract maximum power, a boost converter is connected between the PV module and the load resistor, and
duty ratio of this converter is used to modify the equivalent load resistance as seen by the source, so that maximum
power is transferred between PV module and load demand. The boost converter contains two electrical storage
elements (inductor L and capacitor C). Therefore, two governing equations expressing the inductor current i and
capacitor voltage Vc are written as [16]:

diI_{_rll__rm *d+_R(rc+rl+rd)+rc(rl+rd)*(1d):|*i|

dt - L*(R+rc) (10)

-R V. —v V. —v
—————*(1-d)* L msqg 4t —dx(1—d
+L(R+rc)( Jrve+ L L (t-d)
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where Vi and vq are switch and diode forward voltages. Vi is the adjustable input voltage to the converter.
3.3. PI Controller

The PI controller gains K, and K; determine the performance of the controller. K, decreases rise time of the
module output voltage Vpy, increases overshoot of Vpy, and reduces steady state error AV and K; decreases rise time
of Vpy, increases overshoot and settling time of Vpy, and eliminates steady state error AV.

4. Results and Discussion

To verify the performance of the proposed system using resistive load (R = 50 W). The tracker under study
includes PV module BP-MSX120, boost converter and PI controller. The module’s specifications are tabulated in
Table 1 [17]. The parameters of the boost converter are grouped in Table 2. The proposed PV mathematical model is
validated by power system simulator (PSIM) based PV model. The max deviation does not exceed + 0.5%. The
electrical characteristics of the PV module are demonstrated by I — V curves in Figs. 2 and 3. The radiation and
temperature influence the module I — V characteristics as shown in Figs. 2 and 3, respectively. Fig. 2 shows that
both the short circuit current and the open circuit voltage increase with the increase of the radiation level.
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Table 1: Key specification of BP-MSX120 module Table 2: Key specification of Boost Converter.
Parameter Variable Value
Maximum power P 120 W Parameter Variable  Value
Voltage at Pm Vi 337V Input Voltage A adjustable
Current at Pm Im 356 A duty ratio d controllable
Short circuit current Ise 3.87A Inductor Inductance L 0.05H
Open circuit voltage Vo 421V Inductor Resistance r 02Q
Temperature coefficient of ki 0.065 i
X i CapaC}tor c 33 F
se ] Capacitance
Ilemperature coefficient of ky -0.16 Capacitor Resistance r 01Q
oc .
No. of cells in series N 72 Switch Forward iy 07V
. . Voltage

Series resistances Rs 0.4471 ohm . .

Switch Resistance m 0.01Q
Shunt resistances Rsh 1750 ohm .

Diode Forward v
Junction thermal voltage Vi 0.0366 V Voltage Va 0.7

Diode Resistance rq 0.01 Q

5 -
—200
—400

< <3
T z
8 s
t =
3 32
g g [—o
—25
1 —50
b |
* PSIM
0 10 20 30 50 0 10 20 30 40 50
PV-Voltage (V) PV-Voltage (V)
Figure 1: GA steps flow chart Figure 2: - V Curves, Radiation Effect (W/m?). Figure 3: I -V Curves, Temperature Effect (°c)

Fig. 3 shows that the open circuit voltage decreases and the short circuit current increases marginally with the
increase of the operating temperature.

For the GA, the initial population of gains and number of generations were selected 20 and 200, respectively. The
termination criterion was selected to terminate the new generation process at 200 generations. The scaling function
was selected rank, selection function was stochastic uniform, mutation function was uniform with rate 0.01 and
crossover function was scattered. The determination of the gains of the PI controller by the TAE provides Kp and Ki
values of 1.5 and 13 against 42.19 and 500 obtained by the GA.

Figure 4 shows the temporal variation of Ppy, where the temperature at STC and radiation increases from 400 to
1000 W/m? with rate 100 W/m? per second. The TAE is a solution-oriented as it is generally an attempt to find a
solution, not all solutions, and not the best solution. Therefore, it provides inaccurate gains that results large settling
time 300 ms against 5 ms on using GA, Fig. 4, and consumes more human effort in determination process of the
gains. Fig. 5 shows that the output power of the module Ppy assumes higher values on using GA in comparison with
those obtained using TAE. This reflects itself on the increase of the MPPT efficiency #wppr.

IPPV(MPPT Technique ) dt (12)
j Poy ma (data sheet ) dt

Mvper =
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Figure 5: Steady State Ppy vs Radiation for both TAE and GA.
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Figure 4: Temporal Variation of Ppy at T = 25 °c and G = 400:1000 W/m? with rate 100 W/m? per second.
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Figure 6: #mppT vs Radiation for both TAE and GA.
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The later was expressed before [18] as in Eq. 12. The numerator is the computed output power based on the CV
technique. The denominator is the maximum output power computed using the module data-sheet after being
corrected according to the solar radiation and temperature. Fig. 6 shows enhancement of nmppr on using GA

compared with TAE.

5. Conclusions

1-

2-

3-

This study proposed a performance enhancement of the CV technique by introducing GA as a

determination method for the PI controller gains.
The proposed GA based determination method showed an increase of the output power and a decrease of

the settling time when compared with those obtained by the use of TAE.
The proposed GA based determination method showed an increase of the MPPT efficiency when compared

with the use of TAE.
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