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a b s t r a c t

This study assessed the effect of using observed monthly leaf area index (LAI) on hydrological model perfor-

mance and the simulation of runoff using the Variable Infiltration Capacity (VIC) hydrological model in the

Goulburn–Broken catchment of Australia, which has heterogeneous vegetation, soil and climate zones. VIC

was calibrated with both observed monthly LAI and long-term mean monthly LAI, which were derived from

the Global Land Surface Satellite (GLASS) leaf area index dataset covering the period from 1982 to 2012. The

model performance under wet and dry climates for the two different LAI inputs was assessed using three

criteria, the classical Nash–Sutcliffe efficiency, the logarithm transformed flow Nash–Sutcliffe efficiency and

the percentage bias. Finally, the deviation of the simulated monthly runoff using the observed monthly LAI

from simulated runoff using long-term mean monthly LAI was computed. The VIC model predicted monthly

runoff in the selected sub-catchments with model efficiencies ranging from 61.5% to 95.9% during calibration

(1982–1997) and 59% to 92.4% during validation (1998–2012). Our results suggest systematic improvements,

from 4% to 25% in Nash–Sutcliffe efficiency, in sparsely forested sub-catchments when the VIC model was

calibrated with observed monthly LAI instead of long-term mean monthly LAI. There was limited systematic

improvement in tree dominated sub-catchments. The results also suggest that the model overestimation or

underestimation of runoff during wet and dry periods can be reduced to 25 mm and 35 mm respectively

by including the year-to-year variability of LAI in the model, thus reflecting the responses of vegetation to

fluctuations in climate and other factors. Hence, the year-to-year variability in LAI should not be neglected;

rather it should be included in model calibration as well as simulation of monthly water balance.

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The challenge of making accurate runoff predictions using hydro-

logical models under changing or ‘non-stationary’ conditions, due to

either changing climate and/or human intervention, is a significant

issue in hydrology [5,26,33]. Rainfall–runoff models that lack rep-

resentations of biophysical processes, such as vegetation dynamics,

have been found to perform poorly when calibrated in a wet climate

period and validated in dry climate period [6,25,43]. To address this

problem different studies have suggested approaches including cali-

brating model parameters on a portion of the record with conditions

similar to those of the future period to simulate [43], using tempo-

ral clusters [9] and adjusting the parameters according to the aridity

of the catchment [38]. Rather than calibrating parameters that vary

with the condition in the system, understanding the catchment pro-

cesses and effectively incorporating them into the model may help us
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o improve model performance by considering the various processes

hat are modified with changing climate.

A large amount of evidence shows that vegetation is an important

omponent of the hydrological process [14,32,35,40]. Vegetation

as a significant role in the partitioning of rainfall into runoff and

vapotranspiration (ET) mainly through canopy transpiration and

nterception loss [44]. Transpiration varies according to physiological

stomatal conductance) and structural properties, mainly leaf area

ndex (LAI) of the vegetation [16], while interception varies according

o structural properties of the vegetation and precipitation char-

cteristics [28]. Changes in LAI not only affect evapotranspiration

ut consequent changes in soil moisture also impact other catch-

ent processes including baseflow, recharge, infiltration excess,

aturation excess, subsurface storm flow and catchment wetness

47]. Hence, lack of representation of the year to year variability of

he monthly LAI in hydrological models may lead to lower monthly

odel performance due to underestimation of flow in dry periods

nd overestimation of flow in wet periods.

Remote sensing provides spatially and temporally variable LAI

atasets that help to capture the vegetation dynamics and can
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Location maps, climate zone: semi-arid (BSk), hot summer temperate, without dry season (Cfa), and warm summer temperate, without dry season, (Cfb) and land use/land

cover map of the Goulburn–Broken catchment and its sub-catchments.
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e incorporated in land surface models that include LAI in most

vapotranspiration processes. There have been some efforts to ex-

loit remotely sensed vegetation information into hydrological mod-

ls [40,49]. In their study of the North American monsoon in West-

rn Mexico, Tang et al. [40] applied year to year variable monthly LAI

nd mean monthly LAI obtained from the Moderate Resolution Imag-

ng Spectroradiometer (MODIS) into the Variable Infiltration Capacity

VIC) model to predict evapotranspiration for the years 2001–2008

nd validated their results with observations at two eddy covariance

ower sites. They found that using mean monthly LAI in VIC biased

vapotranspiration estimates by 10–30% due to not representing the

ear to year differences in vegetation greening onset and dormancy

eriods. Similarly, Ford and Quiring [14] investigated the effects of us-

ng observed monthly LAI compared with mean monthly LAI on sim-

lated soil moisture from the VIC model for the period 2000–2009

n eastern Oklahoma, USA. The authors also compared VIC-simulated

oisture results with in-situ soil moisture at different depths and lo-

ations and concluded that the models that incorporated observed

AI could better capture the intensity and duration of droughts. To

ate no studies have addressed the influence of observed monthly

AI on runoff simulation in the VIC model.

Sensitivity studies of VIC showed that the primary vegetation

haracteristic that affects the hydrological simulations is LAI [23].

ithin VIC, LAI controls the partitioning of the canopy storage into

anopy evaporation and through fall in vegetated areas. The default

anopy storage (mm) value in VIC is estimated as 20% of the LAI [10],

here field observations data are unavailable for each land cover

ype, and the storage is depleted using a nonlinear power function

s given by Deardorff [7]. LAI is also used in VIC in the partitioning of

ater that infiltrates into the ground into evapotranspiration from

he root zone soil column and recharge. This partitioning is made

hrough the vegetation where LAI is used to scale the leaf to canopy

ranspiration as given by [1,11]. Hence, neglecting the year to year

ariability of LAI in the VIC model might lead to lower performance

n runoff prediction and would be expected to be characterized by

nderestimation of flow in dry periods and overestimation of flow in

et periods, given the specific roles of LAI in the model.

This paper addresses the question of whether including vege-

ation variations that reflect both variations in climate and human

ctivities into a hydrological model improves model performance

n terms of runoff simulation under changing climate and catch-

ent conditions. Specifically, we examine the effects of using

bserved monthly LAI compared with long-term mean monthly

AI on VIC model performance in terms of runoff prediction in the
oulburn–Broken catchment for the period 1982–2012. Our approach

s to calibrate and validate VIC using both observed monthly LAI and

ong term mean monthly LAI and compare the model performance

n terms of simulated runoff for fourteen sub-catchments in the

oulburn–Broken catchment of south-eastern Australia. The paper

s presented as follows: the study area is described in Section 2, fol-

owed by Section 3: the dataset and model setup, the results are pre-

ented in Section 4, followed by discussion and conclusion sections in

ection 5.

. Description of the study area

The Goulburn–Broken catchment (35.8–37.7°S, 144.6–146.7°E)

s located in Victoria, south-eastern Australia and is part of the

urray–Darling basin (MDB). Fourteen sub-catchments were cho-

en for this study (Fig. 1). The Goulburn–Broken catchment cov-

rs approximately 24,000 km2 representing about 10.5% of the total

rea of the State of Victoria, and 18% of the water supply for Victo-

ia (www.riverfoundation.org.au). The Goulburn–Broken catchment

ontributes about 11% of the water resources of the MDB. The maxi-

um altitude is approximately 1790 m above mean sea level (AMSL)

n the southern side of the catchment and the minimum altitude is

6 m AMSL on the northern side of the catchment. The mean catch-

ent elevation of the selected sub-catchments ranges from 155.83 to

001 m AMSL.

The climate of the Goulburn–Broken catchment is influenced by

ountain ranges with high precipitation in the southern part and

ower precipitation in the flat plains of the northern part (declining

recipitation from south to north). The long-term (1982–2012) mean

nnual precipitation peaks at 1632 mm yr−1 in the southern moun-

ainous area, and reaches a minimum of 373 mm yr−1 in the north. In

he selected sub-catchments mean annual precipitation ranges from

26 to 1407 mm yr−1. About 60% of the total annual precipitation

ccurs in winter and spring; with about 45% occurring in the four

onths from June to September. The spatial variation in potential

vapotranspiration (PET), using the Penman–Monteith formulation

f the Food and Agricultural Organization (FAO56) method, is oppo-

ite to precipitation and varies from 775 mm yr−1 in the south to

238 mm yr−1 in the north of the catchment, and in the selected

ub-catchments it ranges from 903 to 1132 mm yr−1 (Table 1). The

atchment covers three climate zones based on the Köppen–Geiger

limate classification as shown in Fig. 1. The north lowland part of

he catchment experiences low annual precipitation and high poten-

ial evaporation and is semi-arid (BSk, 9%). The middle section of the

http://www.riverfoundation.org.au
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Table 1

Characteristics of selected sub-catchments for this study: mean annual precipitation (P), potential evap-

otranspiration (PET), mean annual leaf area index (LAI) and the percentage of the three land cover types

(crop, pasture and tree).

Catchment ID P (mm/yr) PET (mm/yr) LAI (m2/m2) Crop (%) Pasture (%) Tree (%)

1 911.00 1031.13 2.72 0.57 14.4 85.03

2 1028.09 969.66 2.75 1.04 32.71 66.25

3 1121.16 947.73 3.00 3.26 96.74

4 1170.00 928.23 3.00 6.4 93.60

5 1315.17 920.63 3.35 0.92 99.08

6 1407.00 902.77 3.83 5.5 94.50

7 1258.88 930.08 3.56 9.94 90.06

8 1299.98 902.45 3.67 2.57 97.43

9 1051.09 952.44 3.03 25.93 74.07

10 1034.81 942.63 3.23 7.62 92.38

11 659.00 1046.40 1.71 1.52 63.48 35.00

12 766.00 1028.12 1.91 1.16 56.27 42.57

13 733.00 1046.19 1.85 1.15 48.78 50.07

14 526.19 1131.91 1.23 17.44 21.64 60.92

Fig. 2. Derivation of mean monthly LAI (bold solid) from annual variations in monthly LAI (grey solid) between 1982 and 2012 for the three main vegetation types: crop (a), pasture

(b) and trees (c). The LAI is the average of all pixels that contribute more than 80% (dominant) cover type in the 5 km by 5 km grid. Annual LAI (solid line) and mean annual LAI

(dash line) are also plotted (d).
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catchment has a hot summer temperate, without a dry season climate

(Cfa, 35%). The southern part of the catchment has a warm summer

temperate, also without dry season, climate (Cfb, 55%) [34].

Most of the southern part of the catchment is covered by trees:

mainly open Eucalyptus tall trees and Eucalyptus woodlands (Fig. 1).

The central part and most of the northern part of the catchment are

covered by cropland and pasture with irrigated areas mostly found in

the north. The land cover type is grouped into three dominant land

cover types (trees, pasture and crop) which comprise 47%, 38% and

12% of the entire catchment, respectively, with the rest occupied by

water bodies and urban areas.

The seasonal and year to year variability of the areal average LAI of

the three dominant vegetation types in the study catchment is shown

in Fig. 2. Crop (Fig. 2a) and pasture (Fig. 2b) show much higher LAI

seasonality than tree (Fig. 2c), which is predominantly an evergreen

genus. The minimum LAI for crop and pasture areas occurs during
ummer when trees reach their maximum LAI. The deviation of the

bserved monthly LAI from the long-term mean monthly LAI is ob-

erved to be significant in all the three vegetation types (Fig. 2d). The

nnual LAI time series show declines in annual LAI of crop and pas-

ure and to a lesser extent trees during the recent prolonged drought

1997–2009) in the study area. Climatic and land cover type charac-

eristics for the 14 sub-catchments used in this study are presented in

able 1. There is no irrigation in any of these study sub-catchments.

. Dataset and method

.1. The VIC model

VIC is a spatially distributed physical-based macroscale hydrolog-

cal model that balances both water and energy budgets over a grid

ell. It has been successfully applied in many settings, from global to
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Table 2

VIC model parameters that need calibration, their physical meaning and possible value range.

Model parameters Units Physical meaning of model parameter

Possible range of

parameter value

b – Infiltration shape controlling surface runoff 0–0.5

Ds fraction Fraction of Dsmax where nonlinear (rapidly increasing) baseflow begins 0–1

Ws fraction Fraction of the maximum soil moisture (of the lowest soil layer) where

non-linear baseflow begins

0–1

d2 m Thickness of the second soil layer 0–2

d3 m Thickness of the third soil layer 0–2

Dsmax mm day−1 The maximum baseflow that can occur from the lowest soil layer 0–30

exp fraction Exponent of the Brooks–Corey drainage equation factors: to be multiplied

with FAO based generated exponent value

1–3.5
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iver basin scale [23,30,37]. It simulates soil moisture, evapotranspi-

ation, snow pack, runoff, baseflow and other hydrological properties

t daily or sub-daily time steps by solving both the governing wa-

er and energy balance equations [20]. VIC independently simulates

ll processes in each grid cell, which are equally spaced. The infiltra-

ion and runoff are estimated using the Variable Infiltration Capacity

odel curve, which uses the soil moisture content of the upper two

oil layers to approximate the spatial variability of surface saturation.

IC uses the Penman–Monteith equation to estimate potential evapo-

ranspiration, which requires inputs of maximum and minimum tem-

erature, vapour pressure, wind speed and solar radiation data. Over-

ll, the model represents the spatial variability in climate, vegetation

nd physical properties of soil [2–4]. VIC has been successfully ap-

lied in many settings, from global to river basin scale [23,30,37].

n Australia, Sivapalan and Woods [39] used the VIC model to assess

he effects of spatial variability of rainfall on soil moisture and Kalma

t al. [18] compared the temporal trend in soil moisture storage be-

ween one derived from spatially distributed field measurement at

atchment and the one simulated with the two layers VIC model and

eported that VIC could simulated soil moisture status at catchment

cale. Similarly, Western et al. [47] assessed VIC simulated soil mois-

ure in a small catchment in southern Victoria, Australia and reported

he time-series of spatially averaged internal total moisture storage

as consistent with observations despite different assumptions in

he statistical distribution of soil moisture storage used by VIC and

heir observed soil moisture dataset. After Liang et al. [20] modified

he VIC model for three layers and spatially varied vegetation, Zhao

t al. [50] assessed the model for prediction of runoff in a catchment

ocated in south-eastern Australia. The advantage of the VIC model

ver a simple conceptual rainfall–runoff model is that it uses a “mo-

aic” scheme that allows spatial representation of gridded topogra-

hy, infiltration rate, soil properties, climate variables and land cover

hich are important attributes in modelling runoff under spatially

eterogeneous conditions.

.2. Dataset

The input data used for the hydrological modelling include the

aily precipitation, maximum and minimum temperature, vapour

ressure and solar radiation data. They were obtained from the Aus-

ralian Water Availability Project (AWAP) of the Bureau of Meteorol-

gy [17]. The gridded daily wind run data were obtained from [24]

hat was generated from point measurements. All data have a spa-

ial resolution of 0.05° × 0.05° (approximately 5 km × 5 km), and

he period 1982–2012 was selected for this study based on the avail-

bility of LAI data. The elevation data were collected from the GEO-

ATA 9 Second Digital Elevation Model (DEM-9S) Version 3 [15] with

spatial resolution of 9 s (approximately 250 m). The elevation data

ere resampled to a resolution of 0.05° × 0.05° using the spatial av-

rage. The daily runoff data at the outlet of the selected calibration

ub-catchments were obtained from the Victorian water resources

arehouse (http://data.water.vic.gov.au/monitoring.htm).
The land cover input data were derived from the National Dyna-

ic Land Cover Dataset which provides a land cover map for the

hole of Australia at a resolution of 0.00235°× 0.00235° (approxima-

ely 250 m × 250 m) and can be accessed at (http://www.ga.

ov.au/metadata-gateway/metadata/record/gcat_71071). The dataset

as developed using the MODIS satellite and validated using a field-

enerated land cover map [22]. For this study the land cover class

as regrouped into three dominant classes: trees or forest, grass

r pasture and crop; and resampled to the AWAP resolution to be

patially consistent with the other input data. Then the fraction of

ach land cover type inside each VIC model grid cell was computed

nd provided as an input to the VIC model. LAI data were collected

rom the Global Land Surface Satellite (GLASS) product which is avail-

ble for download from Beijing Normal University (http://www.bnu-

atacenter.com). The dataset was derived by combining the Moderate

esolution Imaging Spectroradiometer (MODIS) and the Advanced

ery High Resolution Radiometer (AVHRR) satellite products at 0.05°
esolution for the globe [19]. The dataset has been compared with

ther remotely-sensed LAI products and found to be in good agree-

ent [12]. The root distribution in three soil layers was derived from

he global ecosystem root distribution dataset [36]. The soil parame-

ers in the VIC model running resolution were derived from the 5 min

esolution Food and Agriculture Organization dataset [13]. The first

oil layer was set to 0.1 m following Liang et al. [20] and the other

wo layer depths were calibrated. The empirical Arno curve was used

o generate the baseflow based on the soil moisture content in the

ottom layer [4]. The total runoff at each grid cell was routed through

defined river network that was generated from the digital elevation

odel using the algorithm developed by Lohmann et al. [21].

.3. VIC model calibration and validation

After all the necessary input data for the model were collected

nd prepared, the VIC (version VIC 4.1.2g) model was calibrated

n selected unregulated sub-catchments in the Goulburn–Broken

atchment (Fig. 1). The seven most sensitive VIC model parame-

ers (b, Ds, Ws, Dsmax, d2, d3 and exp) according to [8] were cali-

rated for each sub-catchments separately but were considered uni-

orm within a sub-catchment. The physical meaning and possible

anges of values of these parameters are listed in Table 2. These pa-

ameters ranges were used as a boundary to guide the calibration

lgorithm.

This study employed the Multi-Objective Complex Evolution

MOCOM-UA) algorithm to optimize parameter values by minimiz-

ng, or maximizing, the objective function specified by the user [48].

he MOCOM-UA algorithm uses a multi-objective, rather than a sin-

le objective, function and is an advance over the Shuffled Complex

volution Metropolis (SCEM-UA) global optimization algorithm [45].

he user sets the initial population size and the number of samples

o be taken from that initial population to evolve towards a set of

olutions stemming from a stable distribution Pareto set based on

he concept of Pareto dominance [48]. The MOCOM-UA algorithm

http://data.water.vic.gov.au/monitoring.htm
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_71071
http://www.bnu-datacenter.com
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Fig. 3. Schematic diagram of the method used to assess the performance of the

VIC model using synthetic runoff when fed with observed monthly LAI and mean

monthly LAI.
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was implemented on each of the selected sub-catchments separately

to calibrate the model against the observed runoff. The model was

first calibrated for the entire period (1982–2012), then using the cali-

brated parameters as initial guesses, the model was re-calibrated for

the period 1982–1997 and validated for the period 1998–2012. Dur-

ing the calibration, VIC ran on a daily basis but the objective function

was calculated on a monthly basis. Three criteria (objective functions)

were used to evaluate the model’s performance during calibration:

the Nash–Sutcliffe efficiency (NSE) [29] between observed and simu-

lated flow Eq. (1), the logarithm of Nash–Sutcliffe efficiency (log NSE)

which penalizes errors at peak flow Eq. (2), and the percentage bias

(PBIAS) from the observed mean flow Eq. (3).

NSE (%) = 100 ∗
(

1 −
[ ∑n

i=1

(
Qi

obs
− Qi

sim

)2

∑n
i=1

(
Qi

obs
− Qmean

)2

])
(1)

log NSE(%) = 100 ∗
(

1 −
[ ∑n

i=1

(
log(Qi

obs
) − log(Qi

sim
)
)2

∑n
i=1

(
log(Qi

obs
) − log (Qmean)

)2

])

(2)

PBIAS =
[

100 ∗∑n
i=1

(
Qi

sim
− Qi

obs

)
∑n

i=1

(
Qi

obs

)
]

(3)

where Qi
obs

is the ith observed flow, Qi
sim

is the respective ith sim-

ulated flow from the model, Qmean is the mean of the observed

flow for the calibration period and n is the total number of ob-

served flows. Here the MOCOM-UA algorithm was set to maximize

the NSE and log NSE and minimize the PBIAS in search for the optimal

parameter set.

3.4. Assessing the two forms of LAI on VIC model performance

To assess the effects of using observed monthly LAI (hereafter LAI)

compared with long-term mean monthly LAI (hereafter LAImean) on

VIC model performance a systematic test was performed in valida-

tion mode for the data from 1998 to 2012 at each of the selected sub-

catchments. Model calibration was undertaken twice, once using LAI

and once using LAImean for the period 1982 to 1997. Each set of cal-

ibrated parameters for a given LAI were used to simulate runoff in

VIC in validation mode forced with the matching LAI (LAI or LAImean)

data. Model performance criteria were calculated from observed and

simulated runoff for each run and each sub-catchment separately and

compared to assess differences in model performance (Fig. 3).

3.5. Assessing VIC model performance when model and input errors are

removed

The impact on model performance of using observed monthly LAI

compared with long-term mean monthly LAI might be influenced by

errors in input data and/or model structure. In order to minimise

these effects on our results we adopted a synthetic data methodol-

ogy similar to Oudin et al. [31], where they assessed the effect of us-

ing long-term mean monthly (simple) or observed monthly potential

evapotranspiration (complex) on rainfall–runoff model performance.

The basis of the synthetic data methodology is to take runoff gener-

ated from a calibrated rainfall–runoff model and then to re-calibrate

the model against the simulated runoff using the same input data.

In this way all model errors or input errors are removed and the

re-calibrated model should reproduce the simulated runoff perfectly

(NSE = 100%). In order to assess any degradation in model perfor-

mance between simple and complex data inputs, the model should

initially be calibrated using complex input data to generate the syn-

thetic runoff against which the model will be re-calibrated twice;

once using complex and once using simple data inputs. The complex
e-calibration is expected to have NSE = 100%, while any degradation

n model performance (NSE < 100%) for the simple re-calibration is

ue to reduced information in the simple input data.

Here we used simulated runoff from the calibrated VIC model fed

ith observed monthly LAI (Section 3.3, complex data input) to gen-

rate the ‘synthetic’ runoff, against which we calibrated VIC twice,

nce using LAI (complex) and once using LAImean (simple) input data.

or the case where we calibrated using LAI the model performance

riteria are expected to approach 100% as the model is capable of re-

roducing the synthetic runoffs. However, for the case where we cali-

rated with LAImean the model performance is expected to be reduced

nd the degree of performance reduction reflects the impact of using

AImean to calibrate and run the model rather than LAI.

.6. Assessing influences on the sensitivity to LAI variability

To investigate the effect of using the two LAI inputs on simu-

ated monthly runoff over time, two modelling experiments were

onducted using the VIC model calibrated with LAI on the study sub-

atchments. In the first experiment VIC was fed with LAI and then

ed with LAImean to produce monthly runoff from each of the respec-

ive LAI inputs. The change in runoff (CS, Eq. (4)), the monthly leaf

rea index elasticity of runoff (ɛi, Eq. (5)) and the root mean square of

onthly leaf area index elasticity of runoff (ɛrms, Eq. (6)) were calcu-

ated between the two simulated runoff series on a monthly basis as

ollows:

S = QLAI − QLAImean
(4)

i(LAI, Q) =
(
Qi

LAI
− Qi

LAImean

)
/Qi

LAImean

(LAIi − LAImean)/LAIi
(5)

rms =
√∑n

i=1 (εi(LAI, Q))
2

n
(6)

here QLAI is the simulated runoff from VIC using LAI, QLAImean is the

imulated runoff from VIC using LAImean, i is the month and n is the

umber of all months.

The root mean square of the leaf area index elasticity of runoff

as then plotted in a series of scatter plots against the various sub-

atchment characteristics: mean annual precipitation, mean poten-

ial evapotranspiration, dryness index, percentage of tree cover, mean

levation, and catchment area.

A sensitivity analysis was also conducted using a variety of levels

f mean monthly LAI. This was done by calculating the sensitivity of



Z.K. Tesemma et al. / Advances in Water Resources 83 (2015) 310–322 315

Table 3

Calibrated model parameters and model performance during calibration (1982–1997) and validation (1998–2012) periods.

ID River and station name Model parameters Calibration (1982–1997) Validation (1998–2012)

b Ds Ws d2 d3 Dsmax exp Nash (%) log Nash (%) Bias (%) Nash (%) log Nash (%) Bias (%)

1 Moonee Creek @ Lima 0.149 0.598 0.170 1.99 0.47 0.13 2.98 82.7 80.2 2.2 86.1 78.1 8.0

2 Delatite River @ Tonga Bridge 0.062 0.014 0.755 0.81 1.88 0.30 2.95 82.7 91.9 6.4 84.2 89.4 −5.4

3 Howqua River @ Glan Esk 0.244 0.291 0.006 1.65 0.28 11.60 1.15 90.4 89.4 −2.5 89.3 90.3 −0.8

4 Goulburn River @ Dohertys 0.206 0.891 0.035 1.43 0.45 22.01 1.42 95.9 91.0 2.2 92.4 90.8 −2.4

5 Big river @ Jamieson 0.183 0.610 0.736 1.70 0.81 0.01 2.19 89.7 86.5 8.9 81.5 85.7 11.9

6 Rubicon River @ Rubicon 0.216 0.059 0.200 0.52 1.77 19.29 1.28 93.8 94.9 −2.4 87.4 92.0 3.4

7 Acheron River @ Taggerty 0.168 0.030 0.293 1.97 1.84 0.16 2.59 82.6 85.8 9.5 82.4 84.4 −2.4

8 Murrindindi River @ above colwells 0.130 0.801 0.297 1.97 1.89 1.11 2.67 68.9 62.8 14.6 79.7 84.7 3.9

9 Yea river @ Devlins Bridge 0.072 0.428 0.646 1.93 1.27 0.05 2.99 79.8 78.3 26.4 68.0 69.3 34.1

10 King Parrot Creek @ Flowerdale 0.071 0.041 0.665 0.71 1.95 0.73 2.87 61.5 66.1 45.8 73.0 62.6 41.1

11 Sugarloaf Creek @ Ash Bridge 0.001 0.592 0.804 1.31 1.18 0.00 1.39 78.6 73.4 −3.5 59.0 40.0 127.5

12 Hughes Creek @ Tarcombe road 0.043 0.215 0.514 1.04 1.88 0.07 3.20 82.5 89.3 9.2 62.7 58.9 39.2

13 Home Creek @ Yarck 0.0004 0.415 0.524 0.66 1.91 0.01 2.97 81.7 87.1 −12.7 75.6 64.7 30.7

14 Wanalta Creek @ Wanalta 0.0004 0.0032 0.999 1.99 2.0 0.068 2.324 62.1 28.1 −154 38.0 20.34 −460
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he hydrological response of the study sub-catchments for different

roportional changes (±10%, ±30% and ±50%) in the mean monthly

AIs from the observed base line period (1982–2012) while all other

nputs were kept constant. Sub-catchments with low, medium or

igh mean annual precipitation for either highly forested or sparsely

orested land cover were selected. Then the difference in mean an-

ual runoff response to changes in mean monthly LAI input was as-

essed and compared.

. Results

.1. Model calibration results

VIC was calibrated for the 14 selected sub-catchments with differ-

nt climate and land cover composition that are representative of the

ain runoff generating regions of the Goulburn–Broken catchment.

n Table 3 the calibrated model parameter values are listed for each

ub-catchment together with the three model performance criteria

uring both the calibration (1982–1997) and validation (1998–2012)

eriods. Most of the calibrated sub-catchments have NSE of more

han 70% during both calibration and validation periods.

In most of the selected sub-catchments the simulated runoff for

oth calibration and validation periods met the “satisfactory” crite-

ia according to [27], with NSE > 50% and the percentage absolute

ias is generally less than 25% during calibration and validation peri-

ds. The few sub-catchments that did not meet this criterion showed

igh biases in both calibration and validation. The temporal variabil-

ty of runoff was well captured by the model in all calibrated sub-

atchments. The simulated and observed runoff for the three sub-

atchments where VIC performed best, average and worst are shown

n Fig. 4. These selections did not include (Catchment 14) where VIC

as less efficient. Although VIC captured the temporal variability of

unoff well, there were some systematic biases in the runoff sim-

lated. The model overestimates peak flow in a few cases and un-

erestimates low flow in most of the sub-catchments. The sources

f these biases need to be investigated in order to understand the

erformance of the model. To do this, the estimated monthly biases

re plotted against the monthly climate inputs: precipitation, tem-

erature and leaf area index (not shown here). The calibrated sub-

atchments showed no relationship between AWAP gridded climate

ata and simulated runoff biases. The biases are likely related to the

odel structure [18] rather than model inputs.

The spatial distribution of the calibrated parameters varies from

ub-catchment to sub-catchment mainly due to large differences in

nnual precipitation. Sub-catchments with high annual precipitation

see Table 1) have higher values for the infiltration curve shape pa-

ameter (b), which indicates sub-catchments with lower infiltration
nd higher event runoff (see Table 1). This parameter varies from

.0004 for catchment 13 to 0.244 for catchment 3 (Fig. 1) with an av-

rage value of 0.06 across all the calibrated catchments. The parame-

er for multiplying the exponent of the Brooks-Corey drainage equa-

ion (exp), which controls the vertical drainage between layers, varies

rom 3.2 (in catchment 12) to 1.15 (in catchment 3) with a spatial av-

rage of 2.4 times the value derived from the FAO soil map dataset.

he smaller the value of the parameter (exp) the catchment has, the

arger the drainage between the layers, for the same soil moisture,

hich then results in larger baseflow. The soil water storage capacity

epends on the thickness the soil layers and the fixed threshold mois-

ure contents (i.e. wilting point, field capacity and porosity). Plant ac-

ess this soil water based on a root profile specified from the vegeta-

ion type. Hence, the thickness of the second layer (d2) can influence

he plant transpiration which contributes the largest component of

vapotranspiration. The thickness of the second layer (d2) varies from

.52 m (in catchment 6) to 1.99 m (in Catchments 1 and 14). The third

ayer depth (d3), which is not accessible to the plants, determines the

aseflow and varies from 0.28 (in Catchment 3) to 2.0 (in Catchment

4). A weak inverse correlation was found between the thickness of

he second layer and the third layer which might be due to a param-

ter identifiability issue.

.2. Effect of the two forms of LAI on VIC model performance

In Section 4.2.1 the impact of the two forms of LAI input on VIC

odel performance in validation mode was investigated using ob-

erved runoff as a reference. Then in Section 4.2.2, the effect of LAI

n VIC model performance in validation mode when model struc-

ure and input data errors are removed was investigated. Finally in

ection 4.2.3, the sensitivity of runoff to LAI variability was

nvestigated.

.2.1. Effect of LAI on VIC model performance against observed runoff

The three assessment criteria (Nash–Sutcliffe, logarithm Nash–

utcliffe and percentage bias) were calculated using observed and

imulated runoff in validation mode with inputs of LAI and LAImean

Table 4). The three criteria have slightly different behaviours since

he Nash–Sutcliffe is more influenced by peak flows, the logarithm

ash–Sutcliffe gives more emphasis to low flows, while the per-

entage bias provides the tendency of the model to overestima-

ion or underestimation. The Nash–Sutcliffe model efficiency val-

es show that calibrating VIC using LAI yields better or equivalent

odel performance than calibrating the model using LAImean for

ll sub-catchments (Table 4). The maximum improvement in Nash–

utcliffe efficiency was found to be 25% in Catchment 11, which is cov-

red predominantly by pasture, while no improvement was found in
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Fig. 4. Observed versus simulated runoff from using observed monthly LAI for selected calibration sub-catchments (1–13) with high, medium and low performance.

Table 4

Comparison of model performance from applying observed monthly LAI and mean monthly LAI in validation mode against observed runoff.

ID Nash–Sutcliffe (%) log Nash–Sutcliffe (%) Biases (%)

With observed With mean Differences With observed With mean Differences With observed With mean Differencesa

monthly LAI monthly LAI monthly LAI monthly LAI monthly LAI monthly LAI

1 86.1 83.2 2.8 78.1 78.3 −0.2 8.0 2.8 Biased

2 84.2 82.7 1.5 89.4 89.2 0.2 −5.4 −4.8 Biased

3 89.3 88.4 0.9 90.3 90.2 0.0 −0.8 −0.5 Biased

4 92.4 92.4 0.0 90.8 90.4 0.3 −2.4 −1.9 Biased

5 81.5 80.3 1.3 85.7 85.4 0.3 11.9 12.9 Less biased

6 87.4 87.1 0.3 92.0 91.9 0.2 3.4 3.4 No difference

7 82.4 80.8 1.6 84.4 83.9 0.6 −2.4 −2.9 Less biased

8 79.7 78.5 1.2 84.7 83.2 1.4 3.9 4.8 Less biased

9 68.0 63.1 4.8 69.3 68.3 1.0 34.1 38.0 Less biased

10 73.0 69.3 3.7 62.6 60.3 2.2 41.1 43.5 Less biased

11 59.0 33.6 25.4 40.0 43.4 −3.3 127.5 130.4 Less biased

12 62.7 57.9 4.8 58.9 62.7 −3.9 39.2 37.7 Biased

13 75.6 71.5 4.0 64.7 67.4 −2.7 30.7 21.9 Biased

14 38.0 25.1 12.9 28.0 32.0 −4.0 −460.0 −494.6 Less biased

a Differences: if the bias from observed monthly LAI is closest to zero = less biased, if the bias from observed monthly LAI is furthest from zero = biased.
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Table 5

Comparison of model performance for observed monthly LAI and mean monthly LAI in validation mode against synthetic runoff generated from calibrated VIC

with observed monthly LAI.

ID Nash–Sutcliffe (%) log Nash–Sutcliffe (%) Biases (%)

With observed With mean Differences With observed With mean Differences With observed With mean Differences

monthly LAI monthly LAI monthly LAI monthly LAI monthly LAI monthly LAI

1 100.0 98.3 1.7 100.0 98.6 1.4 0.0 −0.6 0.6

2 100.0 99.1 0.9 100.0 99.7 0.3 0.0 −1.0 1.0

3 100.0 99.7 0.3 100.0 99.8 0.2 0.0 1.1 −1.1

4 100.0 99.8 0.2 100.0 99.8 0.2 0.0 0.5 −0.5

5 100.0 99.5 0.5 100.0 99.8 0.2 0.0 −2.4 2.4

6 100.0 99.9 0.1 100.0 99.9 0.1 0.0 −0.2 0.2

7 100.0 97.2 2.8 100.0 97.5 2.5 0.0 −1.7 1.7

8 100.0 99.0 1.0 100.0 99.0 1.0 0.0 −0.3 0.3

9 100.0 98.8 1.2 100.0 99.3 0.7 0.0 4.2 −4.2

10 100.0 98.9 1.1 100.0 99.4 0.6 0.0 1.2 −1.2

11 100.0 86.4 13.6 100.0 98.5 1.5 0.0 −4.3 4.3

12 100.0 96.8 3.2 100.0 98.3 1.7 0.0 −1.1 1.1

13 100.0 96.8 3.2 100.0 99.2 0.8 0.0 −6.5 6.5

14 100.0 89.3 10.7 100.0 95.9 4.1 0.0 −5.7 5.7
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atchment 4, which is dominated by trees. In addition, some of the

ub-catchments also show some improvement in the other two

odel efficiency criteria when LAI was used (Table 4). In interpret-

ng these results it is important to recall that maximising Nash–

utcliffe efficiency was the consistent calibration objective. The other

wo objectives (logarithm of Nash–Sutcliffe efficiency and percent-

ge bias) were used when no difference in the Nash–Sutcliffe ef-

ciency exist. The observed monthly LAI runoff produced less bias

rediction in most of the sub-catchments, however highly forested

ub-catchments showed some bias.

.2.2. Effect of LAI on VIC model performance when model and input

rrors are removed

To assess the validity of the results in Section 4.2.1 we consid-

red a separate analysis where VIC was re-calibrated against syn-

hetic runoff data generated from the model calibrated with LAI, once

ith LAI and once with LAImean. The reason for doing this is that it

liminates model input uncertainty and model structural uncertainty

rom the comparisons. The degradation in model performance when

AImean was used instead of LAI is shown in Table 5. Sub-catchments

ocated in the high annual precipitation zone covered pre-dominantly

ith trees showed less than 3% degradation in NSE model perfor-

ance using LAImean, whereas a tree dominated sub-catchment in

low precipitation area (catchment 14) showed 10.7% degradation

n NSE. In contrast, catchments 11–13 (Tables 1 and 5) where the

ominant land cover is pasture, showed more than 3% degradation

n NSE model performance. The other performance criteria (log NSE

nd PBIAS) showed little change when the model was fed with either

orm of LAI data, which indicates that the low flows and runoff ratio

re insensitive to the year to year changes in monthly LAI.

.2.3. Influences on runoff sensitivity to LAI variability

The spatial pattern of LAI sensitivity is found to be related to the

patial patterns of precipitation and the distribution of land cover

ype. The Box–Whisker plots of change in monthly runoff simulated

sing LAI compared with using LAImean are plotted in Fig. 5. The

hange in simulated runoff showed high seasonality. In a majority of

he sub-catchments winter and spring runoff were most influenced

y LAI input type. Overall, the grey range (25–75% quantiles) of most

f the Box–Whisker plots in Fig. 5 are neither completely positive

or negative, suggesting that simulated runoff from using LAImean

as underestimated in years that have precipitation above mean an-

ual precipitation and overestimated in years that have precipitation

elow mean annual precipitation. The spatial distribution of these

hanges in monthly runoff varied among study sub-catchments. Sim-

lated monthly runoff using LAImean was overestimated by up to
5 mm during wet periods and underestimated by up to 35 mm

uring dry periods when compared with simulated monthly runoff

rom using LAI. When sparsely forested sub-catchments (Catchments

1–13), are compared with tree dominated sub-catchments (Catch-

ents 3–8), the later showed the smallest deviations in simulated

onthly runoff whether LAI or LAImean were used. The leaf area

ndex elasticity of runoff is highly correlated to the dryness index

R2 = 0.97), mean annual precipitation (R2 = 0.95), percentage of for-

st cover (R2 = 0.54) and mean annual potential evapotranspiration

R2 = 0.89) (Fig. 6a–d). Sub-catchments located in the arid part of the

tudy area showed the highest LAI elasticity of runoff. Mean catch-

ent elevation also influences the elasticity of runoff to LAI (Fig. 6e),

lthough these two variables are highly cross-correlated with mean

nnual precipitation (R2 = 0.7). However the size of the catchment

as been found not to have an influence on the leaf area index elas-

icity of runoff.

The results of sensitivity analyses for the simulated mean annual

unoff of the calibrated sub-catchments to changes in ±10%, ±30%

nd ±50% of the mean monthly LAI are shown in Fig. 7. The sensi-

ivity of simulated mean annual runoff to changes in mean monthly

AI for sub-catchments with a high proportion of area covered by

rees (Fig. 7a) and a low proportion of area covered by trees (Fig.

b) for low, medium and high mean annual precipitation are shown.

hen comparing Fig. 7a and b there is a significant difference in

he sensitivity of mean annual runoff to mean monthly LAI be-

ween highly forested and sparsely forested sub-catchments. Highly

orested sub-catchments (Catchments 1, 4 and 6) exhibited lower

ensitivity than sparsely forested sub-catchments (Catchments 11, 13

nd 12) for a small difference in their mean annual precipitations.

oth land cover groups showed some increase in sensitivity to LAI

t lower LAI values. A spatial difference in simulated mean annual

unoff in response to the same change in LAImean was observed in

ub-catchments with similar vegetation cover, which is likely due to

ifferences in dryness index (Fig. 6c) and difference in percentage of

he forest cover (Fig. 6d).

. Discussion

The performance of the VIC model was found to be good for the

ast majority of sub-catchments in terms of Nash–Sutcliffe efficiency

f flows and log flows (Table 3). In a few cases, bias in simulated

unoff was significant which appears to be due to the model structure

ather than the model inputs. Some sub-catchments only respond

o precipitation events after the catchment becomes sufficiently wet

nd saturated areas develop [18] and become connected to the stream

etwork [46,47]. The former can be addressed by modification of the
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Fig. 5. Change in simulated runoff between the two forms of LAI input (QLAI–QLAI mean) given separately for each sub-catchments. The Box–Whisker plots show the monthly

maximum, upper quartile, median, lower quartile, and minimum of the study period 1982–2012.
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relationship between soil moisture and runoff with addition of one

parameter as suggested by [18]; however, the issue of connectivity is

related to dynamic changes in soil moisture patterns, which implies

that the soil moisture–runoff relationship changes over time and this

would be harder to incorporate into VIC [47].

Previous studies have reported that rainfall–runoff models cal-

ibrated using a long period of record and tested for sub-periods

with above long-term average precipitation perform well, but the

performance of the rainfall–runoff model starts to deteriorate when

tested for sub-periods with below long-term mean rainfall in the

same region of this study [43]. This observation was not consistently

evident for VIC in this study. In fact some sub-catchments (4 of 13)

showed better performance in term of NSE when model parameters

calibrated for a wet period (1982–1997) were used in the predomi-

nantly dry validation period (1998–2012) (see Table 4). This might be
ue to using LAI, rather than LAImean. It is clear that lower LAI during

ry periods, due to drier moisture conditions, could further reduce

ctual evapotranspiration, while increased LAI during wet conditions

ight further increase actual evapotranspiration. Using LAImean tends

o underestimate (overestimate) runoff during winter in comparison

ith using the observed monthly LAI runoff in dry (wet) years

Fig. 5). The ability to allow monthly LAI to vary from year to year

s lacking in most rainfall–runoff models but is possible in physical-

ased hydrological models such as VIC. Previous findings [6,25,43]

btained with different catchment sets and models, emphasised

he lack of robustness of conceptual rainfall–runoff models when

alibrated during wet periods and validated in dry periods. In most

ainfall–runoff models the inability to vary LAI of the vegetation

ight contribute to reduced model performance during drought due

o not representing changes in LAI that we show improve model
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Fig. 6. The relationship between the root mean square of monthly leaf area index elasticity of runoff (ɛrms) and selected catchment characteristics: (a) mean annual precipitation,

(b) mean annual potential evapotranspiration, (c) dryness index (PET/P, d) percentage of tree cover, (e) mean elevation above sea level and (f) catchment area.

Fig. 7. Percentage change in mean annual runoff of calibrated sub-catchments for dif-

ferent levels of change in mean monthly LAI under low, medium and high mean an-

nual precipitation (P): (a) for highly forested sub-catchments (numbers 1, 4 and 6, b)

sparsely forested sub-catchments (numbers 11, 13 and 12).
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erformance in some sub-catchments when included. In support of

his, Zhang et al. [49] showed an improvement in model performance

hen a rainfall–runoff model was coupled with actual evapotranspi-

ation estimates from the Penman–Monteith equation and remotely

ensed MODIS LAI.

Based on Nash–Sutcliffe efficiency the VIC hydrological models

ested here revealed better performance when driven with LAI than

AImean. Sub-catchments located in high annual precipitation zones

hat are covered predominantly with trees showed less than 3%

egradation in model performance since those areas are more likely

o be energy limited (Fig. 6c). In this case the actual evapotranspira-

ion is triggered by energy availability rather than the leaf area index.

ub-catchments numbered 11–, where the dominant land cover type

s pasture or sparsely forested sub-catchments, showed more than 3%

egradation in NSE model performance criterion, which might be re-

ated to LAImean not representing year to year variability in leaf area

ndex due to fluctuations in climate [41] and change in phenological

ycles or timing of planting or harvesting. The degradation in model

fficiency from using LAImean impacts soil moisture simulation in the

IC model as shown by Ford and Quiring [14].

A runoff sensitivity analysis was conducted by changing mean

onthly LAI. The results indicated that decreasing mean monthly

AI has more effect on runoff than increasing mean monthly LAI

onsistently across all calibrated sub-catchments. The differences in

he rate of response of mean annual runoff to increases and de-

reases in mean monthly LAI are related to the differences in above

round processes like throughfall, interception and canopy evap-

ration. Evapotranspiration and total soil moisture content simu-

ated by VIC also showed sensitivity to the input LAI data type. In

ow precipitation pasture dominated catchments (Catchments 11 and

3) the model showed relatively higher sensitivity of evapotranspi-

ation and total soil moisture content to the input LAI data type
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Fig. 8. (a) Areal averaged sub-catchment monthly precipitation, (b) change in areal average sub-catchment monthly simulated evapotranspiration between the two forms of LAI

data inputs (ELAI - ELAImean), and (c) change in areal average sub-catchment simulated monthly total soil moisture content between the two forms of LAI data inputs (SMLAI - SMLAImean)

given separately for small, medium and larger impacted sub-catchments for the period 1982–2012.
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(Fig. 8b and c). Whereas, Catchment 5 with relatively high annual

precipitation and covered mainly with tree, showed less evapotran-

spiration and total soil moisture content sensitivity to the input LAI

data type (Fig. 8b and c). For the same amount of precipitation more

water reaches the ground under lower LAI than higher LAI since

interception storage is directly related by LAI, which increases sur-

face runoff. When climate-induced changes in LAI were represented

in the hydrological modeling, reduction of LAI due to decline in

precipitation decreases the evapotranspiration from vegetation that

made the soil wet [42]. This effect of LAI on runoff is very impor-

tant to model especially during prolonged drought when precipi-

tation is low and unrealistic LAI input can result in unrealistic soil

moisture status, with consequent impacts on runoff. The sensitiv-

ity of the model to mean monthly LAI was found to depend on the

climatic conditions and vegetation type of the sub-catchment. The

lower the mean annual precipitation the sub-catchment received,

the higher the sensitivity of the mean annual runoff to change in

the mean monthly LAI and vice versa. And also for a given mean an-

nual precipitation, the lower the proportion of trees to pasture the

higher the sensitivity of runoff to change in the mean monthly LAI
nd vice versa. Thus the effect of land cover change on mean an-

ual runoff varies across sub-catchments with similar mean annual

recipitation.

. Summary and conclusion

The three layer Variable Infiltration Capacity (VIC) model was

alibrated for 14 gauged selected sub-catchments located in the

oulburn–Broken catchment, south-eastern Australia. Two sets of ex-

eriments were conducted to assess the effect of using different LAI

nputs on the VIC model performance and the simulated monthly

unoff. In addition the impact of catchment characteristics includ-

ng vegetation cover type and mean precipitation on the sensitivity

f catchment runoff to changes in LAI was assessed. The most notable

ndings are:

1. The VIC model simulated runoff reasonably well with high Nash–

Sutcliffe model efficiency in the Goulburn–Broken catchment

with proper calibration of the seven sensitive model parameters.

2. For sub-catchments predominantly covered in pasture or crop,

Nash–Sutcliffe model efficiency was improved in a range from
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4% to 25% (Table 4) when VIC model was calibrated using

observed monthly LAI instead of mean monthly LAI. Calibrat-

ing VIC model using observed monthly LAI showed less than 4%

(Table 4) improvement in Nash–Sutcliffe model efficiency for sub-

catchments predominantly covered by trees. This implies that

calibrating the model using observed monthly LAI is important

if the catchment is dominated by pasture cover. However, in tree

dominated sub-catchments using either mean monthly LAI or

observed monthly LAI can give the same VIC model performance.

3. Applying the long term mean monthly LAI overestimated monthly

runoff by up to 25 mm during wet periods and underestimated

monthly runoff by up to 35 mm during dry periods when com-

pared with the runoff simulated using the year to year variable

monthly LAI.

4. The difference in spatial patterns of the effect of observed

monthly LAI over the mean monthly LAI on runoff is most strongly

related to differences in vegetation type but is also influenced by

mean annual precipitation differences.

Making accurate runoff predictions using hydrological models un-

er changing or ‘non-stationary’ conditions is a challenge in hydrol-

gy. It seems difficult to provide general guidelines for which model

hould be used for which purpose but our results do indicate the im-

ortance of accounting for potential vegetation changes in climate

hange impact studies. That is models that consider both first order

orcing, precipitation and potential evaporation drivers and the sec-

nd order forcing of vegetation, could provide better predictions than

odels that only consider the first order forcing for projecting runoff

ith projected climate inputs. This implies a need to predict vegeta-

ion changes in response to climate change in studies which assess

he impact of future climate change on runoff.
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