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SUMMARY

The mammalian brain exhibits profuse interregional
connectivity. How information flow is rapidly and
flexibly switched among connected areas remains
poorly understood. Task-dependent changes in the
power and interregion coherence of network oscilla-
tions suggest that such oscillations play a role in
signal routing. We show that switching one of several
convergent pathways from an asynchronous to an
oscillatory state allows accurate selective transmis-
sion of population-coded information, which can be
extracted even when other convergent pathways
fire asynchronously at comparable rates. We further
show that the band-pass filtering required to perform
this information extraction can be implemented
in a simple spiking network model with a single
feed-forward interneuron layer. This constitutes a
mechanism for flexible signal routing in neural cir-
cuits, which exploits sparsely synchronized network
oscillations and temporal filtering by feed-forward
inhibition.

INTRODUCTION

Different behavioral tasks require distinct patterns of functional

interaction between specialized modules in the brain. For

example, when you read a book in a noisy train carriage, informa-

tion from your visual stream is processed by language regions

while auditory input is ignored. Then, if a conversation catches

your attention, you can effortlessly switch focus, processing the

auditory linguistic content that you were ignoring a moment

before. A more concrete experimental example is provided by

visual-attention experiments in which participants perform

a perceptual discrimination task about a stimulus in one part of

their visual fieldwhile ignoring simultaneously presented distract-

ing stimuli (Brefczynski and DeYoe, 1999; Gandhi et al., 1999).

These tasks require selective processing of information from the

regions of the early visual system representing the task-relevant

stimulus. While important in attentional processing (Berman and

Colby, 2009), signal routing is likely necessary for other cognitive

tasks involving distributed brain systems (Anderson et al., 2004).

Proposals for how this routing is achieved can be broadly

divided into two groups: those in which asynchronous rate-
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coded signals are routed by dedicated switching circuits (Ander-

son and Van Essen, 1987; Vogels and Abbott, 2009; Zylberberg

et al., 2010), and those in which changes in patterns of synchro-

nized network activity play a key role in modulating signal flow

(Crick and Koch, 1990; Salinas and Sejnowski, 2001; Fries,

2005). Consistent with the latter ‘‘oscillatory gating’’ hypothesis

are experimental data showing task-dependent transient

increases in oscillatory synchronization (Fries et al., 2001; Bauer

et al., 2006; Taylor et al., 2005; Bichot et al., 2005) and

frequency-selective increases in oscillatory coherence between

regions during tasks thought to require their cooperation (Gre-

goriou et al., 2009; Siegel et al., 2008; Montgomery and Buzsáki,

2007; Popescu et al., 2009; Pesaran et al., 2008; Lee, 2003;

Doesburg et al., 2008; N. Dotson et al., 2009, Soc. Neurosci.,

abstract).

A possible way to selectively and accurately route a target

signal to a receiving population in the presence of multiple dis-

tracting inputs was recently demonstrated using a ‘‘detailed

balance’’ nonoscillatory gating mechanism (Vogels and Abbott,

2009). Comparable capability has not so far been demonstrated

using oscillatory mechanisms. Furthermore, it remains unclear

how synchrony changes in population codes can mediate signal

gating, what operations downstream regions must perform on

their inputs to achieve gating, and how these operations can

be implemented by neural network dynamics.

We have addressed these questions using a feed-forward

model in which independent stimuli are represented as popula-

tion codes in separate networks of spiking neurons. These pop-

ulations converge to form the input to a single output network

(Figure 1). When activity in all input networks is asynchronous,

little information is available to the output network about the

stimulus represented in any one of them, because each contrib-

utes a small fraction of the total spike input. However, we show

that when one of the input networks is switched from an asyn-

chronous to an oscillatory state, accurate information about

the stimulus represented by this network becomes available

to the output network. This is because in the oscillating network,

the spatial pattern of firing rates is reproduced in the spatial

pattern of firing-rate oscillation amplitude, thus providing

a parallel channel for information transmission that is minimally

affected by asynchronous distracting inputs. We further show

that the filtering necessary to read out such information can be

achieved by a simple and biologically plausible network of excit-

atory and inhibitory neurons exploiting a novel network-level

resonance phenomenon. The resulting signal-gatingmechanism

allows accurate and selective propagation of a target signal in

the presence of multiple distracting inputs. Switching among
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Figure 1. Population-Coded Information and Oscillations

Input networks represent independent variables as population codes with bell-

shaped firing-rate tuning curves with respect to stimulus orientation. If one

input network switches from an asynchronous state (blue) to an oscillating

state (red), how much more information is available to the output network

about the variable that it encodes?
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inputs can be achieved within a few cycles. Finally, we show

that, when multiple input networks are oscillating in different

frequency bands, filtering at the appropriate frequency can be

used to pull out individual signals from the combined input,

a form of frequency-division multiplexing for neural codes.

RESULTS

We start with a model consisting of four input networks, each of

which represents a separate population-coded stimulus. These

converge to form the input to a single output network. The task

required of the model is to act as a switch, selecting the signal

encoded in any one input network (the ‘‘sender’’ network), to

be routed to the output network, while ignoring the signals

encoded in the other input networks (‘‘distractors’’).

Input Networks
Each input networkwas represented by 8000 excitatory principal

cells and 2000 inhibitory interneurons, described as exponential

integrate-and-fire models, mutually and reciprocally intercon-

nected with conductance-based synapses and random connec-

tivity. Spiking activity was induced through tonic depolarization,

supplemented by a spatially patterned external Poisson spike

input, used to impart stimulus tuning to the neurons as described

below.

Input networks were independently switched from asynchro-

nous to oscillatory dynamics by increasing the strength of local

excitatory synapses onto interneurons, while reducing the

strength of external synaptic drive to the interneurons tomaintain

the average firing rate of both populations (average firing rates

in the asynchronous state: principal cells 4.98 Hz, interneurons

13.64 Hz; in the oscillating state: principal cells 5.34 Hz, inter-

neurons 14.62 Hz). This switch could be equally achieved

by changing other parameters such as synaptic time courses

(Buehlmann and Deco, 2008) or external noise (Brunel and
Hansel, 2006), or by periodic external input. The precise method

does not qualitatively affect the rest of this study.

In the asynchronous state, network activity generated large

excitatory and inhibitory synaptic currents in each cell, which

combined to produce a small net current. Stochastic fluctuations

in these currents gave rise to irregular spiking activity (Figure 2A).

These features are characteristic of the balanced regime (van

Vreeswijk and Sompolinsky, 1996) observed in cortical networks

during up states in vivo (Haider et al., 2006; Destexhe et al., 2003)

and in vitro (Shu et al., 2003).

In the oscillatory state, the instantaneous firing probabilities of

both principal and inhibitory cell populations fluctuated strongly

at approximately 41 Hz while individual neurons fired irregularly

at lower rates (Figures 2B–2D). Average Fano factors for neurons

in the oscillating state were close to 1 (0.96 for a 100 ms bin).

These sparsely synchronized dynamics (Brunel and Hakim,

2008) are consistent with in vivo (Fries et al., 2001; Bragin

et al., 1995; Logothetis et al., 2001; Hasenstaub et al., 2005;

Csicsvari et al., 1998) and in vitro (Hájos et al., 2004) studies

that show irregular activity of individual units but oscillatory

activity at the network level. Excitatory and inhibitory synaptic

currents oscillated approximately in phase, again consistent

with recent in vivo and in vitro measurements during gamma

band network oscillations (Atallah and Scanziani, 2009; Oren

et al., 2006).

We used one-dimensional circular variables as the stimuli

encoded and transmitted by the sender and distractor networks.

(We make this choice for simplicity of network design and clarity

of explanation, although the gating mechanism described here

can be extended to more complicated stimuli.) Variables were

encoded as population codes in which each principal cell had

a bell-shaped firing-rate tuning curve with respect to stimulus

orientation, such that they fired most strongly when the stimulus

was aligned with their preferred orientation (Figure 3A2). Popula-

tion codes with such tuning curves occur widely in the brain,

and the one-dimensional case we consider here is analogous

to orientation-selective cells in V1 or head-direction cells in

the postsubiculum. This tuning was implemented by imposing

a spatial pattern on the external input exciting the principal cells.

Each principal cell was assigned a preferred stimulus orientation,

and the external Poisson rate to each cell was determined by

a cosine function of the difference between its preferred orienta-

tion and the stimulus orientation. The preferred orientation varied

smoothly through 180� across the population of 8000 principal

cells, so cells 1 and 8000 had a similar orientation preference,

giving the network a ring topology.

We verified that the activity of the principal cells during asyn-

chronous network activity could be decoded to produce an

accurate estimate of the stimulus value using a template-match-

ing decoding method (Deneve et al., 1999). The average spatial

pattern of firing rates as a function of stimulus angle was first

estimated from a training set of network activity. This spatial

pattern was then used as a template for decoding by finding

the stimulus estimate that minimized the mean squared error

between firing rates measured over a 50 ms test period and

the template of firing rates as a function of stimulus angle. To

quantify decoding accuracy, we calculated the standard devia-

tion of the stimulus estimate (standard deviation 1.40�), and
Neuron 67, 308–320, July 29, 2010 ª2010 Elsevier Inc. 309



Figure 2. Sender Network Activity

(A and B) Spike raster showing 100 ms of activity in the sender network in the asynchronous (A) and oscillating (B) states. (A1 and B1) principal cell spike raster.

(A2 and B2) Interneuron spike raster. (A3 and B3) Average firing rate for the principal cells (blue) and interneurons (green). (A4 and B4) Membrane potential of

sample principal cell. (A5 and B5) Synaptic currents in sample principal cell (excitatory: blue; inhibitory: green; net current: red).

(C) Average firing rate of a subpopulation of 400 principal cells over a 50 ms window in the asynchronous (C1) and oscillatory (C2) states. Activity was sampled

from the areas indicated by colored outlines in the spike rasters (A1 and B1).

(D) Fourier transforms of the subpopulation firing rates shown in (C). Arrows illustrate the 0 Hz (average firing rate) and 41 Hz (gamma amplitude) measurements

used in later analysis.
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the circular correlation coefficient (Fisher and Lee, 1983)

between the true values of uniformly distributed stimuli and their

estimates decoded from neural activity (correlation 0.998).

When the network was switched to a sparsely synchronized

state, the mean firing rates of individual principal cells showed

a very similar dependence on stimulus orientation as in the asyn-

chronous state (Figures 3A2 and 3C1). Template-matching

decoding continued to produce a reliable estimate of the stim-

ulus orientation from the average firing rates over a 50 ms period

of network activity (estimate standard deviation 1.22�, correla-
tion 0.998).

We asked whether the periodic temporal structure induced by

the oscillation provided new coding possibilities. One possible

coding variable is the phase of firing of individual cells relative

to the network oscillation, as proposed for hippocampal place

cells during theta oscillations (O’Keefe and Recce, 1993).

Although an analogous form of phase coding has also been

proposed to occur in gamma-oscillating networks (Fries et al.,

2007), we have not explored this further here. Instead, we asked

whether the spatial pattern of the amplitude of oscillations in the

firing rate can itself encode information about the stimulus.

Because individual neurons fired irregularly with average rates

well below the population oscillation frequency, the Fourier
310 Neuron 67, 308–320, July 29, 2010 ª2010 Elsevier Inc.
spectrum of spike patterns for individual neuronswas dominated

by Poisson-like noise. The spatial pattern of oscillation amplitude

became apparent only when we were looking at the firing rate of

populations of principal cells with similar stimulus preference.

We therefore grouped them into 20 subpopulations of 400 adja-

cent cells. We then evaluated the frequency spectrum of the total

firing rate of each subpopulation using a short-time Fourier

transform (STFT) with a 50 ms Hanning window (Figure 2D).

We used twomeasurements from the Fourier spectrum in further

analysis: the amplitude at 0 Hz (which is simply the average firing

rate of the population over the window) and the amplitude at the

41 Hz oscillation frequency, which we refer to as the gamma

amplitude.

We evaluated the spatial pattern of gamma amplitude across

the 20 subpopulations for 50 ms periods of network activity in

the asynchronous and oscillating states (Figure 3A3). In the asyn-

chronous state, the gamma band amplitude was small, reflecting

random fluctuations in network activity. However, in the oscil-

lating state, the periodic modulation induced by the network

oscillation elicited a large gamma amplitude for subpopulations

whose average firing rate was high. This caused the spatial

pattern of the gamma amplitude to reproduce the spatial pattern

of firing rates. This spatial pattern of gamma amplitude could be



Figure 3. Stimulus Representation in Network Activity

(A) Activity in one oscillating and three asynchronous sender networks during 50ms. (A1) Spike raster. (A2) Average principal cell firing rate for 20 subpopulations,

each of 400 neurons. (A3) Spatial pattern of gamma amplitude (population firing-rate oscillation amplitude at 41 Hz) across the 20 subpopulations.

(B) Postsynaptic input obtained by summing activity in the four sender networks.

(C) Average 0 Hz amplitude (solid line) and gamma amplitude (dashed line) as function of stimulus orientation for (C1) presynaptic activity in oscillating (red) and

asynchronous (blue) networks and (C2) summed postsynaptic input. Error bars represent standard deviation. For the combined input, both gamma amplitude and

firing rate (0 Hz amplitude) show stimulus tuning, but the gamma amplitude is far less variable because of the small contribution of distracting inputs.

(D) Accuracy of stimulus representation as measured by the orientation estimate standard deviation (D1) and Fisher information (D2); estimates decoded from

activity in the sender network (S) or from the combined input from sender and distractor populations when the sender network was in an asynchronous state (A) or

an oscillatory state (O).
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decoded just like a pattern of firing rates to produce an accurate

estimate of the stimulus orientation (estimate standard deviation

1.35�, correlation 0.998 using template matching).

These two different frequency components (0 and 41Hz) of the

firing rate are effectively two separate channels, each of which

carries information about the stimulus orientation. Because

the network generated large gamma amplitudes only in the

oscillating state, when the signal from an oscillating sender

network was summedwith signals from asynchronous distractor
networks, the gamma amplitude of the combined signal was

dominated by activity in the oscillating network. Can this allow

accurate estimate of the stimulus represented in the oscillating

sender with minimal contamination by the distractors?

Signal Gating among Convergent Pathways
We considered a situation in which the sender network and three

distractor networks converged onto a single receiver network,

such that the postsynaptic input was simply the sum of the
Neuron 67, 308–320, July 29, 2010 ª2010 Elsevier Inc. 311
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presynaptic activity patterns (Figures 3A and 3B). When the

sender network was in the same asynchronous state as the dis-

tractors, the orientation of the stimulus driving the sender

network was ambiguous and could be estimated little better

than chance from the combined spike input (estimate standard

deviation 38.78�, correlation 0.171).

We asked whether changing the sender network to an oscilla-

tory state increased the information available to the receiver. To

do this, we analyzed the spatial pattern of gamma amplitude for

the postsynaptic input using the method described above for the

presynaptic activity. As before, we divided the summed input

from the sender and distractor networks into 20 subpopulations,

each containing afferents with similar stimulus tuning (400 from

each of the four input networks). Activity in each group of affer-

ents was pooled to produce a firing-rate signal. We analyzed

this signal using the STFT to evaluate the 0 Hz and 41 Hz Fourier

components for 50 ms sections of the combined input. Although

the 0 Hz amplitude was uninformative (Figure 3B2), the gamma

amplitude faithfully reproduced the pattern of activity in the oscil-

lating sender network, almost as if the distracting inputs were not

present (Figures 3B3 and 3C2). The stimulus driving the oscil-

lating sender network could be accurately estimated from the

gamma amplitude of the combined input (estimate standard

deviation 3.53�, correlation 0.986). This improved estimation

accuracy corresponded to a >100-fold increase in the lower

bound on the Fisher information available to the postsynaptic

network (presynaptic, 0.51��2; postsynaptic, asynchronous

sender, 0.00066��2; postsynaptic, oscillating sender, 0.08��2;

Figure 3D).

Gating Using a Spiking Network Filter
The results above demonstrate that a population-level oscilla-

tion in the sender network greatly enhances the information

available to the receiver about the stimulus it encodes. Can

a biologically plausible neuronal network read out this informa-

tion? A reformulation of this problem is to ask whether a network

of simulated neurons can reproduce the spatial activity pattern

of its oscillating input in the firing rates of its output neurons,

while ignoring the asynchronous component of the input it

receives.

In designing such a network, we took as our starting point the

detailed balance model recently outlined by Vogels and Abbott

(2009), in which an excitatory input is precisely balanced by

feed-forward inhibition, such that changes in the firing rate of

the input do not alter the activity of the target principal cells.

Wemapped the orientation-tuned excitatory inputs onto a popu-

lation of 2000 principal cells, and a population of 2000 interneu-

rons that formed a feed-forward layer, projecting to the principal

cells (Figure 4A). Interneurons innervating a given principal cell

received inputs from afferents with orientation tuning similar to

those afferents innervating the principal cell directly (although

the fine structure of the connectivity was random). This produced

a pattern of feed-forward inhibitory input that balanced out the

pattern of excitation in the target principal cells. Interneurons

were also recurrently connected; this connectivity was local,

such that only interneurons receiving input from afferents with

similar orientation preference made synaptic connections with

one another.
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When this receiver network was driven by a bell-shaped

pattern of asynchronous Poisson spike input, the pattern of input

firing rates was reproduced in the interneuron layer activity and

the resulting feed-forward inhibition prevented spiking in the

principal cell population (Figure 4C).

To impart sensitivity to periodically modulated input patterns,

we exploited a network resonance phenomenon that occurs in

recurrently connected interneuron networks. Under conditions

of tonic excitatory drive, interneuron networks can generate

spontaneous oscillations (Whittington et al., 1995; Wang and

Buzsáki, 1996; Brunel and Hakim, 1999), but these break down

to an asynchronous state as the level of heterogeneity or external

noise is increased (Brunel and Hansel, 2006). We found that in

the asynchronous state, but near the transition to sparsely

synchronized oscillation, the interneuron network acted like

a damped oscillator, showing clear resonance behavior when

driven by periodic input. To illustrate this resonance behavior,

we drove the input afferents with a sinusoidally modulated

Poisson spike input, with a range of modulation frequencies

from 0 to 55 Hz (Figure 4B). The periodic modulation of the input

firing rate evoked a periodic fluctuation of the firing rate of the

feed-forward interneuron population. Resonance was observed

both in the amplitude of the firing-rate modulation, especially

prominent between 25 and 40 Hz, and in the phase of the inter-

neuron firing-rate modulation relative to the input firing-rate

modulation. The interneuron firing rate was in phase with the

input at frequencies up to �25 Hz but lagged behind the input

at higher frequencies, with approximately 90� lag for 40 Hz input

modulation. This resonance phenomenon was a network effect

arising from the recurrent connectivity in the interneuron layer

and was not a result of subthreshold resonance in the individual

interneurons (Fourcaud-Trocmé et al., 2003). In Supplemental

Results and Figure S1 (available online), we show that intrinsic

cellular properties combined with gap-junction connectivity

can also generate resonance properties that support filtering

by interneuron populations.

The 90� phase lag between the input firing-rate oscillation in

the gamma band and the response of the feed-forward inhibitory

population allowed the principal cells to fire in response to the

oscillating input. The phase-delayed oscillations in the inhibitory

firing rate disinhibited the principal cells at the phase when excit-

atory input was strongest. The ability to respond to spatially

patterned oscillating input was tested by driving the receiver

network with a bell-shaped pattern of Poisson input, sinusoidally

modulated at 40 Hz (Figure 4D). This periodically modulated

input activity pattern was reproduced in robust spiking activity

in the principal cell layer.

For effective signal gating, the pattern of activity induced by an

oscillating input should be minimally affected by converging

inputs from other asynchronous networks. We tested this by

driving the receiver network with the same bell-shaped pattern

of periodically modulated input as in Figure 4D, but with an addi-

tional bell-shaped asynchronous Poisson input with a 3-fold

larger average firing rate and a peak position rotated in orienta-

tion space from the peak of the oscillating input (Figure 4E). The

spatial pattern of spiking activity in the receiver network was very

similar to that induced in the absence of the asynchronous input,

faithfully reproducing the location of the hump of oscillating



Figure 4. Filter Network

(A) Diagram of filter network connectivity showing the input afferents (black), feed-forward interneuron layer (green), and principal cells (blue).

(B) Resonance in filter network interneuron population activity. Panels show the firing rate of the interneuron population (green) driven by periodically modulated

Poisson spike input (mean rate indicated in black) at a range of frequencies bracketing the network resonance frequency (see Figure S1 as well).

(C–E) Filter network principal cells reproduce position of oscillating input activity, irrespective of spatial pattern of asynchronous input. Filter network activity is

driven by (C) asynchronous input, (D) gamma-modulated input, (E) mixed gamma-modulated and asynchronous input. (C1, D1, E1) Spatial pattern of firing rates in

afferent fibers (black: asynchronous Poisson input, Poisson input sinusoidally modulated at 40 Hz). (C2, D2, E2) Spatial pattern of the firing rate in the interneuron

layer. (C3, D3, E3) Spatial pattern of the firing rate in the principal cell layer. (C4, D4, E4) Spike raster for principal cells. (C5, D5, E5) Spike raster for interneurons.

(C6, D6, E6) Firing rate of principal cell (blue) and interneuron (green) populations. See Figure S2 as well.
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input. The filter network was sensitive to the size of the oscillating

component of the input, responding in a graded manner to

changes in its average firing rate (Figures S2A and S2B).

To quantify the signal-gating performance of the filtering

network, we drove it with the combined input from one oscillating

sender network and three asynchronous distractor networks.

Spiking activity in the filter network output layer reproduced

the pattern of activity of the oscillating input regardless of the

spatial pattern of asynchronous input. The stimulus encoded in

the oscillating input network could be accurately decoded from

the spatial pattern of filter network principal cell firing rates by

using template matching on 50 ms sections of activity (estimate

standard deviation 4.25�, correlation 0.978). Population firing

rates in the filter network oscillated strongly, but individual

neurons fired highly irregularly (mean Fano factor 1.51 for

100 ms bin).

We tested the how the gating performance varied depending

on the number of distracting inputs (Figure S2C). As the number

of distracting inputs increased, decoding accuracy decreased
both for decoding from the gamma amplitude of the combined

input and for decoding from filter network firing rates. This

occurred because although each individual distractor generated

a small amount of noise in the gamma band, as the numbers of

distractors increased, their combined contribution grew, until it

eventually drowned out the signal from the oscillating sender.

As with the detailed balance gating mechanism (Vogels and

Abbott, 2009), high signal propagation performance requires

that the number of active distracting inputs be restricted.

For simplicity the filtering network considered above included

only feed-forward inhibition. We verified that the addition of

feedback inhibition did not prevent the filtering network from

functioning (Figures S2D–S2I).

Switching among Input Networks
Because the sender and distractor networks considered here

had the same architecture, information about the stimulus repre-

sented in any one of the different input populations could be

made available to the receiving network by switching which
Neuron 67, 308–320, July 29, 2010 ª2010 Elsevier Inc. 313



Figure 5. Time Course of Switching between Input Stimuli

(A) Accuracy of the stimulus estimate decoded from the filter network output

during the switch between input networks.

(B) Firing rate in the input networks during switching. Blue traces: network

switching from oscillating to asynchronous. Black traces: network switching

from asynchronous to oscillating (note slow transition into oscillating state).

Red traces: network rapidly switched from asynchronous to oscillating by

giving the interneuron population a brief kick at the time of transition.
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one was in an oscillatory state: one of the distractors could thus

become the sender, and vice versa.

We tested how rapidly the filter network responded to this

switching. After such a transition, it took�150 ms (�6 oscillatory

cycles) for the stimulus estimate decoded from the filter network

to reach steady-state accuracy (Figure 5A). We observed that

when a presynaptic network was switched from asynchronous

to oscillatory dynamics, the oscillation did not start suddenly,

but rather developed slowly over a number of cycles, limiting

the speed of switching (Figure 5B2). However, by delivering

a small kick to the network at the time of switching (a brief pulse

of excitatory input to the interneurons), a strong oscillation could

be induced immediately, reaching full amplitude on the first cycle

after switching (Figure 5B3). This reduced the time taken for

the filter network output to reach steady-state accuracy to

75 ms (�3 cycles; Figure 5A). The rapid response of the filtering

network could allow brief episodes of network oscillation lasting

only a few cycles to transmit a pulse of information down

a pathway whose default state was gated off.

Multiplexing Population Codes in the Frequency Domain
The gating mechanism we have described works because only

the oscillating sender network contributes strongly to the gamma

band amplitude of the combined signal. For this reason, signal

gating is severely compromised if distracting inputs also oscillate

in the same frequency band (Figures S3A–S3E). However,

network oscillations occur in the brain over a wide range

of frequencies, raising the possibility that multiple population

codes originating from networks oscillating at different frequen-

cies could be multiplexed into a single set of inputs. This could

allow the receiving network to choose which of several different

inputs to respond to, by choosing which frequency band to filter

from the combined input. Indeed, recent evidence from the

hippocampus lends support to this hypothesis (Colgin et al.,

2009). Just as frequency division multiplexing in electronic

communication networks allows multiple independent signals

to share the electromagnetic spectrum or optical fiber band-

width, multiplexing may facilitate efficient use of white matter

tracts in the brain.

To explore the possibility for multiplexing in our model, we

replaced two of the asynchronous distracting networks with

modified versions of the sender network, one of which oscillated

at a high gamma frequency (�100 Hz) and the other in the beta

frequency band (�16 Hz). The combined signal therefore

contained an asynchronous, a low gamma, a high gamma, and

a beta frequency component, each of which encoded a different

stimulus in its spatial pattern of activity (Figure 6). The spatial

pattern of activity in each of the oscillating inputs could be accu-

rately read out from the combined signal by evaluating the spatial

pattern of firing-rate oscillation amplitude at the appropriate

frequency. The estimate standard deviations decoded from

125 ms sections of the combined input activity for the beta

frequency input was 1.93�; for the low gamma input, 2.19�;
and for the high gamma input, 1.72�. (A longer window—

125 ms as opposed to the 50 ms window used for Figure 3—

was used both to capture the longer period of the beta frequency

oscillation and to reduce broadening of Fourier spectral peaks

due to the time-frequency uncertainty principle.)
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We drove the filter network with this combined input to test

whether it could extract the low gamma input in the presence

of distractors oscillating in other frequency bands. The stimulus

encoded in the low gamma input network could be accurately

decoded from the spatial pattern of filter network firing rates

evaluated over 125 ms sections (estimate standard deviation

4.60�, correlation 0.976). The high correlation between the input

stimulus and the estimate decoded from the filter network output

shows that the filter network is able to perform the band-pass

filtering needed to extract one of the three multiplexed signals.

However, the accuracy was lower than that achieved by decod-

ing from the gamma amplitude directly, suggesting that a filter

network with a narrower pass-band could achieve higher signal

propagation accuracy.

The filter network as outlined above was designed to extract

information encoded in the low gamma band (approximately

40 Hz). However, the principles of its operation are not restricted

to this frequency. The main determinants of its frequency selec-

tivity are the resonance frequency of the feed-forward inter-

neuron population and the synaptic time courses of excitatory

and inhibitory input received by the principal cells. The former

is itself strongly influenced by the time courses of synapses,

although as shown in the Supplemental Information, intrinsic

neuronal properties such as the afterhyperpolarization (AHP)



Figure 6. Multiplexing Multiple Signals in

the Frequency Domain

Four input networks, one asynchronous, one oscil-

lating in the high gamma band, one in the low

gamma band, and one in the beta band, converge

to produce a combined pattern of input activity.

Reading out the pattern of amplitude of the com-

bined input at the appropriate frequency recovers

the spatial pattern of activity in any one of the

oscillating networks.

(A) Spike rasters.

(B) Spatial patterns of the firing rate.

(C–E) Spatial pattern of the firing-rate oscillation

amplitude in beta (C), low gamma (D), and high

gamma (E) frequency bands. See Figure S3 as

well.
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also potentially play a major role (Figure S1). The kinetics of the

conductances underlying these phenomena varies extensively

across different types of interneurons, suggesting that different

microcircuits may support temporal filtering operations over

a wide frequency range. Furthermore, gap-junction coupling

between interneurons of the same class may promote precisely

the resonant network dynamics required for filtering (Bennett

and Zukin, 2004; Hestrin and Galarreta, 2005). To illustrate

filtering in a different frequency band, we implemented a version

of the filtering network with synaptic kinetics based on the late

spiking interneurons of layer 1 (Chu et al., 2003). Because of

the slow time course of these conductances, the pass-band of

this filtering network was tuned to a frequency of�10Hz (Figures

S3F–S3H).

Modulation of the amplitude of a high-frequency oscillation by

the phase of a low-frequency oscillation has been observed in

several brain regions (Roopun et al., 2008). We found that this

arrangement reproduced the spatial pattern of firing rates in

the spatial pattern of amplitude at both oscillation frequencies

(Figures S3I–S3N). This suggests a possible role for these

dynamics in multiplexing a stimulus into two frequency bands

simultaneously.

Time-Varying Stimuli
We have hitherto considered only stationary stimuli. Can the

encoding scheme and the filtering network function with time-

varying stimuli? We tested this by summing the activity in

one oscillating sender and three asynchronous distractor net-

works representing stimuli that varied independently over time

(Figure 7). We analyzed the spatiotemporal pattern of gamma

amplitude of the combined input using a 50 ms Hanning window

as before, but we moved the window along the input activity in

25 ms steps. The spatiotemporal pattern of gamma amplitude

reproduced the activity in the oscillating sender network and
Neuron 67, 308–
was decoded to produce an accurate

estimate of the time-varying stimulus driv-

ing the oscillating network (Figure 7B2).

We drove the input afferents of the

filtering network with this convergent

spike activity (Figure 7C). This induced

an oscillating bump of spiking activity in
the principal cells of the filtering network that followed activity

in the oscillating input network. The firing rates of the principal

cells in the receiver network were decoded to produce an esti-

mator that accurately tracked the orientation of the stimulus

driving the oscillating sender network (Figure 7C1). We thus

conclude that, for stimuli that vary relatively slowly relative to

the oscillation frequency, the mechanism described here is

indeed able to route signals with high accuracy.

DISCUSSION

We have described a novel mechanism by which changes in the

dynamical state of neural networks can turn on and off functional

connectivity between anatomically connected regions.

The mechanism exploits two principles: first, in a sparsely

synchronized oscillating network, a spatial pattern of firing rates

is reproduced as a spatial pattern of firing-rate oscillation ampli-

tude. This can be decoded like a conventional population code

to recover the value of the encoded stimulus. Crucially, asyn-

chronous networks or networks oscillating in different frequency

bands contribute only very weakly to this amplitude pattern.

Second, the pattern of oscillation amplitude at a given frequency

can be read out (converted into a pattern of firing rates) by

a feed-forward interneuron layer tuned to act as a band-pass

filter. Importantly, and in contrast to an alternative proposal

(Fries, 2005), there is no requirement for an external pacemaker

to synchronize the sender and receiver networks in the scheme

described here. It is sufficient for the sender network to oscillate

within the pass-band for information to be selectively routed to

the receiver. Of course, gating mechanisms with and without

pacemaking signals are not mutually exclusive, and each may

offer distinct advantages in different applications.

The gating mechanism proposed here provides several com-

plementary approaches to modulate functional connectivity.
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Figure 7. Gating Time-Varying Stimuli

(A) Spike rasters of principal cells in four input networks, each encoding a different time-varying stimulus. The network generating the raster (A1) is in the oscil-

lating state, while the other three networks are in the asynchronous state.

(B) Combined input obtained by summing activity in the input networks: (B1) spike raster, (B2) spatiotemporal pattern of gamma band amplitude, together with the

stimulus driving oscillating network (red line) and the decoded stimulus estimate (black dots).

(C) Activity in the filtering network when driven by convergent input: (C1) principal cell spike raster (black), stimulus driving oscillating network (red), stimulus esti-

mate decoded from pyramidal cell activity (blue), (C2) interneuron spike raster, (C3) membrane potential of a sample principal cell, (C4) synaptic currents in

a sample principal cell (inhibitory: green; excitatory: blue; net current: red).
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The activity in a sending network can be switched between an

asynchronous and an oscillatory state, or the frequency of the

population oscillation can be varied to control how strongly it

drives the pass-bands of receiving filter networks. Alternatively,

the filtering performed by a receiving network on its inputs can

be modulated to read out different codes multiplexed into

separate frequency bands. This could be achieved by controlling

the relative amount of feed-forward inhibition provided by

interneuron populations implementing different filters. Neuromo-

dulatory inputs are an attractive candidate mechanism for

controlling the dynamic state of networks involved in gating.

Such inputs must have sufficient spatial and cellular selectivity

to change the state of local networks, but they do not need to

be targeted differentially to individual cells within a population.

This is a potential advantage over the detailed balance scheme

(Vogels and Abbott, 2009), which requires the control input to

apply a pattern of gain modulation at the single-neuron level

unless each signal pathway has its own associated interneuron

population.
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Several forms of cross-frequency interaction, including phase-

amplitude coupling (nesting) and phase locking, have been

reported in network oscillations in vivo. Although we have iden-

tified one possible coding consequence of nesting (Figures

S3I–S3N), a full treatment of this subject is outside the scope

of the current work (Jensen and Colgin, 2007; Roopun et al.,

2008; Palva and Palva, 2007).

Our study builds on previous literature addressing both the

flexible routing of neural signals and the possible role of network

oscillations in gain modulation. Several authors have described

models in which asynchronous signals are routed by interposing

dedicated circuitry between sending and receiving regions

(Anderson and Van Essen, 1987; Zylberberg et al., 2010; Olshau-

sen et al., 1993). Using oscillatory mechanisms to turn on and off

direct interregion connections could alleviate the need for this

additional circuitry. Prior studies have focused on howoscillatory

mechanisms could reproduce effects of attention on V4 neuronal

responses (Buehlmann and Deco, 2008; Niebur et al., 1993;

Zeitler et al., 2008; Mishra et al., 2006). Our focus was not to
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reproduce a particular experimental result but rather to build

a network that performs the specific computational task of signal

gating—turningonandoff functional connectivity for agivenfixed

anatomical connectivity. Studies have explored how the input-

output relationship of neuronal networks can be modulated by

oscillatory synchronization (Börgers et al., 2005, 2008; Masuda,

2009; Tiesinga et al., 2004; de Almeida et al., 2009; Burchell

et al., 1998). Our model demonstrates significant novel function-

ality by allowing selective and accurate gating of population-

coded signals on the basis of their oscillatory modulation, even

in the presence of multiple, overlapping, distracting inputs.

Although our model generates a very high correlation between

true input stimulus values and their estimates decoded from the

filter network, there is inevitably a reduction in accuracy

compared with stimulus representation in the input populations.

This occurs because although distracting inputs are not oscil-

lating, they produce noise in the gamma band because of their

stochastic spiking, which degrades the signal. Detailed balance

(Vogels and Abbott, 2009) also suffers from signal degradation

as a result of the distracting inputs, because although gated-

off signals are, on average, canceled by inhibition, stochastic

spiking causes fluctuations that degrade the output. This is

why Vogels and Abbott report that the number of active inputs

must be limited for accurate signal propagation. In both mecha-

nisms, even with a small number of active distracting inputs, the

output signal is degraded in comparison to the input, resulting

in reduced accuracy for a given integration time. The information

rate per neuron will therefore be reduced in pathways in which

multiple distracting inputs are active and flexible signal routing

is required. This may be one factor contributing to reduced

psychophysical performance in discrimination tasks in the pres-

ence of distracting stimuli (Pelli and Tillman, 2008; Seidemann

and Newsome, 1999).

The output of the filtering network we have described is itself

oscillating, and hence the signal gating mechanism is not recur-

sive. In other words, the output of the filtering network would

need to be desynchronized before it could be used as the input

to another convergent pathway employing the same gating

mechanism. Possible desynchronization mechanisms include

neurons with subthreshold bursting dynamics to sustain spiking

over the phase when they are not receiving strong input, or low

pass filtering provided either by slow synaptic conductances,

such as NMDA receptors, or by intrinsic neuronal properties,

such as dendritic filtering.

A key signature of the described oscillatory gating mechanism

is strong, coherent oscillation between sending and receiving

regions during communication. Task-dependent increases in

strength and interregion coherence of network oscillations

have been reported in numerous brain systems, including the

visual system during attentional processing (Fries et al., 2001;

Siegel et al., 2008; Buschman and Miller, 2007), the hippo-

campus (Colgin et al., 2009) during memory tasks (Montgomery

and Buzsáki, 2007), between the amygdala and striatum during

learning (Popescu et al., 2009), the frontal and parietal cortex

during working memory (N. Dotson et al., 2009, Soc. Neurosci.,

abstract) and decision making (Pesaran et al., 2008), and within

themotor system during movement tasks (Lee, 2003; Schoffelen

et al., 2005). Especially consistent with our model are those
studies that have shown strong task-dependent synchronization

in a narrow frequency band between distinct brain regions

(Popescu et al., 2009; Pesaran et al., 2008). In both these

studies, the oscillatory activity was limited to a subpopulation

of cells recorded in the relevant regions, and the oscillations

were confined to short bursts. This dispersal of oscillatory

activity suggests that without careful analysis the strength of

oscillatory events may be underestimated as a result of spatial

and temporal averaging.

Finally, the mechanism described here makes strong predic-

tions for the intracellular currents during signal gating. If a

network is gating ‘‘on’’ a subset of its inputs using the mecha-

nism that we describe, the spike rate in principal cells will be

strongly correlated with the amplitude of oscillatory fluctuation

in its synaptic input. Additionally, spiking activity will be strongly

correlated with a phase shift between periodic modulation of

excitatory and inhibitory synaptic currents. These experimentally

testable predictions are distinct from gating mechanisms, such

as detailed balance (Vogels and Abbott, 2009), that do not rely

on oscillatory synchronization.

EXPERIMENTAL PROCEDURES

Simulations were performed with the software NEST (Gewaltig and Diesmann,

2007), except those for Figure S1 and Figures S3F–S3H, which were per-

formed in BRIAN (Goodman and Brette, 2009). A 0.1 ms time step was used

for numerical integration. All data analysis and plotting were carried out in

python with the use of the Ipython, Numpy, Scipy, and Matplotlib libraries.

Neurons

All neurons were described as exponential integrate-and-fire models (Four-

caud-Trocmé et al., 2003), and synapses were conductance based with

alpha-function time courses. The membrane potential of the exponential inte-

grate-and-fire neuron obeys the following equation:

C
dV

dt
= � glðV � ElÞ+glDTe

�
V�VT
DT

�
� geðV � EeÞ � giðV � EiÞ+ Ie

When the membrane potential reaches the spike cutoff of 0 mV, it is reset

to �65 mV.

The following parameters were the same across all neuron populations:

membrane capacitance C = 100 pF, leak conductance gl = 10 nS, leak

reversal potential El = �60 mV, spike threshold VT = �50 ± 2 mV, slope factor

DT = 2 mV, excitatory synaptic reversal potential Ee = 0 mV, inhibitory reversal

potential Ei = �80 mV.

Synaptic time courses, synaptic conductances, and tonic current were

different across populations:

Sender network principal cells: excitatory alpha function t = 4 ms, inhibi-

tory t = 3.5 ms, tonic current Ie = 30 ± 20 pA.

Sender network interneurons: excitatory t = 4ms, inhibitory t = 3ms, tonic

current Ie = 30 ± 80 pA.

Receiver network principal cells: excitatory t = 4 ms, inhibitory t = 4 ms,

tonic current Ie = 30 ± 20 pA.

Receiver network interneurons: excitatory t = 4 ms, inhibitory t = 8 ms,

tonic current Ie = 30 ± 20 pA.

Heterogeneity was introduced in the populations by randomly varying the

spike threshold and tonic current across individual cells according to a normal

distribution. These parameters are quoted as mean ± standard deviation.

Sender and Distractor Networks

The sender and distractor networks consisted of 8000 excitatory and 2000

inhibitory neurons with random internal connectivity. Each principal cell in

the network received synaptic input from randomly selected 400 principal cells
Neuron 67, 308–320, July 29, 2010 ª2010 Elsevier Inc. 317
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and 200 interneurons. Each interneuron received synaptic input from randomly

selected 400 principal cells and 100 interneurons. Each pyramidal cell

received external Poisson spike input, with a rate Rex (in Hz) given by

Rex = 400+ 140 cosð2ðqstim � qpref ÞÞ;
in which qstim was the current stimulus orientation and qpref was the neurons’

preferred orientation. Each interneuron received external Poisson input

with a constant rate of 400 Hz. In the asynchronous state, alpha-function

peak conductivities (in nS) between external inputs (X), interneurons (I), and

pyramidal cells (E) were: E-E = 0.1, E-I = 0.2, I-E = 0.6, I-I = 1.5, X-E = 1,

X-I = 0.8. To switch the network into the oscillating state, the synapses from

excitatory to inhibitory and from external to inhibitory were modified to E-I =

0.3, X-I = 0.4.

Sender and Distractor Network Variants

For Figure 6, the sender network was modified by changing synaptic weights

and time courses to produce two variants, one of which oscillated at �16 Hz

and one of which oscillated at �100 Hz.

The following are 16 Hz beta frequency synaptic parameters:

Principal cells: excitatory alpha function t = 12 ms, inhibitory t = 15 ms.

Interneurons: excitatory t = 12 ms, inhibitory t = 15 ms.

Alpha-function peak conductances (in nS): E-E = 0.05, E-I = 0.08, I-E = 0.1,

I-I = 0.2, X-E = 0.47, X-I = 0.5.

The following are 100 Hz high gamma frequency synaptic parameters:

Principal cells: excitatory alpha function t = 4 ms, inhibitory t = 3.5 ms.

Interneurons: excitatory t = 4 ms, inhibitory t = 2 ms.

Alpha-function peak conductivities (in nS): E-E = 0.1, E-I = 0.2, I-E = 0.6,

I-I = 2.5, X-E = 1.55, X-I = 0.8.

For Figures S3A–S3E three variant networks were created, with parameter

values between those used for the asynchronous distractor network and those

used for the oscillating sender network. These spanned the transition from

asynchronous to sparsely synchronized dynamics. The only parameters

changed were the synaptic strengths from the external input to the inhibitory

interneurons and from the principal cells to the interneurons. In order of

increasingly oscillatory dynamics, the modified alpha-function peak conduc-

tances (in nS) in the three variants were as follows:

Variant one: X-I = 0.6, E-I = 0.24.

Variant two: X-I = 0.5, E-I = 0.26.

Variant three: X-I = 0.45, E-I = 0.28.
Receiver Network

The receiver network consisted of 8000 input afferents, 2000 principal cells,

and 2000 interneurons. The input afferents each had a preferred orientation,

which varied smoothly across the population from 0� to 180�. Orientation

tuning of interneuron and principal cell activity was inherited entirely from their

connectivity to the input afferents; however, in describing the connectivity

pattern, it is useful to think of each pyramidal cell and interneuron as having

a predefined orientation preference that again varied across the population

from 0� to 180�. For each connection type (for example, interneuron to prin-

cipal cell), the average connection weight between a presynaptic cell and

a postsynaptic target was defined as a Gaussian function of the separation

of their orientation preferences. The Gaussian function was specified for

each connection type by a width in orientation space and an average total

number of afferents of that type received by each cell. Thewidth of the connec-

tion pattern is the expected standard deviation of orientation preferences of

the afferents received by a cell. For the connections between input afferents

(X), principal cells (E), and interneurons (I), these connection widths were

X-I = 13.5�, X-E = 13.5�, I-I = 13.5�, I-E = 17�. The average numbers of afferents

received by a postsynaptic cell for each connection type were X-I = 100, X-E =

600, I-I = 200, I-E = 200. Specific connections onto each cell were generated

stochastically, with the number of connections between a presynaptic and

postsynaptic pair drawn from a Poisson distribution with a mean determined
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by the Gaussian distributions described above. The peak conductances

(in nS) of the alpha function synaptic time course for each connection type

were X-I = 0.3, X-E = 0.1, I-I = 0.1, I-E = 0.75.

Filter Network Variants

Alternative implementations of the filtering network were created for Figure S1.

For simplicity, we did not implement a spatially mapped version of these

networks in which different cells had different orientation preferences; instead,

there was a single population of 800 input afferents whose firing rate was

homogeneous. These projected to a population of 400 interneurons and 400

principal cells. The interneuron population was recurrently connected and

made connections onto the principal cells. The connection probability

between cells in each pathway (X-E, X-I, I-E, I-I) was such that the average

number of inputs received by cells of each type was the same as in the original

filtering network. Except where stated otherwise below, neuronal and synaptic

parameters were the same as in the original filter network.

In the first variant filter network (Figure S1C), interneurons had a spike AHP

current modeled as an alpha-function conductance with t = 10 ms, conduc-

tance 18 nS, and reversal potential �80 mV. Interneurons in this network

were recurrently connected with gap junctions with a conductance of

0.04 nS and a connection probability of 0.5. The tonic current received by inter-

neurons was 50 ± 20 pA, and the alpha function t of I-I synapses was 3 mS.

The second filter network variant had two interneuron populations: a feed-

forward (FF) population and an interneuron-selective (IS) population (green

and purple, respectively, in the network diagram in Figure S1D). For both pop-

ulations, neuronal parameters and connections from the input afferents were

the same as for the interneurons in the original filtering network. To describe

the inhibitory connectivity, we state for each pathway the alpha function t,

peak conductance, and average number of synapses of each type received

by a postsynaptic cell. FF-FF: t = 3 ms, peak conductance = 0.1 nS,

n synapses = 200. FF-principal cell: t = 4 ms, peak conductance = 0.75 nS,

n synapses = 200. IS-IS: t = 8 ms, peak conductance = 0.1 nS, n synapses =

200. IS-FF: t = 8 ms, peak conductance = 0.1 nS, n synapses = 200.

For comparison, we also implemented a pathway with no feed-forward inhi-

bition (Figure S1A). Each principal cell received, on average, 600 synaptic

connections from input afferents with alpha function t = 4 ms and peak

conductance = 0.018 nS.

For Figures S2E and S2F, we added an additional population of feedback

interneurons to the filtering network. These had the same intrinsic properties

as the normal interneurons in the filtering network except for the tonic current,

which was 120 ± 20 pA. Each feedback interneuron received 100 excitatory

synapses from randomly selected filter network principal cells with alpha

function conductance t = 4 ms, peak conductance = 0.6 nS, and reversal

potential = 0 mV. Each feedback interneuron received 100 recurrent inhibitory

synapses from randomly selected feedback interneurons with alpha function

conductance t = 3 ms, peak conductance = 1.5 nS, and reversal potential =

�80 mV. Each filter network principal cell received 100 inhibitory synapses

from randomly selected feedback interneurons with alpha function conduc-

tance t = 4 ms, peak conductance = 0.6 nS, and reversal potential = �80.

The tonic current received by filter network principal cells was increased to

120 ± 20 pA.

For Figures S2G–S2I, we added a feedback connection from the filter

network principal cells to the feed-forward interneurons. Each interneuron

received 100 excitatory synapses from randomly selected filter network prin-

cipal cells with alpha function conductance t = 4 ms, reversal potential

0 mv. In Figures S2G and S2H, the peak alpha function conductance is

0.075 nS, whereas in Figure S2I it is 0.15 nS.

For Figure S3F, we implemented a filtering network with the pass band tuned

to 10 Hz. The filter network was identical to that used in Figure S1B, except

for synaptic time scales and strengths, which were as follows: Peak conduc-

tances: X-I 0.3 nS, X-E 0.1 nS, I-E 0.8 nS, I-I 0.1 nS. Alpha function t: X-I

8 ms, X-E 8 ms, I-E 15 ms, I-I 30 ms.

Simulations and Analysis

For each network configuration, we performed 200 simulations of 1 s of

network activity The initial 100 ms of all simulations were discarded to prevent

start-up transients contaminating the data.



Neuron

Oscillations Support Flexible Information Routing
To quantify the 0 Hz and gamma amplitude, as well as the decoded estima-

tion accuracy, simulations were divided into nonoverlapping 50 ms sections.

In all convergent pathway conditions, the orientations of the target and distrac-

tor stimuli were randomly drawn from uniform distributions. The spatial pattern

of 0 Hz amplitude (average firing rate) and 41 Hz gamma amplitude for each

sectionwas analyzed by dividing the neurons into 20 subpopulations and pool-

ing the activity in each group to produce a firing-rate signal (all population firing

rates were discretized with a 1 ms time bin). The Fourier transform of these

20 firing-rate signals was analyzed with the use of a 50 ms Hanning window

to reduce spectral leakage. The amplitude of the Fourier transforms was

measured at 0 Hz, to give the population average firing rate, and at the

41 Hz oscillation frequency.

Decoding

The 50 ms sections were divided into a training set and a test set. The spatial

pattern of average firing rates and gamma amplitude across 20 subpopula-

tions was calculated for each 50 ms section as described above. The training

set was used to produce a template of the average firing rate (or gamma ampli-

tude) R as a function of the orientation offset q between the population’s

preferred orientation and the stimulus orientation. The template used was

a least-squares fit of a Von Mises distribution to the average spatial pattern

of firing rates (or gamma amplitudes) over the training set:

Template function : R
�
q
�
=Aeðk cosð2qÞÞ

This template function was then used to decode an estimate of the stimulus

orientation for each section in the test set by finding the orientation estimate

qest that minimized the least-squared error between the measured firing rates

(or gamma amplitudes) and the template function. We report the standard

deviation of these estimates over the training set, the lower bound on the

Fisher information given by the reciprocal of the variance and the circular

correlation coefficient (Fisher and Lee, 1983) between the uniformly distributed

target stimuli and their decoded estimates.
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