
Linear Algebra and its Applications 429 (2008) 1929–1943

Available online at www.sciencedirect.com

www.elsevier.com/locate/laa

On the divisibility of meet and join matrices

Ismo Korkee, Pentti Haukkanen∗

Department of Mathematics, Statistics and Philosophy, University of Tampere, FI-33014, Finland

Received 24 February 2006; accepted 22 May 2008
Available online 7 July 2008

Submitted by B.L. Shader

Abstract

Let (P, �) = (P, ∧, ∨) be a lattice, let S = {x1, x2, . . . , xn} be a meet-closed subset of P and let
f : P → Z+ be a function. We characterize the matrix divisibility of the join matrix [S]f = [f (xi ∨ xj )]
by the meet matrix (S)f = [f (xi ∧ xj )] in the ring Zn×n in terms of the usual divisibility in Z, and we
present two algorithms for constructing certain classes of meet-closed sets S such that (S)f divides [S]f .
As an example we present the lattice-theoretic structure of all meet-closed sets with at most five elements
possessing the matrix divisibility property. Finally, we show that our methods solve some open problems in
the divisor lattice, concerning the divisibility of GCD and LCM matrices.
© 2008 Elsevier Inc. All rights reserved.

AMS classification: 11C20; 15A36; 06B99

Keywords: Meet matrix; Join matrix; Divisibility of matrices; Semi-multiplicative function; Order-preserving; GCD
matrix; LCM matrix

1. Introduction

Let (P, �) = (P, ∧, ∨) be a lattice, let S = {x1, x2, . . . , xn} be a subset of P and let f : P →
C be a function. The meet matrix (S)f and the join matrix [S]f on S with respect to f are defined
by ((S)f )ij = f (xi ∧ xj ) and ([S]f )ij = f (xi ∨ xj ).

Bhat [22] and Haukkanen [6] introduced meet matrices and Korkee and Haukkanen [19]
introduced join matrices. Explicit formulae for the determinant and the inverse of meet and join
matrices are presented in [6,18,19,22] (see also [2,16,24]). Most of these formulae are presented

∗ Corresponding author. Tel.: +358 31 3551 7030; fax: +358 31 3551 6157.
E-mail addresses: ismo.korkee@uta.fi (I. Korkee), pentti.haukkanen@uta.fi (P. Haukkanen).

0024-3795/$ - see front matter ( 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2008.05.025

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82109347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:ismo.korkee@uta.fi
mailto:pentti.haukkanen@uta.fi


1930 I. Korkee, P. Haukkanen / Linear Algebra and its Applications 429 (2008) 1929–1943

on meet-closed sets S (i.e., xi, xj ∈ S ⇒ xi ∧ xj ∈ S) and join-closed sets S (i.e., xi, xj ∈ S ⇒
xi ∨ xj ∈ S). Recently Korkee and Haukkanen [20] presented a method for calculating det(S)f ,
(S)−1

f , det[S]f and [S]−1
f on all sets S and functions f .

It is well known that (Z+, |) = (Z+, gcd, lcm) is a lattice, where | is the usual divisibility rela-
tion and gcd and lcm stand for the greatest common divisor and the least common multiple of inte-
gers. Thus meet and join matrices are generalizations of GCD matrices ((S)f )ij = f (gcd(xi, xj ))

and LCM matrices ([S]f )ij = f (lcm(xi, xj )). The study of GCD and LCM matrices is considered
to have begun in 1876, when Smith [26] presented his famous determinant formulae. For general
accounts of GCD and LCM matrices, see [10,19]. The GCUD and LCUM matrices, which are
unitary analogies of GCD and LCM matrices, are also special cases of meet and join matrices,
see [9,17].

Bourque and Ligh [4,5] were the first to study the divisibility of GCD and LCM matrices in
the ring Zn×n (i.e., when [S]f = M(S)f for some M ∈ Zn×n). Hong [11–13] has studied this
subject extensively. See also [8].

In this paper we study the divisibility of meet and join matrices, the subject of Bourque, Ligh
and Hong in a more general level. We present a characterization for the matrix divisibility of the
join matrix by the meet matrix in the ring Zn×n in terms of the usual divisibility in Z, where S is a
meet-closed set and f is an integer-valued function on P (see Theorem 3.1). We also present two
inductive algorithms for constructing certain classes of lattice-theoretic structures of meet-closed
sets S such that (S)f divides [S]f under certain conditions on f (see Theorem 3.2). For example,
all chains and x1-sets (i.e., xi ∧ xj = x1 for all i /= j ) can be constructed using our algorithms,
and thus they possess this divisibility property. All meet-closed sets satisfying the divisibility
property can be divided into two classes: those that can be constructed using our algorithms in
Theorem 3.2 and those that should be treated otherwise, for example using our Theorem 3.1.
As an example we find for all meet-closed sets S with at most five elements a necessary and
sufficient condition on f for the divisibility property; we classify the conditions on f on the
basis of the lattice-theoretic structure of S. Finally, the new contributions of this study to the
divisor lattice are described in Section 5. For example, we show that Conjecture 3.1 in Hong [15]
holds.

2. Preliminaries

Let (P, �) be a locally finite poset and let g be a complex-valued function on P × P such
that g(x, y) = 0 whenever x�y. We say that g is an incidence function of P . If g and h are
incidence functions of P , their sum g + h is defined by (g + h)(x, y) = g(x, y) + h(x, y) and
their convolution g ∗ h is defined by (g ∗ h)(x, y) = ∑

x�z�y g(x, z)h(z, y). The set of all inci-
dence functions of P under addition and convolution forms a ring with unity, where the unity δ is
defined by δ(x, y) = 1 if x = y, and δ(x, y) = 0 otherwise. The incidence function ζ is defined
by ζ(x, y) = 1 if x � y, and ζ(x, y) = 0 otherwise. The Möbius function μ of P is the inverse
of ζ (with respect to convolution). On the basis of the recursive property [27, p. 116] the values
of μ are always integers.

Definition 2.1. We say that f is an order-preserving function from the poset (P, �) into the poset
(Q, �) if

x � y ⇒ f (x) � f (y) (2.1)

for all x, y ∈ P .
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Throughout the remainder of this paper we set (P, �) = (P, ∧, ∨) to be a lattice such that all
principal order ideals of P are finite, f to be a complex-valued function on P , and S to be a finite
subset of P , where S = {x1, x2, . . . , xn} with xi < xj ⇒ i < j . The assumptions imply that P

has the least element, which we denote by 0.
We say that S is an a-set if xi ∧ xj = a for all i /= j . We say that S is lower-closed if (xi ∈

S, y ∈ P , y � xi) ⇒ y ∈ S. We say that S is meet-closed if xi, xj ∈ S ⇒ xi ∧ xj ∈ S. It is clear
that a lower-closed set is always meet-closed but the converse need not hold.

Definition 2.2. We say that f is a semi-multiplicative function on P if

f (x)f (y) = f (x ∧ y)f (x ∨ y) (2.2)

for all x, y ∈ P .

The order-preserving property is a poset-theoretic concept [3], but it also appears in number the-
ory. For example, integer-valued totients possess the order-preserving property x|y ⇒ f (x)|f (y),
see [7]. For semi-multiplicative arithmetical functions, see [23, p. 49] or [25, p. 237]. Note
that totients are also semi-multiplicative, and all completely multiplicative arithmetical functions
[21,25] are totients in the sense of [7].

Definition 2.3. The n × n matrices (S)f and [S]f , where ((S)f )ij = f (xi ∧ xj ) and ([S]f )ij =
f (xi ∨ xj ), are called the meet and the join matrix on S with respect to f .

Let Zn×m denote the set of n × m matrices with integer elements. If A ∈ Zn×m, then (A)(i)
and (A)j denote the ith row and the j th column of A, respectively. Note that by 1n and 0n we
denote the 1 × n row vectors 1n = (1, 1, . . . , 1) and 0n = (0, 0, . . . , 0). For a ∈ Z we denote a|A
if a|(A)ij for all i and j .

Definition 2.4. Let A, B ∈ Zn×n. We say that A divides B (in the ring Zn×n under addition and
multiplication of matrices), written as A|B, if there exists M ∈ Zn×n such that B = MA.

Note that since Zn×n is not a commutative ring, it matters on which side of A the matrix M

occurs in Definition 2.4. If A and B are symmetric, then clearly B = MA ⇔ B = AMT. In this
paper we consider meet and join matrices, and these are symmetric matrices.

We associate each f (z) with the incidence function f (0, z). Thus by the notation (f ∗ μ)(z)

we mean the convolution (f ∗ μ)(0, z) = ∑
0�w�z f (0, w)μ(w, z). Let S be meet-closed and

define

�S,k =
∑

z�xk;z�x1,...,xk−1

(f ∗ μ)(z) (2.3)

for all xk ∈ S. Haukkanen [6] shows that (S)f is invertible if and only if �S,k /= 0 for all xk ∈ S.
Moreover, if S is a lower-closed set, then �S,k = (f ∗ μ)(xk).

Let g be an incidence function of P . By gS we denote the restriction of g on S × S. By [1,
p. 139] we can associate each incidence function gS uniquely with the n × n upper triangular
matrix gS , where (gS)ij = gS(xi, xj ). Note that by μS we do not mean (ζ−1)S but the Möbius
function μS = (ζS)−1 of S. Further, Korkee [17, Theorem 2] obtains a representation of μS for
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meet-closed sets S in terms of μ of P , where

μS(xi, xj ) =
∑

xi�z�xj ;z�xi ,...,xj−1

μ(xi, z). (2.4)

The values of μS are also integers.

3. General results

In this section we examine the divisibility of [S]f by (S)f in Zn×n, and therefore we assume
that f is an integer-valued function on P .

In Theorem 3.1 we characterize (S)f |[S]f on meet-closed sets in terms of the usual divisibility
of integers.

Theorem 3.1. Let S be a meet-closed set such that (S)f is invertible (i.e., �S,j /= 0 for all xj ∈ S,

where the �S,j ’s are as given in (2.3)). Then (S)f |[S]f if and only if �S,j |([S]f μS)j for all
j = 1, 2, . . . , n.

Proof. Let S be meet-closed and let (S)−1
f exist. By [18, Theorem 7.1] we have (S)−1

f =μS�−1μT
S ,

where � = diag(�S,1, �S,2, . . . ,�S,n). Note that μT
S , [S]f μS ∈ Zn×n and ζT

S = (μT
S)−1 ∈ Zn×n.

Now the following statements are equivalent.

(a) (S)f |[S]f ,
(b) [S]f (S)−1

f = [S]f μS�−1μT
S ∈ Zn×n,

(c) [S]f μS�−1 = [S]f μS�−1μT
SζT

S ∈ Zn×n,
(d) �S,j |([S]f μS)j for all j = 1, 2, . . . , n. �

In the following results we have to make further assumptions on f . Clearly it suffices that the
assumptions hold at least on those sets S that we are dealing with. However, we construct sets
S inductively and we do not want to mention every time that the assumptions for f should also
hold for the extended sets. Thus we state the following (excessively strong) assumption.

Remark 3.1. Unless otherwise stated, we let f be an order-preserving and semi-multiplicative
function from (P, �) into (Z+, |), and all sets (specified by xi’s) are written so that xi < xj ⇒
i < j .

We next examine which elements of P , denoted as xn+1, could be adjoined to S so that the
divisibility also holds for the extended set S ∪ {xn+1}. The following Theorem 3.2 contains two
construction methods based on the following concept of an admissible partition.

Definition 3.1. We say that S ∪ {xn+1} is an admissible partition with binding element xp if
S ∪ {xn+1} is meet-closed and there exists an element xp ∈ S such that x1, x2, . . . , xp−1 < xp <

xn+1 and xp+1, . . . , xn�xn+1. (Note that the binding element is unique for fixed xn+1.) See
Fig. 3.1 (M1).

Theorem 3.2. LetS be a meet-closed set such that (S)f is invertible (i.e., �S,j /= 0 for allxj ∈ S).

Consider the following construction methods.
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Fig. 3.1. Construction methods.

(M1) Let S′ = S ∪ {xn+1} be an admissible partition with the binding element xp and let (S′)f
be invertible (i.e., �S,j /= 0 for all xj ∈ S and f (xn+1) /= f (xp)). Then (S)f |[S]f ⇔
(S′)f |[S′]f .

(M2) Let S′′ = S ∪ {xn+1} = {x1, . . . , xk, xk+1, . . . , xm, xm+1, . . . , xn, xn+1} be a meet-closed
set, where V = {x1, . . . , xk}, T = V ∪ {xk+1, . . . , xm} and U = V ∪ {xm+1, . . . , xn}, and
letxk = max V andxi ∧ xj ∈ V wheneverxi ∈ T , xj ∈ U . LetT ∪ {xn+1}be an admissible
partition with the binding element xp ∈ T \V and let U ∪ {xn+1} be an admissible partition
with the binding element xq ∈ U\V , where xk = xp ∧ xq and xn+1 = xp ∨ xq. Further, let
xp = xk ∨ xi for k < i � p, let xq = xk ∨ xj for m < j � q, and let xk � xi � xn+1 ⇒
xi ∈ {xk, xp, xq, xn+1} hold. Let (S′′)f be invertible (i.e., �S,j /= 0 for all xj ∈ S and
f (xn+1) − f (xp) − f (xq) + f (xk) /= 0). Then (S)f |[S]f ⇔ (S′′)f |[S′′]f .

In Fig. 3.1 we illustrate the idea of Theorem 3.2. The method (M1) allows us to insert (or
remove) an element above a binding element so that divisibility remains unchanged. The method
(M2) allows us to join together (or separate) two incomparable binding elements.

Proof of Theorem 3.2. We first prove (M1). Consider [S′]f μS′ . By using the partitioned matrices
[28, p. 36] we have

ζS′ =
[
ζS eT

0n 1

]
, μS′ =

[
μS gT

0n 1

]
, [S′]f =

[[S]f hT

h f (xn+1)

]
(3.1)

and thus

[S′]f μS′ =
[[S]f μS [S]f gT + hT

hμS hgT + f (xn+1)

]
, (3.2)

where e = (1p, 0n−p), g = (0p−1, −1, 0n−p) and (h)j = f (xn+1 ∨ xj ) for j = 1, 2, . . . , n.
Clearly hgT + f (xn+1) = 0. By semi-multiplicativity and the definition of S′ we have

(h)j = f (xn+1)f (xj )

f (xn+1 ∧ xj )
= f (xn+1)f (xj )

f (xp ∧ xj )
= f (xn+1)f (xp ∨ xj )

f (xp)
(3.3)
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for j = 1, 2, . . . , n. Thus h = f (xn+1)

f (xp)
([S]f )(p), and by (3.2) we have

[S′]f μS′ =
[ [S]f μS

f (xn+1)−f (xp)

f (xp)
([S]f )p

f (xn+1)

f (xp)
([S]f μS)(p) 0

]
. (3.4)

On the other hand, since (S)−1
f and (S′)−1

f exist, we have �S′,j = �S,j /= 0 for j = 1, 2, . . . , n

and by the Möbius inversion formula [1, p. 152] we have

�S′,n+1 =
∑

z�xn+1;z�x1,...,xn

(f ∗μ)(z) (3.5)

=
∑

z�xn+1

(f ∗μ)(z) −
∑
z�xp

(f ∗μ)(z) = f (xn+1) − f (xp) /= 0.

Now let (S)f |[S]f . By Theorem 3.1 �S′,j = �S,j |([S]f μS)j , and since f (xp)|f (xn+1), by (3.4)
we have �S′,j |([S′]f μS′)j for j = 1, 2, . . . , n. Further �S′,n+1|([S′]f μS′)n+1, since �S′,n+1 =
f (xn+1) − f (xp) and f (xp)|([S]f )p. Thus by Theorem 3.1 we have (S′)f |[S′]f . If (S′)f |[S′]f ,
then by (3.4) we have (S)f |[S]f . Thus (M1) holds.

Second we prove (M2). Consider [S ′′ ]f μ
S

′′ . Clearly (μ
S

′′ )i,n+1 = 0 whenever p < i � m or
q < i � n. If 1 � i � p or m < i � q, then

(μ
S

′′ )i,n+1 = −
∑

xi�xr�xp

(μS)ir −
∑

xi�xr�xq

(μS)ir +
∑

xi�xr�xk

(μS)ir (3.6)

= −δS(xi, xp) − δS(xi, xq) + δS(xi, xk) =
⎧⎨
⎩

1 if i = k,

−1 if i = p, q,

0 otherwise.

Adapting the notation (3.1) to e = (1k, 1p−k, 0m−p, 1q−m, 0n−q), we have

[S ′′ ]f μ
S

′′ =
[[S]f μS [S]f gT + hT

hμS hgT + f (xn+1)

]
, (3.7)

where g = (0k−1, 1, 0p−k−1, −1, 0m−p, 0q−m−1, −1, 0n−q) and (h)j = f (xn+1 ∨ xj ) for j =
1, 2, . . . , n. Then

hgT + f (xn+1) = f (xn+1) − f (xn+1) − f (xn+1) + f (xn+1) = 0. (3.8)

By semi-multiplicativity and arguments similar to those for (3.3), we have

(h)j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (xn+1)

f (xp)
([S]f )pj = f (xn+1)

f (xq )
([S]f )qj if 1 � j � k,

f (xn+1)

f (xp)
([S]f )pj = ([S]f )qj if k < j � m,

f (xn+1)

f (xq )
([S]f )qj = ([S]f )pj if m < j � n.

(3.9)

Since (μS)ij = 0 whenever k < i � m and m < j � n, we have

(hμS)j =
⎧⎨
⎩

f (xn+1)

f (xp)
([S]f μS)pj if 1 � j � m,

f (xn+1)

f (xq )
([S]f μS)qj if m < j � n.

(3.10)
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By the definition of S′′ we have ([S]f )ik = ([S]f )ip if k < i � m, and similarly ([S]f )ik =
([S]f )iq if m < i � n. Thus

([S]f gT + hT)(i) = ([S]f )ik − ([S]f )ip − ([S]f )iq + (hT)(i) (3.11)

=
{
f (xk) − f (xp) − f (xq) + f (xn+1) if 1 � i � k,

0 if k < i � n.

On the other hand, since (S)−1
f and (S

′′
)−1
f exist, we have �

S
′′
,j

= �S,j for j = 1, 2, . . . , n and

�
S

′′
,n+1 =

∑
z�xn+1;z�x1,...,xn

(f ∗ μ)(z)

=
∑

z�xn+1

(f ∗ μ)(z) −
∑
z�xp

(f ∗ μ)(z) −
∑
z�xq

(f ∗ μ)(z) (3.12)

+
∑
z�xk

(f ∗ μ)(z) = f (xn+1) − f (xp) − f (xq) + f (xk) /= 0.

Now let (S)f |[S]f . Then by Theorem 3.1 �
S

′′
,j

= �S,j |([S]f μS)j for j = 1, 2, . . . , n, and

since f (xp), f (xq)|f (xn+1), by (3.7) and (3.10) we have �
S

′′
,j

|([S ′′ ]f μ
S

′′ )j for j = 1, 2, . . . , n.

Further, by (3.7), (3.8) and (3.11) we have �
S

′′
,n+1|([S

′′ ]f μ
S

′′ )n+1. Therefore (S′′)f |[S′′]f . If
(S′′)f |[S′′]f , then clearly also (S)f |[S]f . Thus (M2) holds. �

Application of Theorem 3.2 goes inductively as follows. Let S be a meet-closed set with n

elements. Suppose that S can be constructed from S \ {xn} using the method (M1) or (M2) of
Theorem 3.2, and suppose that S \ {xn} satisfies the divisibility property if and only if a certain
condition on f holds. Then S satisfies the divisibility property if and only if the same condition on
f holds. (It is possible that the divisibility property holds in S \ {xn} for all f and therefore also
in S for all f , and it is possible that the divisibility property does not hold in S \ {xn} for any f

and therefore does not hold either in S for any f .) If S cannot be constructed from S \ {xn} using
(M1) or (M2), then the divisibility condition should be found using other methods, for instance,
using Theorem 3.1. Examples are provided in Corollaries 3.1 and 3.2 and in Sections 4 and 5.

Chains and x1-sets are meet-closed and are easy to construct inductively using the method
(M1). Thus we obtain the following two corollaries. The requirement of semi-multiplicativity in
Corollary 3.1 is irrelevant (see Remark 3.1), since every f is semi-multiplicative on chains.

Corollary 3.1. Let S be a chain such that (S)f is invertible (i.e., f (x1) /= 0 and f (xk) /= f (xk−1)

for k = 2, 3, . . . , n). Then (S)f |[S]f .

Corollary 3.2. Let S be an x1-set such that (S)f is invertible (i.e., f (x1) /= 0 and f (xk) /= f (x1)

for k = 2, 3, . . . , n). Then (S)f |[S]f .

4. Divisibility on meet-closed sets with at most five elements

In this section we provide concrete examples on the application of Theorems 3.1 and 3.2. We
find for all meet-closed sets S with at most five elements a necessary and sufficient condition on
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f in order that the divisibility property holds. For each set S we apply the method (M1) or (M2)

of Theorem 3.2 if possible, and otherwise we apply part (c) of the proof of Theorem 3.1. We
classify the sets S on the basis of their lattice-theoretic structure. In Section 5 we use these results
to solve certain open problems on the divisibility of GCD and LCM matrices.

4.1. Cases n = 1, 2, 3

Case n = 1. Let S = {x1} (which is always meet-closed) and let (S)f be invertible. Then
(S)f = [S]f = f (x1) /= 0 and thus (S)f |[S]f .

Case n = 2. Let S = {x1, x2} be meet-closed and let (S)f be invertible. Then S is a chain and
by Corollary 3.1 we have (S)f |[S]f .

Case n = 3. Let S = {x1, x2, x3} be meet-closed and let (S)f be invertible. Then S is either
a chain with x1 < x2 < x3 or an x1-set with x1 = x2 ∧ x3. By Corollaries 3.1 and 3.2 we have
(S)f |[S]f .

Before examining sets with 4 elements we present the following corollary.

Corollary 4.1. Let S be a meet-closed set with at most three elements such that (S)f is invertible.
Then (S)f |[S]f .

4.2. Case n = 4

When we construct all possible meet-closed sets with four elements (from those having three
elements), we obtain exactly five different classes 4A, 4B, 4C, 4D, 4E presented in Fig. 4.1. In
each class the white point stands for the last added element.

Let S ∈ 4A, 4B, 4C, 4D (meaning that S is a set whose Hasse diagram is isomorphic to 4A,
4B, 4C or 4D). Since S can be constructed by (M1), we have (S)f |[S]f . Let S ∈ 4E. Now S

can be constructed by (M2), and thus (S)f |[S]f , if the white point represents the join (and not
merely an upper bound) of the two incomparable elements. Otherwise 4E needs further investi-
gation.

To be more precise, let S ∈ 4E, where x1 = x2 ∧ x3 and x2 ∨ x3 � x4, and let (S)f be invert-
ible. Then � = diag(�S,1, . . . ,�S,4) is invertible, that is, �S,1 = f (x1), �S,2 = f (x2) − f (x1),

4
A

4
B

4
C

4
D

4
E

Fig. 4.1. Meet-closed sets with four elements.
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�S,3 = f (x3) − f (x1) and �S,4 = f (x4) − f (x3) − f (x2) + f (x1) are all nonzero. We have

[S]f =

⎡
⎢⎢⎢⎣

f (x1) f (x2) f (x3) f (x4)

f (x2) f (x2)
f (x2)f (x3)

f (x1)
f (x4)

f (x3)
f (x2)f (x3)

f (x1)
f (x3) f (x4)

f (x4) f (x4) f (x4) f (x4)

⎤
⎥⎥⎥⎦ , μS =

⎡
⎢⎢⎣

1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦
(4.1)

and thus [S]f μS�−1 = A4E , where

A4E =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1
f (x2)
f (x1)

0 f (x2)
f (x1)

f (x1)f (x4)−f (x2)f (x3)
f (x1)[f (x4)−f (x3)−f (x2)+f (x1)]

f (x3)
f (x1)

f (x3)
f (x1)

0 f (x1)f (x4)−f (x2)f (x3)
f (x1)[f (x4)−f (x3)−f (x2)+f (x1)]

f (x4)
f (x1)

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (4.2)

By the order-preserving property and Theorem 3.1 we find that (S)f |[S]f if and only if (A4E)2,4 ∈
Z. In the proof of the next theorem it appears that the only possibility is f (x1)f (x4) = f (x2)f (x3)

(which means by semi-multiplicativity that f (x4) = f (x2 ∨ x3)).

Theorem 4.1. Let S be a meet-closed set with four elements such that (S)f is invertible.

(a) If S ∈ 4A, 4B, 4C, 4D, then (S)f |[S]f .

(b) Let S ∈ 4E, where x1 = x2 ∧ x3 and x2 ∨ x3 � x4. Then (S)f |[S]f if and only if f (x4) =
f (x2 ∨ x3).

Proof. On the basis of the discussion at the beginning of this subsection it suffices to prove (b) in
the only if direction. Let S ∈ 4E, where x1 = x2 ∧ x3 and x2 ∨ x3 � x4, and let (S)f |[S]f . Denote
f (x1) = a � 1. By the order-preserving property, the existence of �−1 and semi-multiplicativity
we have f (x2) = ab, f (x3) = ac, f (x2 ∨ x3) = f (x2)f (x3)/f (x1) = abc and f (x4) = abcd ,
where b, c > 1 and d � 1. We prove that d = 1. Suppose to the contrary that d > 1. By (A4E)2,4
in (4.2), we have (bcd − c − b + 1)|(bcd − bc). Since the both sides of | are positive, we have
bcd − c − b + 1 � bcd − bc and further bc + 1 � b + c. This is a contradiction and so d = 1
and f (x4) = f (x2 ∨ x3). �

4.3. Case n = 5

When we construct all possible meet-closed sets with 5 elements from 4A, 4B, . . . , 4E, we
obtain exactly 15 different classes 5A, 5B, . . . , 5O presented in Fig. 4.2.

Let S ∈ 5A, 5B, 5C, 5D, S ∈ 5F, 5G, 5H or S ∈ 5K, 5L. Since S can be constructed by (M1)

from 4A, 4B, 4C or 4D, we have (S)f |[S]f . Let S ∈ 5M, 5N, 5O. Since S can be constructed by
(M1) from 4E, we obtain that (S)f |[S]f if f (x4) = f (x2 ∨ x3).

Let S ∈ 5E. Now S can be constructed by (M2) from 4B, and thus (S)f |[S]f , if the white
point represents the join of the two incomparable elements. Otherwise 5E needs further inves-
tigation. Also 5I and 5J must be treated separately, since they cannot be constructed at all by
Theorem 3.2.
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5A 5B 5C 5D 5E 5F 5G 5H

5O5N5M5L5J 5K5I

Fig. 4.2. Meet-closed sets with five elements.

To be more precise, in the following let (S)f be invertible and denote� = diag(�S,1, . . . ,�S,5).
First, let S ∈ 5E, where x1 < x2, x2 = x3 ∧ x4 and x3 ∨ x4 � x5. Now �S,1 = f (x1), �S,2 =
f (x2) − f (x1), �S,3 = f (x3) − f (x2), �S,4 = f (x4) − f (x2) and �S,5 = f (x5) − f (x4) −
f (x3) + f (x2) are all nonzero. Thus we have [S]f μS�−1 = A5E , where

A5E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
f (x2)
f (x1)

0 1 1 1

f (x3)
f (x1)

0 0 f (x3)
f (x2)

f (x2)f (x5)−f (x3)f (x4)
f (x2)[f (x5)−f (x4)−f (x3)+f (x2)]

f (x4)
f (x1)

0 f (x4)
f (x2)

0 f (x2)f (x5)−f (x3)f (x4)
f (x2)[f (x5)−f (x4)−f (x3)+f (x2)]

f (x5)
f (x1)

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.3)

and clearly (S)f |[S]f if and only if (A5E)3,5 ∈ Z. Second, let S ∈ 5I, where x1 < x2 < x3, x1 <

x4 and x2 ∨ x4 � x3 ∨ x4 � x5. Now �S,1 = f (x1), �S,2 = f (x2) − f (x1), �S,3 = f (x3) −
f (x2), �S,4 = f (x4) − f (x1) and �S,5 = f (x5) − f (x4) − f (x3) + f (x1) are all nonzero. Thus
we have [S]f μS�−1 = A5I , where

A5I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1

f (x2)
f (x1)

0 1 f (x2)
f (x1)

f (x2)−f (x3)+ f (x1)f (x5)−f (x2)f (x4)

f (x1)

f (x5)−f (x4)−f (x3)+f (x1)

f (x3)
f (x1)

0 0 f (x3)
f (x1)

f (x1)f (x5)−f (x3)f (x4)
f (x1)[f (x5)−f (x4)−f (x3)+f (x1)]

f (x4)
f (x1)

f (x4)
f (x1)

f (x4)
f (x1)

0 f (x1)f (x5)−f (x3)f (x4)
f (x1)[f (x5)−f (x4)−f (x3)+f (x1)]

f (x5)
f (x1)

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.4)

and clearly (S)f |[S]f if and only if (A5I)2,5, (A5I)3,5 ∈ Z. Third, let S ∈ 5J, where x1 = x2 ∧
x3 = x2 ∧ x4 = x3 ∧ x4 andx2 ∨ x3 ∨ x4 � x5. Now�S,1 = f (x1),�S,2 = f (x2) − f (x1),�S,3 =
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f (x3) − f (x1), �S,4 = f (x4) − f (x1) and �S,5 = f (x5) − f (x4) − f (x3) − f (x2) + 2f (x1)

are all nonzero. Thus we have [S]f μS�−1 = A5J , where

A5J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
f (x2)
f (x1)

0 f (x2)
f (x1)

f (x2)
f (x1)

f (x1)[f (x2)+f (x5)]−f (x2)[f (x3)+f (x4)]
f (x1)[2f (x1)−f (x2)−f (x3)−f (x4)+f (x5)]

f (x3)
f (x1)

f (x3)
f (x1)

0 f (x3)
f (x1)

f (x1)[f (x3)+f (x5)]−f (x3)[f (x2)+f (x4)]
f (x1)[2f (x1)−f (x2)−f (x3)−f (x4)+f (x5)]

f (x4)
f (x1)

f (x4)
f (x1)

f (x4)
f (x1)

0 f (x1)[f (x4)+f (x5)]−f (x4)[f (x2)+f (x3)]
f (x1)[2f (x1)−f (x2)−f (x3)−f (x4)+f (x5)]

f (x5)
f (x1)

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

and clearly (S)f |[S]f if and only if (A5J)2,5, (A5J)3,5, (A5J)4,5 ∈ Z. In the proof of the next theo-
rem we repeatedly need the order-preserving property, existence of �−1 and semi-multiplicativity;
so for the sake of brevity we do not mention these properties each time.

Theorem 4.2. Let S be a meet-closed set with five elements such that (S)f is invertible.

(i) If S ∈ 5A, 5B, 5C, 5D, S ∈ 5F, 5G, 5H or S ∈ 5K, 5L, then (S)f |[S]f .

(ii) Let S ∈ 5M, 5N, 5O, where x1 = x2 ∧ x3 and x2 ∨ x3 � x4. Then (S)f |[S]f if and only if
f (x4) = f (x2 ∨ x3).

(iii) Let S ∈ 5E, where x1 < x2, x2 = x3 ∧ x4 and x3 ∨ x4 � x5. Then (S)f |[S]f if and only if
f (x5) = f (x3 ∨ x4).

(iv) If S ∈ 5I, then (S)f �[S]f .

(v) LetS ∈ 5J,wherex1 = x2 ∧ x3 = x2 ∧ x4 = x3 ∧ x4 andx2 ∨ x3 ∨ x4 � x5.Then (S)f |[S]f
if and only if x2 ∨ x3 = x2 ∨ x4 = x3 ∨ x4 = x5 and f (x2) = f (x3) = f (x4) = mf (x1)

(i.e., f (x5) = m2f (x1)), where m = 3 or m = 4.

Proof. On the basis of the discussion at the beginning of this subsection we see that (i) and (ii)
clearly hold. The proof of (iii) is similar to the proof of (b) in Theorem 4.1.

We prove (iv) as follows. Let S ∈ 5I, where x1 < x2 < x3, x1 < x4 and x2 ∨ x4 < x3 ∨ x4 �
x5, and suppose to the contrary that (S)f |[S]f holds. Denote f (x1) = a � 1. Then f (x2) =
ab, f (x3) = abc, f (x4) = ad and f (x3 ∨ x4) = f (x3)f (x4)/f (x1) = abcd , where b, c, d > 1.
Further f (x5) = abcde, where e � 1. Similar to the proof of Theorem 4.1 (b), it can be shown by
(A5I)3,5 in (4.4) that e = 1. Thus f (x5) = abcd. Now by (A5I)2,5 we find that bd − 1|b(d − 1)

and further bd − 1|b(d − 1) − (bd − 1) = 1 − b. This is a contradiction and so (S)f |[S]f cannot
hold. Thus (iv) holds.

Next we prove the if direction of (v). Let S ∈ 5J, where x1 = x2 ∧ x3 = x2 ∧ x4 = x3 ∧
x4 and x2 ∨ x3 ∨ x4 � x5. Let x2 ∨ x3 = x2 ∨ x4 = x3 ∨ x4 = x5 and denote f (x2) = f (x3) =
f (x4) = mf (x1), where m = 3 or m = 4. Then f (x5) = f (x2 ∨ x3) = f (x2)f (x3)/f (x1) =
m2f (x1). Now by (4.5) we find that A5J ∈ Zn×n and therefore (S)f |[S]f . Thus the if direction
holds.

Finally we prove the only if direction of (v). Let S ∈ 5J, where x1 = x2 ∧ x3 = x2 ∧ x4 = x3 ∧
x4 and x2 ∨ x3 ∨ x4 � x5. Let (S)f |[S]f and denote f (x1) = a � 1. We have exactly two pos-
sibilities. Either x2 ∨ x3 = x2 ∨ x4 = x3 ∨ x4 = x2 ∨ x3 ∨ x4 or at least one of x2 ∨ x3, x2 ∨ x4,
x3 ∨ x4 is < x2 ∨ x3 ∨ x4. First let, say, x2 ∨ x3 < x2 ∨ x3 ∨ x4. Then f (x2) = ab, f (x3) = ac,
f (x4) = ad, where b, c, d > 1. Thus we have f (x2 ∨ x3) = f (x2)f (x3)/f (x1) = abc, f (x2 ∨
x3 ∨ x4) = f (x2 ∨ x3)f (x4)/f (x1) = abcd, and further f (x5) = abcde, where e � 1. Now by
(A5J)2,5 in (4.5) we find that (bcde − b − c − d + 2)|b(cde − c − d + 1). Since the both sides of
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Fig. 4.3. The lattice of the divisiors of 36.

| are positive, we have bcde − b − c − d + 2 � b(cde − c − d + 1) and further 0 � (b − 1)(1 −
c − d) − 1. This is a contradiction and so this case never occurs. Second, let x2 ∨ x3 = x2 ∨ x4 =
x3 ∨ x4 = x2 ∨ x3 ∨ x4. Thenf (x2) = f (x3) = f (x4) = ab andf (x5) = cf (x2)f (x3)/f (x1)=
ab2c, where b > 1 and c � 1. Now by (A5J)2,5 in (4.5) we obtain that (b2c − 3b + 2)|(b2(c −
2) + b). Let c > 1. Since the both sides of | are positive, we have b2c − 3b + 2 � b2(c − 2) + b

and 2 − 3b � b − 2b2 and further (b − 1)2 � 0. This is a contradiction and so the case c > 1
never occurs. Let c = 1. Then (b2 − 3b + 2)|(b2 − b), i.e., (b − 2)|b, which means that b = 3 or
b = 4. Thus the only if direction holds and therefore (v) holds. �

4.4. Remarks

Remark 4.1. Suppose that the divisibility property holds in {x1, x2, . . . , xk} if and only if a certain
condition on f holds. Suppose that S can be constructed from {x1, x2, . . . , xk} using (M1) and
(M2) n − k times. Then the divisibility property holds in S if and only if the same condition on
f holds. For example, if n > 5 and S can be constructed from 5I using (M1) and (M2), then the
divisibility property does not hold in S, since it does not hold in 5I.

Remark 4.2. All the structures of S mentioned in Sections 4.1–4.3 need not appear on a fixed
lattice (P, �), and thus the structure of (P, �) also has a bearing on the possibility of the divisi-
bility. For example, if (P, �) is the sublattice (D36, |) of the divisor lattice (Z+, |), where D36 is
the set of the positive divisors of 36 (see Fig. 4.3), then S cannot be of the form 4D in Fig. 4.1.

5. Application to GCD and LCM matrices

In this section we apply our results to the divisor lattice (Z+, |) = (Z+, gcd, lcm). Our results
also concern the divisibility of GCUD and LCUM matrices, but we do not include these results
here, see [9,17].

We give new explanations for some theorems, answer some conjectures and generalize some
results obtained for the divisibility of GCD and LCM matrices in the literature. For the sake
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of brevity we do not write down our theorems and corollaries in the number-theoretic setting.
However, we give some instructions for writing them out.

The symbols �, ∧ and ∨ should be replaced with |, gcd and lcm. The concepts of meet-closed
and lower-closed sets should be replaced with the concepts of gcd-closed and factor-closed sets,
respectively. The incidence Möbius function μ(x, y) should be replaced with the number-theoretic
Möbius function μ(y/x), see [21, p. 300]. If S is gcd-closed, then μS(xi, xj ) should be replaced
with

∑
dxi |xj ;dxi �xi ,...,xj−1

μ(d), cf., [19, Lemma 6.1] and (2.4). Note that the notation (f ∗ μ)(z)

does not have to be changed.
Let f be an integer-valued function on P . If f (m) = m for all m � 1, we denote (S)f = (S)

and [S]f = [S].
On Theorem 3.1. Bourque and Ligh [4, Theorem 3] show that if S is factor-closed, then (S)|[S].
Further, in [5, Theorem 4] they show that if S is factor-closed and f is a multiplicative function
such that f (xi) and (f ∗ μ)(xi) are nonzero for all xi ∈ S, then (S)f |[S]f . This result cannot
be generalized for all lower-closed sets (cf., 5I), but Theorem 3.1 shows what is essential in the
proofs of Bourque and Ligh.

In what follows, let f be an order-preserving and semi-multiplicative function from (Z+, |)
into (Z+, |).
On Theorem 3.2. This result is new in the number-theoretic setting. It gives positive answer to
Conjecture 3.1 in [15]. In fact, d ∈ S ⊆ Z+ is said to be a greatest-type divisor of x ∈ S if d|x
with d /= x and if d|y|x with y ∈ S implies y = d or y = x. Conjecture 3.1 in [15] states that
if S is a gcd-closed set such that for each x ∈ S the number of greatest-type divisors of x is at
most one, then (S)|[S]. This result follows from Theorem 3.2, since in this case the set S can be
constructed applying (M1) finite number of times.

On Corollary 3.1. Hong [13, Theorem 5.1] shows that if S is a divisor chain, if f (x1)|f (xi) for
all xi ∈ S and if (f ∗ μ)(d) ∈ Z whenever d|lcmS, then (S)f |[S]f . By Corollary 3.1 we obtain
essentially the same result.

On Corollary 3.2. This result is also new in the number-theoretic setting.

On Corollary 4.1. This result generalizes the result of Hong [11, Theorem 3.1(i)] (and [12,
Theorem 3.3(ii)]), which states that (S)|[S] (and thus det(S)|det[S]) on any gcd-closed set S with
at most 3 elements.

On Theorems 4.1 and 4.2. Hong [11, Theorem 3.1(ii)] shows that for each n � 4 there exists
a gcd-closed set S with n elements such that (S)�[S]. We prove this using our results and the
same counterexample as in the proof of [8, Theorem 3.5]. Let S = {x1, x2, . . . , xn}, n � 4, where
x1 = 1, x2 = p1, x3 = p2, xi = p1p2 · · · pi−1 for i = 4, 5, . . . , n, and p1, p2, . . . , pn−1 are some
distinct prime numbers in increasing order. Let T = {x1, x2, x3, x4} and f (m) = m for all m � 1.
Since T ∈ 4E and f (x4) = p1p2p3 /= p1p2 = f (lcm(x2, x3)), according to Theorem 4.1 (b) we
have (T )f �[T ]f . Since S is obtained from T applying (M1) finite number of times, then also
(S)f �[S]f .

Hong [12, Theorem 3.5] shows that if S is gcd-closed and xi < 12 for i = 1, 2, . . . , n, then
det(S)|det[S]. Next we prove a stronger result, where even (S)f |[S]f . Consider the sets T =
{x ∈ Z+ : x < 12} and U = T \ {7, 8, 11}, whose Hasse diagrams are as presented in Fig. 5.1.

Let S be a subset of U with n = 4. Since S = {1, 2, 3, 6} and S = {1, 2, 5, 10} are the only
occurrences of 4E in U , and further 6 = lcm(2, 3) and 10 = lcm(2, 5), then (S)f |[S]f holds.
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Fig. 5.1. The divisor lattices of I and U .

Let S ⊆ U with n = 5. Since there are no occurrences of 5E, 5I and 5J in U , then (S)f |[S]f
holds. Let S ⊆ U with n = 6. Now all gcd-closed subsets of U with 6 elements are given as
U \ {6, 10}, U \ {9, 10}, U \ {6, 9}, U \ {5, 10}, U \ {5, 9}, U \ {5, 6}, U \ {4, 10}, U \ {4, 9},
U \ {4, 6}, U \ {4, 5}, U \ {3, 9} and U \ {3, 6}. Since they can all be constructed by (M1) and
(M2), then (S)f |[S]f holds. Let S ⊆ U with n = 7. Now all gcd-closed subsets of U with 7
elements are given as U \ {10}, U \ {9}, U \ {6}, U \ {5} and U \ {4}. Since they all can be
constructed by (M1) and (M2), then (S)f |[S]f holds. Also S = U can be constructed by (M1)

and (M2) and thus (S)f |[S]f holds when n = 8. Note that by (M1) the elements 7 and 11 can be
added to any gcd-closed subset S of U mentioned above. Similarly, 4 can be replaced with 8 or
with the pair 4, 8 to any gcd-closed subset S of U mentioned above. Thus (S)f |[S]f also holds
for any gcd-closed subset S of T .

Hong’s [14] Conjecture 5.3 states that if S is a gcd-closed set with odd elements, then the power
GCD matrix [gcd(xi, xj )

m], m ∈ Z+, divides the power LCM matrix [lcm(xi, xj )
m]. By Theorem

4.1(b) we easily find a counterexample, where S = {1, 3, 5, 45}. We have already announced this
counterexample in Mathematical Reviews [MR2039420 (2004j:11028)] and Zentralblatt MATH
[Zbl 1047.11022], see also [8].

Example 5.1. Consider the set T = {x ∈ Z+ : x < 30}. By Theorems 4.1 and 4.2 we have the
following results. Let S be a gcd-closed subset of T with n = 4. Then (S)|[S] if and only if S

is not any of the sets {1,2,3,12}, {1,2,3,18}, {1,2,3,24}, {1,2,5,20}, {1,2,7,28}, {1,3,4,24} or
{2,4,6,24}. Let S be a gcd-closed subset of T with n = 5. Then (S)|[S] if and only if S is not any
of the sets {1,2,3,4,12}, {1,2,3,4,24}, {1,2,3,8,24}, {1,2,4,5,20}, {1,2,4,6,24} or {1,3,4,8,24}.
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