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Abstract Based on the characterization of ribosome precursor
particles and associated trans-acting factors, a biogenesis path-
way for the 40S and 60S subunits has emerged. After nuclear
synthesis and assembly steps, pre-ribosomal subunits are ex-
ported through the nuclear pore complex in a Crm1- and
RanGTP-dependent manner. Subsequent cytoplasmic biogenesis
steps of pre-60S particles include the facilitated release of sev-
eral non-ribosomal proteins, yielding fully functional 60S sub-
units. Cytoplasmic maturation of 40S subunit precursors
includes rRNA dimethylation and pre-rRNA cleavage, allowing
40S subunits to achieve translation competence. We review cur-
rent knowledge of nuclear export and cytoplasmic maturation of
ribosomal subunits.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Ribosomes are among the most fundamental molecular ma-

chines in all cells as they are required for protein synthesis. In

total, the two ribosomal subunits in eukaryotes consist of four

rRNAs and about 80 proteins, and their biogenesis is a highly

complex process that involves more than 150 non-ribosomal

proteins, the so-called trans-acting factors. Following the

application of tandem affinity purification and mass spectro-

metry techniques to characterize pre-ribosomal particles, a mod-

el for the maturation pathway of ribosomes emerged (reviewed

in [1]). In recent years, ribosome biogenesis and trans-acting

factors have been intensely studied, and many aspects of this

process have been excellently reviewed [1–7].

The synthesis of ribosomes starts with the transcription of

the rRNA from rDNA tandem repeats. RNA polymerase III

synthesizes the 5S rRNA, whereas RNA polymerase I tran-

scribes a long precursor rRNA in the nucleoli. This pre-rRNA

contains the mature 18S, 5.8S and 25S/28S rRNAs (in yeast/

higher eukaryotes), flanked and separated by interspersed

spacer sequences. Concomitant with rRNA transcription, the

rRNA is modified by methylation and pseudouridylation reac-

tions, catalyzed by a large number of snoRNP particles. The

nascent pre-rRNA assembles with trans-acting factors and
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ribosomal proteins, mostly of the small subunit, to a 90S

pre-ribosome, the first ribosome precursor that can be isolated.

In a series of endo- and exonucleolytic processing events, the

pre-rRNA is then cleaved into the mature rRNAs. Cleavage

in the spacer region between the sequences of the 18S and

the 5.8S rRNAs leads to separation of the 90S pre-ribosome

into a pre-40S and a pre-60S particle. Subsequent maturation

of the two subunit precursors is mostly independent, as inter-

ference with the biogenesis of one subunit in most cases still al-

lows maturation of the other subunit, and only few factors are

involved in both pathways (reviewed in [7]).

Following nucleolar assembly and nucleolar and nucleoplas-

mic maturation, pre-ribosomes are exported to the cytoplasm

through the nuclear pore complex (NPC). The two subunit

precursors are translocated as independent entities, and once

the pre-60S and pre-40S particles reach the cytoplasm, they un-

dergo final maturation steps before achieving translation com-

petence.

In this review, we will focus on factors involved in nuclear

export and cytoplasmic maturation of ribosomal subunits.

We will first discuss pre-60S and pre-40S biogenesis in the

yeast Saccharomyces cerevisiae, followed by a review of late

ribosome synthesis steps in vertebrate cells.
2. Late maturation of pre-60S particles

After separation of the 90S intermediate into a pre-60S and a

pre-40S particle, the two subunit precursors have largely inde-

pendent biogenesis pathways. In the case of pre-60S subunits,

pre-rRNA processing is completed within the nucleus, and a

pre-60S ribosome containing the mature 25S, 5.8S and 5S

rRNAs is exported to the cytoplasm [8]. Notably, a lag phase

is observed before exported 60S subunits are incorporated into

polysomes, as the pre-60S particles have to undergo cytoplas-

mic maturation [9]. In these final subunit biogenesis steps, a

number of non-ribosomal proteins associated with cytoplasmic

pre-60S subunits have to be released before 60S subunits

achieve translation competence (Fig. 1).
2.1. Nuclear export of the pre-60S subunit

Nuclear export of pre-60S subunits in S. cerevisiae has been

studied monitoring the nuclear accumulation of ribosomal pro-

teins fused to GFP or of 25S rRNA in a variety of mutant yeast

strains. These studies showed that pre-60S export is dependent

on several NPC components, such as the Nup159p-Nup82p-

Nsp1p complex, Nup1p, Nup49p, Nup120p and Nic96p
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Fig. 1. Cytoplasmic maturation of 60S subunit precursors in yeast. (A) Release of Nmd3p from cytoplasmic pre-60S particles requires the GTPase
Lsg1p and is coupled to loading of Rpl10p onto the subunit. GTP hydrolysis by Lsg1p might force the disassociation of both Nmd3p and the Rpl10p
chaperone Sqt1p from 60S pre-ribosomes. (B) Tif6p recycling is mediated by Sdo1p and the GTPase Efl1p. Sdo1p might recruit Efl1p, whose GTPase
activity triggers the dissociation of Tif6p from pre-60S particles. (C) Recycling of the heterodimer Arx1p/Alb1p from exported pre-60S subunits
requires Rei1p and the J-protein Jjj1p.
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[10–12]. Further, export of 60S subunits was shown to involve

the RanGTPase system [10–12], which controls the directional-

ity of nuclear transport pathways relying on RanGTP-binding

transport receptors (reviewed in [13]). For instance, mutations

in the RanGEF PRP20 or the RanGAP RNA1 lead to nucleo-

plasmic accumulation of pre-60S particles [10–12]. Based on

these data, it was assumed that a RanGTP-binding exportin

supports nuclear export of 60S subunits.

Of the export factors tested, the protein export receptor

Crm1p was shown to be a major contributor to pre-60S export.

Blocking Crm1p-mediated export in a strain carrying a lepto-

mycin B (LMB)-sensitive allele of Crm1p (T539C) leads to nu-

clear accumulation of Rpl25-GFP [14,15]. Crm1p binds its

export substrates by recognizing short leucine-rich export sig-

nals (reviewed in [16]). The nuclear export sequence (NES) for

Crm1p-mediated pre-60S export is likely provided by the
adapter protein Nmd3p, a trans-acting factor associated with

late pre-60S particles [8,14,15]. Nmd3p was first identified in

a screen for components of the non-sense-mediated mRNA de-

cay (NMD) pathway [17], but further analysis revealed that it

is involved in 60S ribosome biogenesis rather than in NMD

[18,19]. Nmd3p is a cytosolic protein that constantly shuttles

in and out of the nucleus [14,15]. Deletion of a C-terminal

NES of Nmd3p yields a dominant negative mutant that in-

duces accumulation of Rpl25-GFP in the nucleus. Addition

of a heterologous NES to the dominant negative Nmd3p mu-

tant rescues the 60S biogenesis defect, indicating that the

Crm1p-dependent NES activity of Nmd3p is required for

pre-60S export [14,15]. It is, however, not yet entirely clear if

Nmd3p acts as a bona fide export adapter in 60S export, as

Nmd3p-dependent recruitment of Crm1p and Gsp1p/Gsp2p

(the yeast Ran proteins) to pre-60S particles has not been
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demonstrated. It is possible that such an export competent

particle is short-lived or not very stable, hindering its purifica-

tion and characterization.

Since Crm1p inhibition leads to defective subunit export, the

contribution of Crm1p to nuclear export of ribosomes is

clearly important. Nevertheless, it is unlikely that a single ex-

port receptor tethered to one specific site on the surface of

the subunit is sufficient to allow for translocation of the large

and highly charged particle through the hydrophobic interior

of the NPC. Additional export factors may chaperone the sub-

unit during transport. One such factor could be Rrp12p, a

HEAT repeat containing protein found in association with

both pre-40S and pre-60S particles [20,21]. As HEAT repeats

are the major secondary structure element in RanGTP-depen-

dent nuclear transport receptors, Rrp12p was a likely candi-

date to serve NPC passage of ribosomal subunits. Indeed,

lack of Rrp12p causes nucleoplasmic accumulation of

Rpl11b-GFP as well as 20S pre-rRNA, the precursor to 18S

rRNA [22]. Interestingly, Rrp12p was found to interact with

Ran and FXFG repeats of nucleoporins. Therefore, it was sug-

gested that Rrp12p is required for export of both subunit pre-

cursors, mediating interactions with the NPC during

translocation to the cytoplasm. However, Rrp12p did not dis-

criminate between the GDP-bound and GTP-bound form of

Ran, a feature that is essential for the function of other expor-

tins. Furthermore, it has not been proven that Rrp12p binds

nucleoporins directly. As Rrp12p depletion leads to defects

in pre-rRNA processing in both subunits, its involvement in

subunit export can still be indirect.

Another mediator of nuclear export implicated in pre-60S

export is Mtr2p, a protein known for its essential role in

mRNA export as part of the mRNA export receptor

Mex67p/Mtr2p heterodimer [23]. Mex67p/Mtr2p does not be-

long to the class of RanGTP-binding exportins and uses a dis-

tinct mechanism to bind to nucleoporins (for review see [24]).

One particular mutant of MTR2, mtr2-33, allows mRNA ex-

port to occur but shows accumulation of Rpl25-EGFP in the

nucleus [25]. Moreover, Mtr2p was detected in late pre-60S

particles in proteomic analysis of pre-ribosomes [8], suggesting

that Mtr2p assists in pre-60S nuclear export. Interestingly, the

NPC-associated SUMO deconjugating enzyme Ulp1p shows a

genetic interaction with the mtr2-33 mutant, and the double

mutant ulp1-ts/mtr2-33 displays pre-60S export defects even

at permissive temperature [26]. These results suggest that desu-

moylation of trans-acting factors at the NPC is important for

efficient pre-60S export. Structural studies revealed that mtr2-

33 mutations are located in a loop region in Mtr2p that is con-

served in different yeast but not in humans, indicating that its

putative function in pre-ribosome export might not be con-

served [27]. So far, no MEX67 mutation is known to impair ex-

port of pre-60S particles. It will be interesting to see whether

Mtr2p acts alone in pre-60S export or whether Mex67p is also

involved.

It is generally difficult to distinguish whether a particular

factor is required for the actual export process or whether it

is needed for the pre-60S particle to achieve export compe-

tence. For instance, it has been suggested that late nucleoplas-

mic pre-60S maturation steps could be coupled to pre-60S

export, in particular 3 0-end processing of the 5.8S rRNA.

Mutation or depletion of factors like Rlp7p [28], Sda1p [29],

Rix1p complex members [30] and Rli1p [31,32] all lead to

defective 5.8S rRNA formation and nuclear accumulation of
pre-60S particles. However, there is no direct evidence for a

coupling of pre-rRNA processing and pre-60S export and

likely, 3 0-end formation of 5.8S rRNA is crucial for achieving

export competent pre-60S particles. Intriguingly, nuclear-re-

stricted pre-ribosomes with failure in 5.8S rRNA processing

caused by mutation of SDA1 are detected by a surveillance

mechanism that eliminates these particles [29].
2.2. Recycling of late trans-acting factors from the pre-60S

subunit

Following nuclear export, the pre-60S subunits contain sev-

eral trans-acting factors that have to be released from the par-

ticles before mature 60S subunits can participate in translation.

These factors are then re-imported into the nucleus where they

participate in the biogenesis of a next pre-60S complex. Several

such recycling steps have been described in the literature and

are summarized below. However, the order in which these re-

lease steps occur has not been defined in all cases. Further anal-

ysis is required to develop a model of cytoplasmic pre-60S

maturation that includes the temporal aspects of these events.

The release of the Crm1p-dependent export adapter Nmd3p

requires Lsg1p, a GTPase found on late pre-60S particles (see

[8,33,34], Fig. 1A). Lsg1p does not accumulate in the nucleus

of Crm1p-inhibited cells and is strictly cytoplasmic, yet its

mutation causes nuclear accumulation of Rpl25-EGFP and

thus a pre-60S export defect [33]. Therefore, Lsg1p was sug-

gested to be required for recycling of an export factor from

the cytoplasm to the nucleus. Indeed, release of Nmd3p from

late cytoplasmic pre-60S particles is blocked by mutations in

Lsg1p [34]. This defect is suppressed by high copy expression

of Nmd3p or by expression of a dominant mutant of Nmd3p

with reduced affinity for 60S subunits, indicating the functional

relation between these two proteins. Release of Nmd3p further

requires functional Rpl10p. Since NMD3 and RPL10 show a

genetic interaction and Nmd3p can be co-purified with Rpl10p

after co-expression in E. coli [14,35], it was suggested that

Nmd3p is recruited to the pre-60S subunit via Rpl10p. How-

ever, high copy NMD3 expression rescues pre-60S export de-

fect in cells lacking Rpl10p [34]. Thus, Nmd3p can bind to

pre-60S in the absence of Rpl10p, and Rpl10p might be re-

cruited to pre-60S particles concomitant with or after release

of Nmd3p (Fig. 1A).

Another protein involved in Nmd3p recycling is Sqt1p,

which forms a complex with free Rpl10p and may serve as

an Rpl10p chaperone required for loading of Rpl10p onto

the subunit [36]. A dominant LSG1 mutation leads to accumu-

lation of Sqt1p on pre-60S particles, indicating that the pres-

ence of Lsg1p is necessary for correct loading of Rpl10p

onto the subunit and subsequent release of Sqt1p. Thus,

Nmd3p release seems to be coupled directly to loading of

Rpl10p onto the maturing 60S subunit (Fig. 1A). It will be

interesting to see in future how the GTPase cycle of Lsg1 is

coupled to its function in remodeling 60S particles in the cyto-

plasm. Clearly, loading of Rpl10p is required for 60S subunits

to be functional in translation [37,38]. This late step in subunit

maturation occurs in the cytoplasm and may represent just one

of several distinct mechanisms to ensure that subunits cannot

prematurely interact during their nuclear biogenesis.

Another factor with a role in 60S subunit biogenesis that

prevents precocious association of the two subunits is Tif6p.

Tif6p, the yeast homolog of mammalian eIF6, is associated
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with pre-60S particles but not found in translating ribosomes

[8,39]. eIF6 was originally identified based on its ability to pre-

vent 40S and 60S association in an in vitro assay [40–42]. How-

ever, studies on both mammalian and yeast homologs revealed

that Tif6p is required for 60S ribosome biogenesis rather than

translation initiation [39,43–46]. Removal of Tif6p from late

pre-60S particles depends on the GTPase Efl1p and is neces-

sary to allow 60S subunits to participate in translation

(Fig. 1B). The deletion of Efl1p results in cytoplasmic accumu-

lation of Tif6p, which is localized to the nucleus at steady state

in wild type cells [45]. Recent data indicate that Sdo1p, the

yeast ortholog of a human gene mutated in the Shwachman-

Diamond syndrome, is another factor necessary for release

of Tif6p [47]. Sdo1p and Efl1p were found to interact in a

high-throughput study of protein complexes [48], and SDO1

deletion leads to the same defect in Tif6p recycling as deletion

of EFL1 [47]. Thus Sdo1p and Efl1p appear to function to-

gether in Tif6p dissociation. Likely, a failure to release Tif6p

from pre-60S particles in the cytoplasm causes a Tif6p defi-

ciency in nuclear pre-60S particles, which are stalled in matu-

ration and are no longer exported [45].

Final maturation of pre-60S particles further includes the re-

lease of Arx1p. Arx1p was found as a component of late pre-

60S particles in both nucleus and cytoplasm, indicating that it

is exported together with the pre-60S subunit from the nucleus

[8,25]. Arx1p is suggested to function in a heterodimer together

with Alb1p [49], and both factors are not present in 80S ribo-

somes or polysomes [49,50], like Nmd3p or Tif6p. Recycling of

Arx1p and Alb1p to the nucleus requires Rei1p, a cytoplasmic

protein associated with pre-60S subunits (Fig. 1C). It is cur-

rently not clear if Rei1p is required for release of Arx1p from

cytoplasmic 60S precursors [50] or for re-import of Arx1p into

the nucleus subsequent to the release from pre-60S subunits

[49]. In contrast to Lsg1p and Efl1p, the Zn-finger protein

Rei1p is not a GTPase, and the molecular basis for its role

in release and recycling of Arx1p/Alb1p is unknown. Energetic

input to Arx1p/Alb1p release might come from another con-

nection, namely the Hsp40 protein Jjj1p, a J protein recently

implicated in late 60S maturation ([51], see Fig. 1C). Jjj1p is

found in the cytoplasm, associated with pre-60S (or mature

60S) particles, but is not part of a nuclear 60S precursor.

JJJ1 deletion, however, leads to defects in 60S subunit matu-

ration, and more specifically to a failure of Arx1p release from

cytoplasmic pre-60S particles. As Jjj1p can stimulate the ATP-

ase activity of the Hsp70 protein Ssa1p, it is tempting to spec-

ulate that ATPase activity of Ssa1p contributes to Arx1p

release. Deletion of REI1 or JJJ1 both cause Arx1p recycling

defects and it remains to be seen how they act together in

Arx1p release.

Arx1p is related to methionine aminopeptidases, which act

on polypeptides emerging from translating ribosomes in the

cytoplasm. Binding of Arx1p to 60S subunits is compromised

by the addition of large domains to ribosomal proteins that are

located close to the polypeptide exit tunnel. Based on this find-

ing, it has been speculated that Arx1 functions as a space

holder on the subunit surface for cytoplasmic methionine ami-

nopeptidases or other factors known to bind close to the pro-

tein exit tunnel [50]. Premature association of such factors

might cause subunit assembly and export defects. Alterna-

tively, binding of Arx1 to nuclear pre-60S could be part of a

proofreading step to ensure that only those subunits with

properly assembled exit sites gain access to the cytoplasm.
3. Late maturation of pre-40S particles

Following separation of the 90S pre-ribosome into a pre-60S

and a pre-40S particle, the precursors to the small subunit have

a less complex composition compared to large subunit precur-

sors. Besides the 20S pre-rRNA and small ribosomal subunit

proteins, only few trans-acting factors are present [21], such

as Rio2p, Enp1p, Tsr1p, Dim1p, Dim2p, Nob1p, Rrp12p,

Hrr25p, and Ltv1p. In contrast to pre-60S maturation, no ser-

ies of defined nucleoplasmic intermediates of pre-40S particles

is found. Rather, pre-40S subunits appear to be rapidly trans-

ported through the nucleoplasm and the NPC to the cyto-

plasm, where final maturation occurs. These last steps

include dimethylation of the 20S pre-rRNA (Fig. 2B), and a

pre-rRNA processing event to produce 18S rRNA from 20S

pre-rRNA (Fig. 2C).
3.1. Nuclear export of the pre-40S subunit

Not only nuclear export of pre-60S but also of pre-40S par-

ticles depends on the export receptor Crm1p and a functional

RanGTPase system. Cells expressing mutants of PRP20 (Ran-

GEF), RNA1 (RanGAP) or YRB1 (Ran binding protein 1), or

strains carrying a deletion of YRB2 (Ran binding protein 2)

accumulate 20S pre-rRNA in their nuclei [52,53]. Inhibition

of the export factor Crm1p using the leptomycin B (LMB)-sen-

sitive allele Crm1p(T539C) also leads to nuclear accumulation

of 20S pre-rRNA [53]. Finally, a number of nucleoporin mu-

tants were tested for defects in pre-40S export, and mutation

of the Nup159p-Nup82p-Nsp1p complex results in defective

20S pre-rRNA export as well [10,52,53].

In contrast to pre-60S export, where the adapter protein

Nmd3p is suggested to mediate the binding of Crm1p to the

pre-60S particle, no such adapter protein is known for 40S sub-

unit precursors. A number of factors such as Rio2p, Dim2p or

Ltv1p are associated with pre-40S complexes and show rapid

nuclear accumulation upon Crm1 inhibition [21,54,55], two

properties that are expected of an export adapter protein for

pre-40S subunits. Yet, clear export defects were not observed

upon mutation or deletion of these proteins, although conflict-

ing results were obtained in studies on Rio2p (discussed be-

low), and recent data indicate that Ltv1p might assist in

pre-40S export [54]. However, Ltv1p is not an essential protein

and thus cannot be the only adapter for Crm1p. It is conceiv-

able that more than one adapter protein is involved in this pro-

cess, and only simultaneous mutations or depletions of several

factors would result in strong defects in pre-40S export.

As discussed above for pre-60S export, other factors than

Crm1p might contribute to 40S precursor export as exempli-

fied by Rrp12p, a component of pre-40S and pre-60S particles

that interacts with Ran and FXFG repeats [22].
3.2. Phosphorylation-dependent pre-40S maturation steps

The presence of two protein kinases in the pre-40S particles,

Hrr25p and Rio2p, suggests that phosphorylation reactions

play a role in 40S biogenesis. Rio2p belongs to a conserved

family of atypical protein kinases and the two yeast Rio family

members Rio1p and Rio2p are required for 40S biogenesis

[55–57]. Hrr25p is a yeast casein kinase 1 isoform that has been

implicated in various processes (see [58] and references there-

in). Recent data add a novel function to Hrr25p, namely in late

remodeling steps of the pre-40S subunit (Fig. 2A). Hurt and



Fig. 2. Cytoplasmic maturation of 40S subunit precursors in yeast. (A) Hrr25p-dependent phosphorylation of an Enp1p/Ltv1p/Rps3p subcomplex,
followed by dephosphorylation by an unknown phosphatase, is required for proper incorporation of Rps3p into the 40S subunit and correct
formation of the beak structure. It is unknown whether the Enp1p/Ltv1p/Rps3p subcomplex is released from the subunit or whether there is no
disassociation but an increase in conformational flexibility. (B) Dim1p-dependent dimethylation of 20S pre-rRNA at residues 1779 and 1780 of the
18S rRNA. (C) Endonucleolytic processing of 20S pre-rRNA to 18S rRNA, possibly catalyzed by Nob1p. Rio1p, Fap7p and the pre-40S components
Tsr1p, Tsr2p, Rio2p and Rps14p are also involved in 3 0-end formation of mature 18S rRNA.
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colleagues observed that Hrr25p-dependent phosphorylation

of a trimeric complex consisting of the trans-acting factors

Enp1p/Ltv1p and the ribosomal protein Rps3p leads to the

dissociation of this subcomplex from pre-40S subunits

in vitro [59]. It is not clear whether Rps3p dissociates from

and later re-associates to the 40S precursor in vivo. The authors
suggest that an increase in conformational flexibility caused by

Rps3p/Ltv1p/Enp1p phosphorylation could be necessary for

efficient subunit export, as the final rigid beak structure close

to the head of the 40S subunit might hinder passage through

the NPC. A subsequent dephosphorylation step mediated by

an unknown phosphatase allows for proper incorporation of
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Rps3 into ribosomal subunits in vitro, and this maturation step

appears to be crucial for correct formation of the beak in the

40S ribosomal structure (Fig. 2A). If the phosphorylation/

dephosphorylation cycle were required for nuclear export of

pre-40S particles, the phosphorylation reaction would be pre-

dicted to occur in the nucleus, whereas dephosphorylation

should be a cytoplasmic event. It is currently not known where

these reactions occur.

The second kinase found in pre-40S particles, Rio2p, ap-

pears not to be involved in phosphorylation of the Enp1/

Ltv1/Rps3 complex [59], and the substrate(s) of Rio2p remain

elusive to date. Nevertheless, it is clear that Rio2p is involved

in late maturation of the 40S subunit, since its depletion or

expression of a mutant with reduced kinase activity both lead

to inhibition of 3 0-end processing of 18S rRNA (see [55,56],

Fig. 2C). Upon Rio2p depletion, dimethylated 20S pre-rRNA

accumulates in the cytoplasm [55], indicating that Rio2p is nei-

ther required for Dim1p-dependent pre-rRNA dimethylation

(see below) nor nuclear export of the pre-40S particle. How-

ever, in rio2-1 mutant cells, the 40S subunit reporter protein

Rps2-GFP was observed to accumulate in the nuclei, suggest-

ing a role for Rio2p in 40S precursor export [21]. It is currently

not clear how these conflicting results can be explained.

Like Rio2p, Rio1p is a protein kinase whose substrate(s) are

not known to date. Both proteins are essential and thus do not

have completely redundant functions. Although Rio1p was not

found in pre-40S particles in TAP studies [21], there are indica-

tions that it is associated with 40S subunit precursors as Rio1p

co-immunoprecipitates 20S pre-rRNA and co-migrates with

40S subunits. [57]. Depletion of Rio1p results in accumulation

of dimethylated 20S pre-rRNA and reduced 18S rRNA levels,

comparable to effects observed upon depletion of Rio2p

[55,57]. The role of the two kinases in cytoplasmic pre-rRNA

processing is currently not clear. One possible scenario would

be that Rio1p and Rio2p are required for recruitment and/or

activation of the endonuclease responsible for cleavage of

20S pre-rRNA (Fig. 2C), but no data are available to support

this or any other model.

3.3. Dimethylation of 20S pre-rRNA

Another late maturation step in 40S biogenesis is the dime-

thylation of two adenine bases near the 3 0-end of the 18S

rRNA. The enzyme catalyzing this reaction is the essential pro-

tein Dim1p ([60], Fig. 2B). Dimethylation is first detected on

the 20S rRNA precursor and suggested to take place on the

20S pre-rRNA once the pre-40S particle reaches the cytoplasm

[61]. Although dimethylation occurs late during subunit matu-

ration, Dim1p associates already with 90S pre-ribosomes and

its presence is required for early nucleolar processing events

[21,60,62]. Processing of 20S pre-rRNA to 18S rRNA can still

occur in the absence of dimethylation, and dimethylation is not

essential for ribosome biogenesis or function [62]. Therefore,

the role of Dim1p in early processing steps must make

DIM1 essential. Dimethylation was suggested to play a role

in fine-tuning of translation, as in vitro translation does not

work with non-dimethylated 40S subunits, and the strain lack-

ing 40S subunit dimethylation displays increased antibiotic

sensitivity [62].

Dim2p, also known as Yor145p, Pno1p or Rrp20p, seems to

be closely linked to Dim1p (Fig. 2B). Like Dim1p, it binds

early to pre-90S particles and remains on the pre-40S particle

until final maturation in the cytoplasm [21,63], and its deple-
tion causes defects in early nucleolar cleavages [63–65]. The

two proteins were found to interact [63], and it was suggested

that Dim2p might recruit Dim1p to the 90S pre-ribosome. It is

not clear though whether Dim1p or Dim2p binds first to the

90S precursor, or whether they join the pre-90S particle as a

complex.
3.4. 20S to 18S rRNA processing

Two different factors have been proposed to act as the nucle-

ase responsible for cytoplasmic processing of 20S pre-rRNA to

18S rRNA (Fig. 2C). The candidate enzyme with the stronger

supporting evidence is Nob1p. Nob1p is found in late pre-ribo-

somal particles [21] and contains a PIN domain, which has se-

quence homology to 5 0 exonuclease domains [66,67].

Moreover, an archaebacterial PIN domain displays exonucle-

ase activity in vitro and has structural homology to flap endo-

nucleases and to T4 phage RNase H exonuclease [68]. The

importance of the PIN domain of Nob1p is demonstrated by

the finding that mutation of a conserved residue within the

PIN domain, like depletion of Nob1p, leads to strong inhibi-

tion of 20S to 18S processing [67,69]. Yet, the nuclease activity

of Nob1p still needs to be shown directly, in particular its

activity in cleaving 20S pre-rRNA.

Another candidate enzyme for 20S pre-rRNA processing is

Fap7p (Fig. 2C). Depletion of Fap7p leads to inhibition of

20S to 18S processing, and mutations in putative catalytic res-

idues in the NTPase motif of Fap7p lead to the same pheno-

type [64,70]. However, Fap7p does not contain a known

endonuclease domain, and it could well be a regulator of endo-

nuclease activity rather than the processing enzyme. Like for

Nob1p, no nuclease activity has been proven so far for Fap7p.

Not only the two potential nucleases Nob1p and Fap7p, but

also several other factors are required for efficient 20S to 18S

processing. Besides Rio1p and Rio2p (discussed above), Tsr1p

and Tsr2p are implicated in 20S pre-rRNA cleavage (Fig. 2C).

Depletion of either protein results in accumulation of 20S

pre-rRNA [64,71,72]. In the case of Tsr1p-depleted cells, 20S

pre-rRNA accumulates in the cytoplasm, suggesting that

20S pre-rRNA processing is not compromised because of

an export defect [72]. However, depletion of Tsr1p leads to

nuclear accumulation of the small subunit reporter protein

Rps2-GFP [21]. Thus, as for Rio2p, experiments addressing

the role of Tsr1p in nuclear export of 40S precursors yield

conflicting results using either 20S rRNA localization or the

Rps2-GFP reporter as a read-out. As for many other factors

involved in late 40S maturation steps, the molecular function

of Tsr1 and Tsr2 remains to be investigated.
3.5. Roles of ribosomal proteins in pre-40S maturation

In the process of subunit maturation, trans-acting factors

must be recruited to specific sites on the surface of the ribo-

somal subunit. Ribosomal proteins, together with the rRNA,

must play an import role in this recruitment process by serving

as landing pads for trans-acting factors, or by forming sub-

complexes with trans-acting factors that are then recruited

onto the maturing subunit. Furthermore, ribosomal proteins

may play an active role in distinct steps of subunit biogenesis.

Whereas the function of trans-acting factors in ribosome bio-

genesis has been studied intensely during the past years, infor-

mation on the contribution of ribosomal proteins is still scarce

(Fig. 2C).
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Certain ribosomal proteins have been shown to affect cleav-

age of 20S pre-rRNA, such as Rps0p, Rps14p and Rps21ap

[73–75]. A cryo electron microscopy study placed the C-termi-

nus of Rps14p in proximity of the 3 0-end of the 18S rRNA [76].

The deletion of the C-terminal tail of Rps14p leads to cytoplas-

mic accumulation of 20S pre-rRNA, supporting a role of this

domain in processing ([74], Fig. 2C). The primary sequence of

Rps14p does not show homology to known nuclease domains,

but Rps14p might be required to induce a 20S pre-rRNA con-

formation that allows cleavage to occur, or for recruitment of

the 20S pre-rRNA processing enzyme. Supporting the latter

assumption, a direct interaction between Rps14p and Fab7p,

one of the putative endonucleases mediating 20S pre-rRNA

cleavage, has been observed [70].

Other ribosomal proteins are required earlier in 40S bio-

genesis, such as Rps18p and Rps15p [72]. Whereas Rps18p

depletion leads to a nucleolar maturation defect, Rps15p

was suggested to act in nuclear export of pre-40S, since its

depletion causes nucleoplasmic accumulation of 20S pre-

rRNA.

A recent study used a more systematic approach to investi-

gate the role of nearly all small subunit ribosomal proteins

in 40S biogenesis, and they could be classified into several

groups with distinct roles in 40S maturation [77]. For instance,

Rps0, Rps2, Rps3, Rps10, Rps15 and Rps26 appear to be re-

quired in nuclear export of pre-40S particles, since strains lack-

ing any of these Rps proteins accumulate 20S pre-rRNA in the

nucleus and export of 20S pre-rRNA is blocked or strongly

reduced. In contrast, Rps20 depletion also inhibits 20S pre-

rRNA processing but the 20S pre-rRNA is exported and

accumulates in the cytoplasm, suggesting that Rps20 is not

required for export but necessary for cytoplasmic pre-rRNA

cleavage.

It is perhaps not surprising that many proteins are

implicated in 20S pre-rRNA processing, since this process

could well serve as quality control point for 40S biogenesis.

According to this hypothesis, cleavage of 20S pre-rRNA would

only occur if maturation up to this step were successful.

Subunit maturation may be monitored at the level of particle

composition and conformation. For instance, in case

direct activators or binding partners of the 20S pre-RNA

nuclease were missing, processing would be inhibited. Further,

even if a factor has no direct interaction with the nuclease, its

absence could cause structural aberrations of the pre-40S par-

ticle that lead to failure in recruitment or activation of the

nuclease.
4. Late steps in vertebrate ribosome biogenesis

Ribosomal biogenesis appears to be conserved in many as-

pects from yeast to vertebrates. First, rRNA synthesis and pro-

cessing is similar, albeit not identical, between yeast and

metazoans. Second, for most trans-acting factors involved in

yeast ribosome biogenesis, close homologs are found in higher

eukaryotic cells. However, research in higher eukaryotes lags

behind compared to S. cerevisiae, mostly because some of

the experimental techniques are not applied as readily in meta-

zoan systems as in yeast. As a consequence, the picture of nu-

clear export and cytoplasmic maturation of ribosome

precursors in vertebrate cells is still fragmented, but some as-

pects known to date are discussed below.
4.1. Nuclear export of pre-ribosomes in vertebrate cells

Early Xenopus oocytes microinjection experiments showed

that ribosome export is an energy-dependent and saturable

process [78,79]. Later studies using the same experimental sys-

tem revealed that the export of pre-ribosomes requires the

RanGTPase system and the export factor Crm1: depletion of

RanGTP or inhibition of Crm1 using LMB leads to nuclear

accumulation of rRNAs [80], and export of both the pre-40S

and the pre-60S subunit is efficiently competed by nuclear

injection of an artificial Crm1 substrate, BSA-NES [80,81].

Furthermore, Crm1 inhibition in cultured human somatic cells

also caused a defect in pre-ribosome export, as both ribosomal

proteins and rRNAs accumulate in the nucleus following LMB

treatment [81]. Thus, the Crm1-dependent nuclear export path-

way is conserved from yeast to human cells.

The same conservation is observed for the function of the

export adapter protein Nmd3. Expression of hNmd3 vari-

ants with mutations in or deletion of its NES in Xenopus oo-

cytes resulted in nuclear accumulation of 28S and 5.8S

rRNA precursors, indicating that the NES of Nmd3 contrib-

utes to pre-60S export [80]. Moreover, hNmd3 was shown to

bind to Crm1 directly in a RanGTP-dependent manner [81].

As in yeast, however, no pre-60S export complex containing

a 60S precursor, Nmd3, Crm1 and RanGTP has been

described.

Interestingly, similar to S. cerevisiae, where the Nup159p–

Nup82p–Nsp1p NPC subcomplex has been implicated in sub-

unit export, a homologous nucleoporin complex composed of

hNup214 and hNup88 is important for pre-60S export [82].

Depletion of hNup214 results in nuclear retention of GFP-

Nmd3 and Rpl29-GFP, but not in general defects in Crm1-

mediated nuclear export. The FG-repeat region of hNup214

forms a strong Crm1 binding site in vitro [83,84] but is likely

dispensable for 60S subunit export in vivo. It has therefore

been speculated that the hNup214-Nup88 subcomplex is re-

quired for a conformational change in the NPC that allows

passage of the large pre-60S particle, rather than directly medi-

ating pre-60S translocation across the NPC.

Little is known about the export of 40S precursors in higher

eukaryotes, besides its dependence on Crm1 and RanGTP.

Knockdown of Rps15 in HeLa cells by RNAi leads to nuclear

accumulation of precursors of the 18S rRNA, thus Rps15 was

suggested to act in nuclear export of pre-40S particles, similar

to the role of its yeast homolog [72,77,85].

Additional factors, present only in higher eukaryotes, have

been implicated in ribosome biogenesis and could be involved

in nuclear export of subunit precursors. One of these factors,

nucleophosmin (also known as B23, NPM, Numatrin or

NO38), is an abundant nucleolar protein implicated in a vari-

ety of cellular processes (reviewed in [86]). Nucleophosmin was

suggested to act as a molecular chaperone whose activity is

regulated by phosphorylation [87,88]. In vitro, it also displays

endoribonuclease activity at a specific site of the spacer region

between the 5.8S and 28S rRNAs [89,90]. Furthermore, it

might associate with pre-ribosomes in the nucleus and mature

ribosomes in the cytoplasm [91]. Since nucleophosmin is a

shuttling protein containing a Crm1-dependent NES, it might

assist in pre-subunit export [91,92]. Indeed, expression of a

non-shuttling mutant of nucleophosmin leads to nuclear accu-

mulation of Rpl5, an interaction partner of nucleophosmin,

and therefore pre-60S export seems to be perturbed [91]. How-

ever, since nucleophosmin might be required for pre-ribosome
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assembly and pre-rRNA processing, nuclear accumulation of

Rpl5 could be due to defective subunit assembly rather than

a direct export defect.
4.2. Cytoplasmic maturation of preribosomal subunits

How Nmd3 is released from pre-60S particles after export to

the cytoplasm has not been investigated in vertebrate systems.

The proteins involved in Nmd3p release in yeast are conserved

in human cells, but little data are available on these trans-act-

ing factors. An initial characterization of hLsg1 has shown

that it displays GTPase activity in vitro [93]. Interestingly, in

contrast to the situation in yeast [33], hLsg1 is not strictly cyto-

plasmic in human cells and accumulates in the nucleus upon

treatment with LMB. Nevertheless, loading of hRpl10 likely

occurs in the cytoplasm, since hRpl10 is strictly excluded from

nuclei at steady state [94] and does not accumulate in nuclei

after LMB treatment (Thomas and Kutay, unpublished).

These data are consistent with the current model for the role

of Rpl10p in Nmd3p recycling in yeast.

As discussed above, eIF6, the homolog of yeast Tif6p, was

initially described as a translation initiation factor [40–42],

but later found to rather play a role in 60S subunit biogenesis

[39,43–46]. Studies on eIF6 have shown that its phopshoryla-

tion plays a pivotal role during different steps of 60S subunit

biogenesis. Casein kinase I is able to phosphorylate mamma-

lian eIF6, and mutation of the conserved phosphorylation sites

to alanine in the yeast homolog lead to a mutant with slow

growth, defective 25S rRNA processing and nuclear accumula-

tion of the yeast mutant protein [95]. Phosphorylation of eIF6

at a distinct site is important for a late step in 60S maturation,

namely the release of eIF6 from exported 60S subunits [96].

This phosphorylation-dependent release of eIF6 from 60S sub-

units is stimulated by the activation of the PKC pathway,

which reduces the translation inhibition activity of eIF6. A

complex between the PKC adapter protein RACK1 and

PKC bII was able to phosphorylate eIF6 and to promote sub-

unit joining in vitro. Whether this phosphorylation-dependent

release of eIF6 from 60S subunits is conserved in yeast is not

known. On the other hand, eIF6 release in yeast involves

Sdo1p and the GTPase Efl1p, and it remains to be investigated

whether their human homologs are needed for eIF6 release in

human cells, in addition to the RACK1-PKC bII-dependent

phosphorylation.

Cytoplasmic maturation steps of the pre-40S subunit in

yeast include dimethylation of the 20S pre-rRNA and final

pre-rRNA cleavage to yield 18S rRNA. It was long thought

that pre-rRNA processing in higher eukaryotes is completed

within the nucleus, and pre-40S particles containing mature

18S rRNA are translocated to the cytoplasm. However, recent

results indicate that a 3 0 extended precursor of 18S rRNA, the

18S-E pre-rRNA, is exported to the cytoplasm in human cells,

where the final cleavage reaction occurs [85]. In analogy to

yeast 20S to 18S rRNA processing, hRio2 kinase, the homolog

of yeast Rio2p, is required for this step. The nuclease respon-

sible for 18S-E processing is unknown.

Dimethylation of the small subunit rRNA near its 3 0-end is

conserved from bacteria to humans, and occurs late in 40S bio-

genesis but not on the early 45S pre-rRNA as most other pre-

rRNA modifications [97]. As the dimethylase of yeast, Dim1p,

has a human homolog, this is the likely candidate to perform

this function.
5. Conclusions and perspectives

Our understanding of ribosome biogenesis has greatly im-

proved in recent years. Yeast genetics has been a very powerful

tool in the characterization of the processes and factors in-

volved in ribosomal subunit assembly. Furthermore, the

description of pre-ribosomal particles has allowed to develop

a map of the ribosome biogenesis pathway with intermediate

particles for the 40S and 60S subunits. As discussed in this

and other reviews, many maturation steps have been described

along this assembly pathway. Particularly for late pre-60S mat-

uration, key players have been identified that are required for

release of trans-acting factors to allow 60S subunits to fully

mature and become functional in translation. However, the

molecular details of the role of these proteins are not yet fully

understood.

Structural investigations of how trans-acting factors bind to

pre-ribosomal particles and which conformational transitions

they induce on subunit precursors are required to improve

our understanding of these processes. The recent description

of the phosphorylation-dependent maturation step in forma-

tion of the beak structure of the 40S subunit exemplifies the va-

lue of this type of experiments [59].

Further, the mechanistic aspects of nuclear export of ribo-

somes remain somewhat of a mistery to date. How transloca-

tion of this huge and highly charged ribonucleoprotein particle

through the nuclear pore is achieved is uncertain. Although the

role of Crm1 seems very important in ribosome export, it re-

mains to be seen whether its contribution is sufficient or

whether other factors are required, for instance to shield the

ribosome precursor surface during transport through the

hydrophobic interior of the NPC.

Last but not least, an important question is how the final

steps of pre-ribosome maturation are controlled and whether

they contribute to ‘proofreading’ of the subunits. For instance,

20S pre-rRNA processing might serve as a quality control

point for 40S subunit biogenesis. It is striking that a large num-

ber of factors are required for late pre-40S maturation and in

particular late processing of 18S rRNA precursors. Some of

these factors could be involved in monitoring particle compo-

sition and conformation, and make certain that only correctly

assembled ribosomal subunits are generated. Thereby, the

cytoplasmic biogenesis steps of pre-ribosomes might possess

a decisive role in ensuring that the ribosome, the molecular

machine for protein synthesis, is built from functional sub-

units.
Note added in proof:

After acceptance of this manuscript, Yao et al. provided evi-

dence for a role of the general mRNA export receptor

Mex67p/Mtr2p in export of pre-60S particles [98]. Mex67p/

Mtr2p were shown to bind pre-60S particles via loop insertions

in both Mtr2p and Mex67p that are present in the yeast factors

but absent from mammalian TAP-p15. Mutations in these

loops caused defects in export of 60S pre-ribosomes, whereas

mRNA export was not affected.
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Mühlhäusser for critical comments on the manuscript and apologize to
colleagues whose work could not be discussed or cited due to space



I. Zemp, U. Kutay / FEBS Letters 581 (2007) 2783–2793 2791
limitations. We thank for support of I.Z. by an intramural ETH grant
to UK and for funding through the Swiss National Science Founda-
tion to UK.
References

[1] Tschochner, H. and Hurt, E. (2003) Pre-ribosomes on the road
from the nucleolus to the cytoplasm. Trends Cell Biol. 13, 255–
263.

[2] Fromont-Racine, M., Senger, B., Saveanu, C. and Fasiolo, F.
(2003) Ribosome assembly in eukaryotes. Gene 313, 17–42.

[3] Granneman, S. and Baserga, S.J. (2004) Ribosome biogenesis: of
knobs and RNA processing. Exp. Cell Res. 296, 43–50.

[4] Johnson, A.W., Lund, E. and Dahlberg, J. (2002) Nuclear export
of ribosomal subunits. Trends Biochem. Sci. 27, 580–585.

[5] Kressler, D., Linder, P. and de La Cruz, J. (1999) Protein trans-
acting factors involved in ribosome biogenesis in Saccharomyces
cerevisiae. Mol. Cell. Biol. 19, 7897–7912.

[6] Nazar, R.N. (2004) Ribosomal RNA processing and ribosome
biogenesis in eukaryotes. IUBMB Life 56, 457–465.

[7] Venema, J. and Tollervey, D. (1999) Ribosome synthesis in
Saccharomyces cerevisiae. Annu. Rev. Genet. 33, 261–311.

[8] Nissan, T.A., Bassler, J., Petfalski, E., Tollervey, D. and Hurt, E.
(2002) 60S pre-ribosome formation viewed from assembly in the
nucleolus until export to the cytoplasm. EMBO J. 21, 5539–5547.

[9] Warner, J.R. (1971) The assembly of ribosomes in yeast. J. Biol.
Chem. 246, 447–454.

[10] Gleizes, P.E., Noaillac-Depeyre, J., Leger-Silvestre, I., Teulieres,
F., Dauxois, J.Y., Pommet, D., Azum-Gelade, M.C. and Gas, N.
(2001) Ultrastructural localization of rRNA shows defective
nuclear export of preribosomes in mutants of the Nup82p
complex. J. Cell Biol. 155, 923–936.

[11] Hurt, E., Hannus, S., Schmelzl, B., Lau, D., Tollervey, D. and
Simos, G. (1999) A novel in vivo assay reveals inhibition of
ribosomal nuclear export in ran-cycle and nucleoporin mutants. J.
Cell Biol. 144, 389–401.

[12] Stage-Zimmermann, T., Schmidt, U. and Silver, P.A. (2000)
Factors affecting nuclear export of the 60S ribosomal subunit
in vivo. Mol. Biol. Cell 11, 3777–3789.

[13] Fried, H. and Kutay, U. (2003) Nucleocytoplasmic transport:
taking an inventory. Cell. Mol. Life Sci. 60, 1659–1688.

[14] Gadal, O., Strauss, D., Kessl, J., Trumpower, B., Tollervey, D.
and Hurt, E. (2001) Nuclear export of 60s ribosomal subunits
depends on Xpo1p and requires a nuclear export sequence-
containing factor, Nmd3p, that associates with the large subunit
protein Rpl10p. Mol. Cell. Biol. 21, 3405–3415.

[15] Ho, J.H., Kallstrom, G. and Johnson, A.W. (2000) Nmd3p is a
Crm1p-dependent adapter protein for nuclear export of the large
ribosomal subunit. J. Cell Biol. 151, 1057–1066.

[16] Kutay, U. and Guttinger, S. (2005) Leucine-rich nuclear-export
signals: born to be weak. Trends Cell Biol. 15, 121–124.

[17] He, F. and Jacobson, A. (1995) Identification of a novel
component of the nonsense-mediated mRNA decay pathway by
use of an interacting protein screen. Genes Dev. 9, 437–454.

[18] Belk, J.P., He, F. and Jacobson, A. (1999) Overexpression of
truncated Nmd3p inhibits protein synthesis in yeast. RNA 5,
1055–1070.

[19] Ho, J.H. and Johnson, A.W. (1999) NMD3 encodes an essential
cytoplasmic protein required for stable 60S ribosomal subunits in
Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 2389–2399.

[20] Gavin, A.C. et al. (2002) Functional organization of the yeast
proteome by systematic analysis of protein complexes. Nature
415, 141–147.

[21] Schafer, T., Strauss, D., Petfalski, E., Tollervey, D. and Hurt, E.
(2003) The path from nucleolar 90S to cytoplasmic 40S pre-
ribosomes. EMBO J. 22, 1370–1380.

[22] Oeffinger, M., Dlakic, M. and Tollervey, D. (2004) A pre-
ribosome-associated HEAT-repeat protein is required for export
of both ribosomal subunits. Genes Dev. 18, 196–209.

[23] Santos-Rosa, H., Moreno, H., Simos, G., Segref, A., Fahrenkrog,
B., Pante, N. and Hurt, E. (1998) Nuclear mRNA export requires
complex formation between Mex67p and Mtr2p at the nuclear
pores. Mol. Cell. Biol. 18, 6826–6838.
[24] Stutz, F. and Izaurralde, E. (2003) The interplay of nuclear
mRNP assembly, mRNA surveillance and export. Trends Cell
Biol. 13, 319–327.

[25] Bassler, J., Grandi, P., Gadal, O., Lessmann, T., Petfalski, E.,
Tollervey, D., Lechner, J. and Hurt, E. (2001) Identification of a
60S preribosomal particle that is closely linked to nuclear export.
Mol. Cell 8, 517–529.

[26] Panse, V.G., Kressler, D., Pauli, A., Petfalski, E., Gnadig, M.,
Tollervey, D. and Hurt, E. (2006) Formation and nuclear export
of preribosomes are functionally linked to the small-ubiquitin-
related modifier pathway. Traffic 7, 1311–1321.

[27] Senay, C., Ferrari, P., Rocher, C., Rieger, K.J., Winter, J., Platel,
D. and Bourne, Y. (2003) The Mtr2-Mex67 NTF2-like domain
complex. Structural insights into a dual role of Mtr2 for yeast
nuclear export. J. Biol. Chem. 278, 48395–48403.

[28] Gadal, O., Strauss, D., Petfalski, E., Gleizes, P.E., Gas, N.,
Tollervey, D. and Hurt, E. (2002) Rlp7p is associated with 60S
preribosomes, restricted to the granular component of the
nucleolus, and required for pre-rRNA processing. J. Cell Biol.
157, 941–951.

[29] Dez, C., Houseley, J. and Tollervey, D. (2006) Surveillance of
nuclear-restricted pre-ribosomes within a subnucleolar region of
Saccharomyces cerevisiae. EMBO J. 25, 1534–1546.

[30] Galani, K., Nissan, T.A., Petfalski, E., Tollervey, D. and Hurt, E.
(2004) Rea1, a dynein-related nuclear AAA-ATPase, is involved
in late rRNA processing and nuclear export of 60 S subunits. J.
Biol. Chem. 279, 55411–55418.

[31] Kispal, G. et al. (2005) Biogenesis of cytosolic ribosomes requires
the essential iron–sulphur protein Rli1p and mitochondria.
EMBO J. 24, 589–598.

[32] Yarunin, A., Panse, V.G., Petfalski, E., Dez, C., Tollervey, D. and
Hurt, E.C. (2005) Functional link between ribosome formation
and biogenesis of iron–sulfur proteins. EMBO J. 24, 580–588.

[33] Kallstrom, G., Hedges, J. and Johnson, A. (2003) The putative
GTPases Nog1p and Lsg1p are required for 60S ribosomal
subunit biogenesis and are localized to the nucleus and cytoplasm,
respectively. Mol. Cell. Biol. 23, 4344–4355.

[34] Hedges, J., West, M. and Johnson, A.W. (2005) Release of the
export adapter, Nmd3p, from the 60S ribosomal subunit requires
Rpl10p and the cytoplasmic GTPase Lsg1p. EMBO J. 24, 567–
579.

[35] Karl, T. et al. (1999) GRC5 and NMD3 function in translational
control of gene expression and interact genetically. Curr. Genet.
34, 419–429.

[36] West, M., Hedges, J.B., Chen, A. and Johnson, A.W. (2005)
Defining the order in which Nmd3p and Rpl10p load onto
nascent 60S ribosomal subunits. Mol. Cell. Biol. 25, 3802–3813.

[37] Dick, F.A., Eisinger, D.P. and Trumpower, B.L. (1997)
Exchangeability of Qsr1p, a large ribosomal subunit protein
required for subunit joining, suggests a novel translational
regulatory mechanism. FEBS Lett. 419, 1–3.

[38] Eisinger, D.P., Dick, F.A. and Trumpower, B.L. (1997) Qsr1p, a
60S ribosomal subunit protein, is required for joining of 40S and
60S subunits. Mol. Cell. Biol. 17, 5136–5145.

[39] Si, K. and Maitra, U. (1999) The Saccharomyces cerevisiae
homologue of mammalian translation initiation factor 6 does not
function as a translation initiation factor. Mol. Cell. Biol. 19,
1416–1426.

[40] Raychaudhuri, P., Stringer, E.A., Valenzuela, D.M. and Maitra,
U. (1984) Ribosomal subunit antiassociation activity in rabbit
reticulocyte lysates. Evidence for a low molecular weight ribo-
somal subunit antiassociation protein factor (Mr = 25,000). J.
Biol. Chem. 259, 11930–11935.

[41] Russell, D.W. and Spremulli, L.L. (1979) Purification and
characterization of a ribosome dissociation factor (eukaryotic
initiation factor 6) from wheat germ. J. Biol. Chem. 254, 8796–
8800.

[42] Valenzuela, D.M., Chaudhuri, A. and Maitra, U. (1982) Eukary-
otic ribosomal subunit anti-association activity of calf liver is
contained in a single polypeptide chain protein of Mr = 25,500
(eukaryotic initiation factor 6). J. Biol. Chem. 257, 7712–7719.

[43] Basu, U., Si, K., Warner, J.R. and Maitra, U. (2001) The
Saccharomyces cerevisiae TIF6 gene encoding translation initia-
tion factor 6 is required for 60S ribosomal subunit biogenesis.
Mol. Cell. Biol. 21, 1453–1462.



2792 I. Zemp, U. Kutay / FEBS Letters 581 (2007) 2783–2793
[44] Sanvito, F., Piatti, S., Villa, A., Bossi, M., Lucchini, G.,
Marchisio, P.C. and Biffo, S. (1999) The beta4 integrin inter-
actor p27(BBP/eIF6) is an essential nuclear matrix protein
involved in 60S ribosomal subunit assembly. J. Cell Biol. 144,
823–837.

[45] Senger, B. et al. (2001) The nucle(ol)ar Tif6p and Efl1p are
required for a late cytoplasmic step of ribosome synthesis. Mol.
Cell 8, 1363–1373.

[46] Wood, L.C., Ashby, M.N., Grunfeld, C. and Feingsold, K.R.
(1999) Cloning of murine translation initiation factor 6 and
functional analysis of the homologous sequence YPR016c in
Saccharomyces cerevisiae. J. Biol. Chem. 274, 11653–11659.

[47] Menne, T.F. et al. (2007) The Shwachman–Bodian–Diamond
syndrome protein mediates translational activation of ribosomes
in yeast. Nat. Genet. 39, 486–495.

[48] Krogan, N.J. et al. (2006) Global landscape of protein complexes
in the yeast Saccharomyces cerevisiae. Nature 440, 637–643.

[49] Lebreton, A., Saveanu, C., Decourty, L., Rain, J.C., Jacquier, A.
and Fromont-Racine, M. (2006) A functional network involved in
the recycling of nucleocytoplasmic pre-60S factors. J. Cell Biol.
173, 349–360.

[50] Hung, N.J. and Johnson, A.W. (2006) Nuclear recycling of the
pre-60S ribosomal subunit-associated factor Arx1 depends on
Rei1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 3718–3727.

[51] Meyer, A.E., Hung, N.J., Yang, P., Johnson, A.W. and Craig,
E.A. (2007) The specialized cytosolic J-protein, Jjj1, functions in
60S ribosomal subunit biogenesis. Proc. Natl. Acad. Sci. USA
104, 1558–1563.

[52] Moy, T.I. and Silver, P.A. (1999) Nuclear export of the small
ribosomal subunit requires the ran-GTPase cycle and certain
nucleoporins. Genes Dev. 13, 2118–2133.

[53] Moy, T.I. and Silver, P.A. (2002) Requirements for the nuclear
export of the small ribosomal subunit. J. Cell Sci. 115, 2985–2995.

[54] Seiser, R.M., Sundberg, A.E., Wollam, B.J., Zobel-Thropp, P.,
Baldwin, K., Spector, M.D. and Lycan, D.E. (2006) Ltv1 is
required for efficient nuclear export of the ribosomal small
subunit in Saccharomyces cerevisiae. Genetics 174, 679–691.

[55] Vanrobays, E., Gelugne, J.P., Gleizes, P.E. and Caizergues-
Ferrer, M. (2003) Late cytoplasmic maturation of the small
ribosomal subunit requires RIO proteins in Saccharomyces
cerevisiae. Mol. Cell. Biol. 23, 2083–2095.

[56] Geerlings, T.H., Faber, A.W., Bister, M.D., Vos, J.C. and Raue,
H.A. (2003) Rio2p, an evolutionarily conserved, low abundant
protein kinase essential for processing of 20 S Pre-rRNA in
Saccharomyces cerevisiae. J. Biol. Chem. 278, 22537–22545.

[57] Vanrobays, E., Gleizes, P.E., Bousquet-Antonelli, C., Noaillac-
Depeyre, J., Caizergues-Ferrer, M. and Gelugne, J.P. (2001)
Processing of 20S pre-rRNA to 18S ribosomal RNA in yeast
requires Rrp10p, an essential non-ribosomal cytoplasmic protein.
EMBO J. 20, 4204–4213.

[58] Kafadar, K.A., Zhu, H., Snyder, M. and Cyert, M.S. (2003)
Negative regulation of calcineurin signaling by Hrr25p, a yeast
homolog of casein kinase I. Genes Dev. 17, 2698–2708.

[59] Schafer, T., Maco, B., Petfalski, E., Tollervey, D., Bottcher, B.,
Aebi, U. and Hurt, E. (2006) Hrr25-dependent phosphorylation
state regulates organization of the pre-40S subunit. Nature 441,
651–655.

[60] Lafontaine, D., Vandenhaute, J. and Tollervey, D. (1995) The 18S
rRNA dimethylase Dim1p is required for pre-ribosomal RNA
processing in yeast. Genes Dev. 9, 2470–2481.

[61] Brand, R.C., Klootwijk, J., Van Steenbergen, T.J., De Kok, A.J.
and Planta, R.J. (1977) Secondary methylation of yeast ribosomal
precursor RNA. Eur. J. Biochem. 75, 311–318.

[62] Lafontaine, D.L., Preiss, T. and Tollervey, D. (1998) Yeast 18S
rRNA dimethylase Dim1p: a quality control mechanism in
ribosome synthesis? Mol. Cell. Biol. 18, 2360–2370.

[63] Vanrobays, E., Gelugne, J.P., Caizergues-Ferrer, M. and Lafon-
taine, D.L. (2004) Dim2p, a KH-domain protein required for
small ribosomal subunit synthesis. RNA 10, 645–656.

[64] Peng, W.T. et al. (2003) A panoramic view of yeast noncoding
RNA processing. Cell 113, 919–933.

[65] Senapin, S., Clark-Walker, G.D., Chen, X.J., Seraphin, B. and
Daugeron, M.C. (2003) RRP20, a component of the 90S
preribosome, is required for pre-18S rRNA processing in
Saccharomyces cerevisiae. Nucleic Acids Res. 31, 2524–2533.
[66] Clissold, P.M. and Ponting, C.P. (2000) PIN domains in nonsense-
mediated mRNA decay and RNAi. Curr. Biol. 10, R888–R890.

[67] Fatica, A., Oeffinger, M., Dlakic, M. and Tollervey, D. (2003)
Nob1p is required for cleavage of the 3 0 end of 18S rRNA. Mol.
Cell. Biol. 23, 1798–1807.

[68] Arcus, V.L., Backbro, K., Roos, A., Daniel, E.L. and Baker, E.N.
(2004) Distant structural homology leads to the functional
characterization of an archaeal PIN domain as an exonuclease.
J. Biol. Chem. 279, 16471–16478.

[69] Fatica, A., Tollervey, D. and Dlakic, M. (2004) PIN domain of
Nob1p is required for D-site cleavage in 20S pre-rRNA. RNA 10,
1698–1701.

[70] Granneman, S., Nandineni, M.R. and Baserga, S.J. (2005) The
putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA
processing through a direct interaction with Rps14. Mol. Cell.
Biol. 25, 10352–10364.

[71] Gelperin, D., Horton, L., Beckman, J., Hensold, J. and Lemmon,
S.K. (2001) Bms1p, a novel GTP-binding protein, and the related
Tsr1p are required for distinct steps of 40S ribosome biogenesis in
yeast. RNA 7, 1268–1283.

[72] Leger-Silvestre, I. et al. (2004) The ribosomal protein Rps15p is
required for nuclear exit of the 40S subunit precursors in yeast.
EMBO J. 23, 2336–2347.

[73] Ford, C.L., Randal-Whitis, L. and Ellis, S.R. (1999) Yeast
proteins related to the p40/laminin receptor precursor are required
for 20S ribosomal RNA processing and the maturation of 40S
ribosomal subunits. Cancer Res. 59, 704–710.

[74] Jakovljevic, J., de Mayolo, P.A., Miles, T.D., Nguyen, T.M.,
Leger-Silvestre, I., Gas, N. and Woolford Jr., J.L. (2004) The
carboxy-terminal extension of yeast ribosomal protein S14 is
necessary for maturation of 43S preribosomes. Mol. Cell 14, 331–
342.

[75] Tabb-Massey, A., Caffrey, J.M., Logsden, P., Taylor, S., Trent,
J.O. and Ellis, S.R. (2003) Ribosomal proteins Rps0 and Rps21 of
Saccharomyces cerevisiae have overlapping functions in the
maturation of the 3 0 end of 18S rRNA. Nucleic Acids Res. 31,
6798–6805.

[76] Spahn, C.M., Beckmann, R., Eswar, N., Penczek, P.A., Sali, A.,
Blobel, G. and Frank, J. (2001) Structure of the 80S ribosome
from Saccharomyces cerevisiae–tRNA-ribosome and subunit–
subunit interactions. Cell 107, 373–386.

[77] Ferreira-Cerca, S., Poll, G., Gleizes, P.E., Tschochner, H. and
Milkereit, P. (2005) Roles of eukaryotic ribosomal proteins in
maturation and transport of pre-18S rRNA and ribosome
function. Mol. Cell 20, 263–275.

[78] Bataille, N., Helser, T. and Fried, H.M. (1990) Cytoplasmic
transport of ribosomal subunits microinjected into the Xenopus
laevis oocyte nucleus: a generalized, facilitated process. J. Cell
Biol. 111, 1571–1582.

[79] Khanna-Gupta, A. and Ware, V.C. (1989) Nucleocytoplasmic
transport of ribosomes in a eukaryotic system: is there a
facilitated transport process? Proc. Natl. Acad. Sci. USA 86,
1791–1795.

[80] Trotta, C.R., Lund, E., Kahan, L., Johnson, A.W. and Dahlberg,
J.E. (2003) Coordinated nuclear export of 60S ribosomal subunits
and NMD3 in vertebrates. EMBO J. 22, 2841–2851.

[81] Thomas, F. and Kutay, U. (2003) Biogenesis and nuclear export
of ribosomal subunits in higher eukaryotes depend on the CRM1
export pathway. J. Cell Sci. 116, 2409–2419.

[82] Bernad, R., Engelsma, D., Sanderson, H., Pickersgill, H. and
Fornerod, M. (2006) Nup214–Nup88 nucleoporin subcomplex is
required for CRM1-mediated 60 S preribosomal nuclear export. J.
Biol. Chem. 281, 19378–19386.

[83] Fornerod, M., van Deursen, J., van Baal, S., Reynolds, A., Davis,
D., Murti, K.G., Fransen, J. and Grosveld, G. (1997) The human
homologue of yeast CRM1 is in a dynamic subcomplex with
CAN/Nup214 and a novel nuclear pore component Nup88.
EMBO J. 16, 807–816.

[84] Kehlenbach, R.H., Dickmanns, A., Kehlenbach, A., Guan, T.
and Gerace, L. (1999) A role for RanBP1 in the release of CRM1
from the nuclear pore complex in a terminal step of nuclear
export. J. Cell Biol. 145, 645–657.

[85] Rouquette, J., Choesmel, V. and Gleizes, P.E. (2005) Nuclear
export and cytoplasmic processing of precursors to the 40S
ribosomal subunits in mammalian cells. EMBO J. 24, 2862–2872.



I. Zemp, U. Kutay / FEBS Letters 581 (2007) 2783–2793 2793
[86] Frehlick, L.J., Eirin-Lopez, J.M. and Ausio, J. (2007) New
insights into the nucleophosmin/nucleoplasmin family of nuclear
chaperones. BioEssays 29, 49–59.

[87] Szebeni, A., Hingorani, K., Negi, S. and Olson, M.O. (2003) Role
of protein kinase CK2 phosphorylation in the molecular chaper-
one activity of nucleolar protein b23. J. Biol. Chem. 278, 9107–
9115.

[88] Szebeni, A. and Olson, M.O. (1999) Nucleolar protein B23 has
molecular chaperone activities. Protein Sci. 8, 905–912.

[89] Herrera, J.E., Savkur, R. and Olson, M.O. (1995) The ribonucle-
ase activity of nucleolar protein B23. Nucleic Acids Res. 23, 3974–
3979.

[90] Savkur, R.S. and Olson, M.O. (1998) Preferential cleavage in pre-
ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids
Res. 26, 4508–4515.

[91] Yu, Y., Maggi Jr., L.B., Brady, S.N., Apicelli, A.J., Dai, M.S.,
Lu, H. and Weber, J.D. (2006) Nucleophosmin is essential for
ribosomal protein L5 nuclear export. Mol. Cell. Biol. 26, 3798–
3809.

[92] Borer, R.A., Lehner, C.F., Eppenberger, H.M. and Nigg, E.A.
(1989) Major nucleolar proteins shuttle between nucleus and
cytoplasm. Cell 56, 379–390.
[93] Reynaud, E.G., Andrade, M.A., Bonneau, F., Ly, T.B., Knop,
M., Scheffzek, K. and Pepperkok, R. (2005) Human Lsg1 defines
a family of essential GTPases that correlates with the evolution of
compartmentalization. BMC Biol 3, 21.

[94] Nguyen, Y.H., Mills, A.A. and Stanbridge, E.J. (1998) Assembly
of the QM protein onto the 60S ribosomal subunit occurs in the
cytoplasm. J. Cell. Biochem. 68, 281–285.

[95] Basu, U., Si, K., Deng, H. and Maitra, U. (2003) Phosphorylation
of mammalian eukaryotic translation initiation factor 6 and its
Saccharomyces cerevisiae homologue Tif6p: evidence that phos-
phorylation of Tif6p regulates its nucleocytoplasmic distribution
and is required for yeast cell growth. Mol. Cell. Biol. 23, 6187–
6199.

[96] Ceci, M., Gaviraghi, C., Gorrini, C., Sala, L.A., Offenhauser, N.,
Marchisio, P.C. and Biffo, S. (2003) Release of eIF6 (p27BBP)
from the 60S subunit allows 80S ribosome assembly. Nature 426,
579–584.

[97] Salim, M. and Maden, B.E. (1973) Early and late methylations in
HeLa cell ribosome maturation. Nature 244, 334–336.

[98] Yao, W., Roser, D., Kohler, A., Bradatsch, B., Bassler, J. and
Hurt, E. (2007) Nuclear export of ribosomal 60S subunits by the
general mRNA export receptor Mex67-Mtr2. Mol. Cell. 26, 51–62.


	Nuclear export and cytoplasmic maturation of ribosomal subunits
	Introduction
	Late maturation of pre-60S particles
	Nuclear export of the pre-60S subunit
	Recycling of late trans-acting factors from the pre-60S subunit

	Late maturation of pre-40S particles
	Nuclear export of the pre-40S subunit
	Phosphorylation-dependent pre-40S maturation steps
	Dimethylation of 20S pre-rRNA
	20S to 18S rRNA processing
	Roles of ribosomal proteins in pre-40S maturation

	Late steps in vertebrate ribosome biogenesis
	Nuclear export of pre-ribosomes in vertebrate cells
	Cytoplasmic maturation of preribosomal subunits

	Conclusions and perspectives
	Note added in proof:
	Acknowledgments
	References


