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Here, we study the homodimerization of the transmembrane domain of Neu, as well as an oncogenic mutant
(V664E), in vesicles derived from the plasma membrane of mammalian cells. For the characterization, we use
a Förster resonance energy transfer (FRET)-based method termed Quantitative Imaging-FRET (QI-FRET), which
yields the donor and acceptor concentrations in addition to the FRET efficiencies in individual plasma
membrane-derived vesicles. Our results demonstrate that both the wild-type and the mutant are 100% dimeric,
suggesting that the Neu TM helix dimerizes more efficiently than other RTK TM domains in mammalian mem-
branes. Furthermore, the data suggest that the V664E mutation causes a very small, but statistically significant
change in dimer structure. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins.
Guest Editors: William C. Wimley and Kalina Hristova.
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1. Introduction

Receptor tyrosine kinases (RTKs) aremembrane proteins involved in
the transduction of biochemical signals across the plasma membrane
[1]. Their activation initiates signaling cascades within the cell that
are critical for the regulation of cell growth, proliferation, differentiation,
and motility [2,3]. An RTK consists of an N-terminal extracellular
domain, a single pass transmembrane domain, and a C-terminal
tyrosine kinase domain. In order to become active, RTKs must
undergo dimerization in the membrane, which leads to the cross-
phosphorylation of their tyrosine kinase domains and initiates
downstream signaling cascades [4]. RTK dimerization is modulated by
binding of ligands to the RTK extracellular domains, with the notable ex-
ception of the ErbB2 (HER/Neu) receptor, which has no activating ligand
and exhibits ligand-independent activation [5–7]. Not surprisingly, this
receptor has been implicated in the progression of many cancers [8–10].

The transmembrane (TM) domains of RTKs have been shown to play
an important thermodynamic role in the activation process [11,12].
In particular, isolated TM domains have been shown to dimerize in
liposomes and in bacterial membranes, implying that the interactions
between the TM domains help stabilize the full-length dimers [13–19].
Importantly, the TM domains have been shown to interact even in the
lly Active Peptides and Proteins.
presence of the large RTK extracellular domains [20]. RTK TM domains
have been further proposed to play an important structural role in
activation, as the interactions between them ensure that the kinase
domains achieve the correct orientation and positioning [11,12,21–23].
Since ErbB2/Neu does not require a ligand for activation, its TM domain
has been intensively researched with the hope that these studies will
reveal some of the physical requirements for ErbB2/Neu activation. Yet,
despite many studies, there is no consensus about the contribution of
the TM domains of HER2/Neu to dimerization, as different experimental
studies have produced very divergent results [24–29].

One of the first discovered RTK TM domain pathogenic mutations
is the oncogenic V664E mutation in rat HER/Neu/ErbB2 [30,31]. This
mutation has been shown to increase the activation of Neu [32].
Furthermore, it has been suggested that Glu664 stabilizes the mutant
TM domain dimer via hydrogen bonding, and this dimer stabilization
is sufficient to overactivate the receptor [33,34]. This hypothesis
has been investigated in the literature, but while some studies have
provided support for it [35,36], others have directly contradicted it [27].

To date, quantitative characterization of the dimerization of the
Neu TM domain and related TM sequences has been performed in
detergents [24–26], known to be imperfect mimics of biological mem-
branes, or in bacterial membranes [26–29], known to be thinner than
the mammalian membrane. Characterization of Neu dimerization in
mammalian membranes, on the other hand, has relied predominantly
on chemical cross-linking [36,37], a technique that cannot give infor-
mation about the relative abundance of monomers and dimers due to
the limited (and generally unknown) yield of the cross-linking
reaction. Here, we present the first measurement of Neu TM domain
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dimerization in plasma membrane vesicles derived from mammalian
cells.

2. Materials and methods

2.1. Plasmids

The plasmids encoding for the full-length wild-type Neu and the
V664E mutant were a generous gift from D. J. Donoghue at UCSD. The
genes encoding the TM sequences of Neu and Neu/V664Ewere inserted
in a pcDNA 3.1(+) vector (Invitrogen, CA) by ligation of the trans-
membrane PCR products using the HindIII and XbaI restriction sites as
described previously [38]. The 15 amino acid linker followed by eYFP
was inserted into the pcDNA 3.1+Neu/NeuNT constructs via ligation
with the following primers to amplify the linker and eYFP: Forward:
5′-GGC GGT ACC GGA GGA AGT GGC GGA AGT GG-3′. Reverse: 5′-GGC
GGC TCT AGA GGG TTA CTT GTA CAG CTC GTC CAT GCC G-3′. The PCR
primers added a KpnI restriction site upstream of the linker and
an XbaI restriction site downstream. The pcDNA–NeuTM–15aa–eYFP
construct was digested with AgeI and XbaI to remove only eYFP leaving
the rest of the construct intact. Then mCherry was amplified with the
following primers: Forward: 5′-GGC ACC GGT G AGC AAG GGC GAG
GAG GAT AAC-3′. Reverse: 5′-GGC GGC TCT AGA GGG TTA CTT GTA
CAG CTC GTC CAT GCC G-3′, with AgeI and XbaI inserted upstream
and downstream of mCherry. This PCR product was then ligated to
create the pcDNA–NeuTM–15aa–mCherry construct.

2.2. Cells and expression

Chinese hamster ovary (CHO) cells were used for all experiments as
they do not express ErbB receptors. Cells were seeded in six-well plates
at a density of 4×104 cells perwell andwere allowed to growovernight
prior to transfection. CHO cells were transfected using a Fugene HD
reagent (Promega) and 2–4 μg of total DNA according to the manu-
facturer's protocol.

2.3. Vesiculation

Twenty-four hours after transfection, the cells were vesiculated
following the established protocol of Scott et al. [39]. This consisted of
rinsing the cells twice with a calcium and magnesium supplemented
phosphate buffered saline (CMPBS) solution and incubating for 1 h at
37 °C in CMPBS supplemented with formaldehyde (25 mM) and
dithiolthreitol (DTT, 0.5 mM). The formaldehyde was quenched with
an excess of glycine (0.125 M) [40,41]. We have previously shown
that dimerization studies in vesicles produced with this protocol
and with an alternative osmotic chloride salt method give identical
results [42]. Thus, the formaldehyde/DTT treatment does not perturb
membrane protein dimerization and the vesicles produced with this
treatment are an adequate model of the plasma membrane.

2.4. Image acquisition

Vesicles were transferred to four-chamber coverglass slides
(ThermoScientific, Nunc Lab-Tek II) for imaging. All images were
acquired with a Nikon C1 laser scanning confocal microscope. Each
vesicle was imaged using three scans: donor, FRET and acceptor. For
the FRET and donor scans, a 488 nm excitation source was used. For
the acceptor scan, a 543 nm excitation source was used. The donor
and FRET images were acquired with 500–530 nm and 565–615 nm
filters, respectively, while the acceptor was imaged with a 650 nm
longpassfilter. All imageswere taken at a resolutionof 512×512 pixels
with a pixel dwell time of 1.68 μs, the shortest possible for our set-up.
Standard solutions of purified eYFP and mCherry of known concen-
trations were imaged for calibration purposes, as described in detail
previously [40,43,44].
2.5. Image processing

Vesicle images were processed using an in-houseMatlab® code that
recognized the boundary of each vesicle in the image, verified the
vesicle presence in all three scans, and fitted the intensity profile across
themembranewith a Gaussian function. The integrals of the profiles are
referred to as ID, IFRET, and IA for the three scans: donor, FRET, and accep-
tor, respectively. To correlate intensity to concentration, fluorescent
protein solutions of known concentrations were imaged using the
same settings as the vesicles. The concentration of the acceptor (CA)
was determined directly using the following relationship:

CA ¼ IA
iA
: ð1Þ

Here IA is the intensity of the acceptor scan and iA is the slope of the
intensity versus concentration line for the bulk solutions of purified
acceptor (mCherry). Next, the sensitized acceptor emission was
calculated from the observed FRET intensity (IFRET) by determining the
bleed-through coefficients, βD and βA, for the donor and acceptor, and
correcting for bleed-through in the vesicle images:

ISEN ¼ IFRET−βAIA−βDID: ð2Þ

The corrected donor concentration (CD,Corr) was calculated from the
observed donor intensity (ID), using the gauge factor, GF, which relates
the sensitized emission of the acceptor to the FRET efficiency, and
depends on the microscope set-up and the FRET pair:

CD;Corr ¼
GFISEN þ ID

iD
: ð3Þ

FRET for each vesicle was then calculated as follows:

E ¼ 1− ID
GF ISEN þ ID

: ð4Þ

As discussed previously [45], themeasured FRET efficiency E is a sum
of the FRET that occurs due to specific dimerization, and a second FRET
contribution, arising due to donors and acceptors approaching each
other by chancewithin distances of 100 Å or less. This “random proxim-
ity” contribution follows the model of Wolber and Hudson [46], which
has been experimentally verified [47]. The proximity contribution to
FRET, which depends on the acceptor concentration only, is then
subtracted from the observed FRET to obtain FRET due to dimerization:

ED ¼ E−Eproximity: ð5Þ

Within the context of a two-state thermodynamicmodel of dimeriza-
tion, wheremonomers and dimers are in equilibrium, ED is related to the
dimeric fraction, f, according to:

f � eE ¼ ED
xA

: ð6Þ

Here xA is the acceptor fraction, CA / (CA + CD,corr), and Ẽ is the
FRET efficiency for a dimer with a donor and an acceptor. The value of
Ẽ depends on the average distance between the fluorescent proteins
in the dimer, r, and therefore, on the structure of the dimer. The value
of Ẽ is given by the following equation:

eE ¼ 1

1þ r
R0

� �6 ; ð7Þ

where R0 is the Förster radius for the donor–acceptor pair.



Fig. 2.Measured FRET efficiencies and calculated dimeric fractions for wild-type Neu TM
domain and the TM domain with the V664E mutation. Blue circles: wild-type. Open red
squares: the V664E mutant. (A) FRET data for wild-type Neu and the V664E mutant con-
structs as a function of acceptor concentration. Each data point represents a single vesicle,
forwhich the FRET efficiency, the donor concentration, and the acceptor concentration are
determined using the QI-FRET method. The solid line shows the so-called called “random
FRET”which occurs if there are no specific interactions between the membrane proteins,
which is well described by the model of Wolber and Hudson [40]. (B) Dimeric fractions
times Ẽ for each vesicle, as a function of the protein concentration in the vesicle. (C)
Binned dimeric fractions times Ẽ as a function of total receptor concentration. Bin
size is 5 × 10−4 receptors per nm2. Each bin contains between three and 85 data points
with an average of 22 data points per bin. The averaged data are shownwith the standard
deviation in the x-direction and with the standard error in the y-direction. The dimeric
fractions are independent of protein concentration, indicative of 100% dimer.
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3. Results

In these experiments, we used constructs consisting of Neu TM
domains (wild-type or mutant), a 15 amino acid linker, and either
mCherry or eYFP (a FRET pair) (see Fig. 1). Theplasmidswere construct-
ed as described in the Materials and methods section. Chinese hamster
ovary (CHO) cells were transfected with the genes encoding either the
wild-type or mutant Neu TM constructs. After 24 h of growth, plasma
membrane derived vesicles were produced as described previously
[41,42]. Each vesicle contained the Neu TM constructs from the plasma
membrane of one cell, and served as a model system for quantitative
characterization of Neu TM domain interactions. A FRET-basedmethod,
termed QI-FRET, was used to calculate the FRET efficiency, the donor
concentration and the acceptor concentration, for each vesicle [20,43,
48]. From these parameters, the dimeric fraction and the total protein
concentration were calculated for each vesicle. As total protein concen-
trations in vesicles varied over an order of magnitude in these experi-
ments, the data were combined to produce a dimerization curve [20,
43,48].

Vesicles were produced as described previously [40,43] and were
transferred to chambered glass slides for image acquisition. Three
images, donor, FRET and acceptor, were acquired for each vesicle as
discussed in the Materials and methods section. The intensity observed
in the acceptor scan, alongwith Eq. (1), was used to calculate the accep-
tor concentration in each vesicle. The sensitized emission intensity,
(ISEN), was calculated from the observed FRET scan intensity (IFRET)
and the bleed-through coefficients using Eq. (2). Once the sensitized
emission intensity was determined, the corrected donor intensity was
obtained using the gauge factor (GF) [44]. The concentration of donors
was then calculated according to Eq. (3). Finally, the FRET efficiency
was calculated for each vesicle according to Eq. (4) and is shown in
Fig. 2A with blue symbols for the wild-type and open red symbols for
the mutant.

Each data point in Fig. 2A corresponds to a single vesicle, and shows
the FRET efficiency for a vesicle versus the acceptor concentration in
the same vesicle. The black solid line is generated using the model of
Wolber and Hudson [46], while accounting for the size of the fluores-
cent proteins, and shows the expected FRET due to the random
approach of donors and acceptors within distances of 100 Å or less.
The data points fall well above this solid line, demonstrating specific
interactions between the TM domains in these experiments.

Next, the FRET efficiency in each vesicle that is due to specific inter-
actions was determined using Eq. (5). Given that we already know the
acceptor fraction (xA) in each vesicle, the dimeric fraction multiplied
by Ẽ is calculated using Eq. (6) for each vesicle. As discussed previously
[40], Ẽ is the FRET efficiency in a dimer containing one donor and one
acceptor, and depends on the average distance between the two
fluorophores in the dimer. Since a structural change can alter the
distance between the fluorescent proteins, the value of Ẽ is a general
reporter of dimer structure.

In Fig. 2B, we show the calculated dimeric fraction (f) times Ẽ for the
wild-typewith blue symbols and for themutantwith open red symbols,
Neu D G C P A E Q R A S P V T F I I

Neu/V664E D G C P A E Q R A S P V T F I I
B

A VSVG TMSP (GGS)5 fluoresce

AgeIKpnIBsiWIEcoRIHindIII

Fig. 1. Proteins used in the study. (A) The genes encoded for the N-terminal signal peptide
fluorescent proteins (either eYFP or mCherry (a FRET pair)). (B) The amino acid sequences of
embedded domain are underlined. The mutation is highlighted in red.
as a function of total receptor concentration. In Fig. 2C, we average these
points within bins, which are of 5 × 10−4 receptors per nm2 wide. We
next performed linear regression analysis on the data, and we tested
the null hypothesis that the dimeric fraction (f) times Ẽ is uncorrelated
A T V V G V L L F L I L V V V V G I L I K R R R

 A T V V G E L L F L I L V V V V G I L I K R R R

nt protein

XbaI

(SP), a VSV-G tag, the TM domain, a 15 amino acid-long (GGS)5 flexible linker, and the
Neu and Neu/V664E TM domains. The amino acids in the hydrophobic hydrocarbon core—
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with receptor concentration. The calculated p value is N0.2, and it
demonstrates that there is no statistically significant correlation. Since
Ẽ is a constant, this analysis demonstrates that the dimeric fractions
do not depend on the concentration, over the protein concentration
range that is accessible in our experiments and exceeds an order of
magnitude. Within the dimerization model, this plateau corresponds
to 100% dimer. Such behavior is observed for both the wild-type and
the mutant. Overall, these results demonstrate that both wild-type
Neu TM domain and the V664E mutant dimerize in a highly efficient
manner, such that the monomeric state is not accessible in the
experiments.

The fact that a plateau is reached in the experiments (corresponding
to f = 1) allows us to determine the values of Ẽ for both the wild-type
and themutant. By averaging the data for all concentrations, we obtain-
ed Ẽ = 0.33 ± 0.03 for the wild-type and Ẽ = 0.38 ± 0.04 for the
mutant. The difference between these two values is very small, but
statistically significant (p b 0.05). Next, we calculated the average
distance between the proteins in the dimers using Eq. (7). Given that
the Förster radius R0 of the eYFP/mCherry FRET pair is ~53 Å, the
distances between the fluorescent proteins were determined as 60 ±
2 Å and 58 ± 2 Å, respectively, for the wild-type and the mutant.

4. Discussion

4.1. Dimerization strength of the Neu TM domain

Previously, the dimerization ofwild-type FGFR3 TMdomain (as well
as wild-type and mutant FGFR3 variants including the EC domain) has
been measured in plasma membrane vesicles derived from CHO and
HEK 293T cells [43,48]. Such measurements have been performed also
for the TM domain of glycophorin A (GpA) [40,41]. The measured
dimeric fractions in all these previous cases increased with the total
protein concentration in accordance with the law of mass action. In
contrast, the data for the Neu TM domain presented here are indicative
of 100% dimer, under conditions for which FGFR3 and GpA TM domain
dimeric fractions vary between ~50 and ~80% (for the FGFR3 TM
domain), and between ~35 and ~70% (for the GpA TM domain). Thus,
the Neu TM helix has the highest dimerization propensity in mammali-
an membranes of all the TM helices that we have encountered in our
work. This finding is surprising, since both human and rat ErbB TM
domains have been shown to interact veryweakly in detergentmicelles
[19,25,49]. Thus, the environment has a profound effect on the inter-
actions, as previously discussed [50,51], demonstrating that it is critical
that RTK TMdomain dimerization studies are performed inmammalian
membranes.

4.2. Structural insights from the FRET studies

The FRET experiments presented here yield the value of the param-
eter Ẽ, the FRET efficiency in a dimer containing one donor and one
acceptor. The value of this parameter depends on the distance between
the fluorescent proteins in the dimer, and thus Ẽ is a reporter of dimer
structure. Here we obtain a value of Ẽ= 0.33 for the Neu dimer, corre-
sponding to a distance of 60 ± 2 Å between the fluorescent proteins.

Based onmolecularmodeling of wild-type andmutant TMdimers, it
has been suggested that the V664Emutation causes a structural change
in the Neu TM dimer [52]. Here we demonstrate that Ẽ = 0.38 ± 0.04
for the mutant, corresponding to a distance of 58 ± 2 Å between the
fluorescent proteins. A chi square analysis of the data reveals a statisti-
cally significant change in Ẽ due to the mutation, consistent with the
hypothesis of a mutation-induced structural change. However, this
change is very small, and the exact nature of this change is unknown.
We are hopeful that the parameters measured in this work will aid
future molecular modeling studies of the Neu TM dimer structure and
the effect of the V664E mutation.
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