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When green algae are exposed to physiological stresses such as nutrient deprivation, growth is arrested and the
cells channelfixed carbon instead into storage compounds, accumulating first starch granules and then lipid bod-
ies containing triacylglycerides. In recent years there has been significant interest in the commercial exploitation
of algal lipids as a sustainable source of biodiesel. Since starch and lipid biosynthesis involves the same C3 precur-
sor pool, it has been proposed thatmutations blocking starch accumulation should result in increased lipid yields,
and indeed several studies have supported this. The fast-growing, thermotolerant alga Chlorella sorokiniana rep-
resents an attractive strain for industrial cultivation. We have therefore generated and characterized starch-
deficientmutants of C. sorokiniana anddeterminedwhether lipid levels are increased in these strains under stress
conditions. One mutant (ST68) is shown to lack isoamylase, whilst two others (ST3 and ST12) are defective in
starch phosphorylase. However, we find no significant change in the accumulation or profile of fatty acids in
these mutants compared to the wild-type, suggesting that a failure to accumulate starch per se is not sufficient
for the hyper-accumulation of lipid, and that more subtle regulatory steps underlie the partitioning of carbon
to the two storage products.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The unsustainable use of our finite reserves of fossil fuels, and the is-
sues of producing renewable fuels from crop plants given the limita-
tions on available agricultural land, have resulted in major interest in
using microalgae as an alternative feedstock for biofuel production [1,
2]. Some microalgal species are particularly attractive as a source of
lipid-derived biodiesel given their high growth rates, efficient solar con-
version, and tolerance to a wide range of environmental conditions —
together with their rich diversity of lipids and ability to accumulate
storage lipids to high levels [3,4]. Accumulation of these neutral lipids
occurs under stress conditions such as deprivation of key nutrients
(e.g., nitrogen), with the lipids mainly in the form of triacylglycerides
(TAGs) that accumulate as lipid bodies within the cell. The extraction
and transesterification of the TAGs yield fatty acid methyl esters
(FAMEs) that can be used as biodiesel or further processed into bio-jet
fuel [5].

In green algae, stress conditions also trigger the accumulation of
starch granules in the cells, with starch accumulation preceding the ac-
cumulation of lipid bodies following the onset of stress [6,7]. It is
nd Molecular Biology, Darwin
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generally assumed that the starch and TAGs serve as electron sinks
under conditionswhere photosynthesis, ormetabolismof an exogenous
carbon source, is still active but growth is limited [5]. Prolonged stress
ultimately results in the breakdown of the photosynthetic membrane
and the loss of chlorophyll pigmentation [6]. The maximization of TAG
productivity in microalgae therefore requires consideration of both
the restricted growth rate under particular stress conditions and the cel-
lular TAG content. Since both starch and TAGs share commonprecursors
in the form of the C3 metabolite pool [8] then it has been proposed that
TAG content could be increased by blocking or reducing starch biosyn-
thesis, and thus partitioning carbon towards TAGs.

Several studies have looked at the relationship between TAGs and
starch in Chlamydomonas reinhardtii; a model alga where starch accu-
mulation has been extensively studied and well-characterized mutants
are available [9]. Studies of the sta6 mutant, which accumulates no
starch due to a mutation in the small subunit of ADP-glucose pyrophos-
phorylase (AGPase), have all shown amarked increase in lipid accumu-
lation under nitrogen deprivation when compared to wild type strains
[10–15]. Analysis of other C. reinhardtii starch-deficient mutants
(i.e., sta1, sta7 and sta11) also indicated a correlation between the
amount of starch accumulated under stress conditions and the TAG
levels obtained [13,15]. However, Siaut et al. [7] have questioned these
correlations given that they found significant variations in lipid levels
among laboratory wild-type strains. They could find no significant
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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difference when comparing sta1, sta6 and sta7 to the presumed paren-
tal strain. Nonetheless, studies of starch mutants of other green algal
species have also reported hyper-accumulation of lipids when com-
pared to their parental wild-type. de Jaeger et al. [8] found that
starchless mutants of the oleaginous species, Scenedesmus obliquus
showed a clear increase in TAG content compared to the WT without
compromising biomass productivity. Similarly, a starchless mutant of
Chlorella pyrenoidosa showed significant hyper-accumulation of lipid
[16], suggesting that the selection for starch mutants of industrially-
relevant microalgal species is one strategy towards their “domestica-
tion” for mass cultivation [17].

Members of the genus Chlorella represent particularly attractive spe-
cies for such mass cultivation given that they are already cultivated
commercially for the health food and cosmetics markets [18], and
show key attributes for biodiesel production in terms of robust cultiva-
tion in open pond systems and biomass recovery [19,20]. One species
that is particularly suited for industrial cultivation is Chlorella
sorokiniana [21]. This freshwater species has remarkably short doubling
times of only a fewhours [22,23]. It grows optimally at elevated temper-
atures of 35–40 °C; can tolerate temperatures as high as 46.5 °C and
light intensities over 1700 μmol/m2/s, and exhibits high biomass
productivity [24,25].

Here we report the isolation and biochemical analysis of starch-
deficient mutants of C. sorokiniana, including mutants defective in
isoamylase and starch phosphorylase. Significantly, we find that these
mutants show no increase in TAGs or changes in fatty acid profile,
suggesting that the re-engineering of carbon partitioning to favor TAG
production is not achieved simply by reducing starch biosynthesis, or
that such a strategy is not applicable to all industrial species.

2. Materials and methods

2.1. Strains and culture conditions

C. sorokiniana UTEX1230 was obtained from the University of Texas
culture collection. Strains were maintained on tris-acetate-phosphate
(TAP) agar plates at 25 °C under constant light [26]. Liquid cultures
were grown under constant light (~35 μmol/m2/s) and agitation
(120 rpm) at 25 °C. For induction of starch and triacylglyceride accumu-
lation following nitrogen depletion, the NH4Cl in the TAP medium was
either reduced to 1/10th of normal (termed TAP-1/10N): final NH4Cl
concentration of 0.74 mM) or omitted completely (TAP-N).

2.2. Isolation of starch mutants

Mutants were isolated following the method described for C.
reinhardtii [9]. Cells were subject to ultraviolet irradiation to survival
rate of 10% and colonies appearing after seven days of growth on solid
TAP-1/10N medium were stained directly with iodine vapor. Colonies
appearing less stained and not displaying the typical dark blue/purple
Fig. 1. Iodine staining of nine selected mutants isolated after UV i
color, were recovered and restained with iodine to confirm the color
change.

2.3. Quantification of starch

C. sorokiniana was cultivated for five days in 1 L acetate medium
with (TAP) or without (TAP-N) nitrogen. The cells were pelleted,
washed in water and kept at−80 °C until use. Cells were lysed by pas-
sage twice through a French press at 10,000 psi (with complete break-
age confirmed by microscopy), and then centrifuged at 3000 g for
20 min at 4 °C. The supernatant was used for measuring total protein
using a protein assay kit (Bio-Rad). Starch was extracted from the re-
maining pellet according to the methods detailed in Delrue et al. [27],
using a commercial kit (Enzytec™ kit E1268). Total starch was calculat-
ed and expressed as mg starch/mg protein or μg starch/mg cell dry
weight. Water soluble polysaccharides (WSP) from the supernatant
were also assayed using the Enzytec™ kit.

2.4. Sepharose CL-2B gel permeation chromatography

Amylose and amylopectin were separated by gel permeation chro-
matography on a sepharose CL-2B column equilibrated in 10 mM
NaOH as described in Delrue et al. [27]. The optical density of the io-
dine–polysaccharide complex for each fraction was measured at λmax

(maximal absorbance wavelength) after adding iodine solution (1% KI,
0.1% I2 w/v) at a dilution of 1:5. The remaining fractions corresponding
to the amylopectin were combined and kept at −20 °C until further
analysis of chain length distribution by ion exchange chromatography.

2.5. Analysis of water soluble polysaccharides

Water soluble polysaccharides (WSPs) were extracted from the re-
maining supernatant with chloroform:methanol according to the
methods described in Dauvillée et al. [28]. After the removal of the sol-
vent, the dried samplewas re-suspended in 10%DMSO (v/v) and loaded
on a TSK HW50 gel permeation column, and eluted with 10% DMSO in
500 μL fractions. Each fraction was assayed for total sugars using phe-
nol–sulfuric acid. From each fraction 20 μL was mixed with 20 μL of 5%
phenol in a 96-well plate and placed on ice, before addition of 100 μL
of concentrated sulfuric acid. The plate was then incubated at 80 °C for
30min and the absorbancemeasured at 490 nm. Additionally each frac-
tion was stained by adding iodine solution and the optical density mea-
sured as described for fractions separated by CL-2B. Fractions staining
red with iodine were combined and kept at−20 °C until further analy-
sis of chain length distribution.

2.6. Chain length distribution

To remove NaOH in amylopectin fractions, aswell as DMSO from the
WSP fractions recovered from the TSK column, samples were subject to
dialysis for 2 h in H2O. The solution was then lyophilized and the
rradiation demonstrates a reduction in starch in each strain.



Fig. 2. The amount of starch in themutants relative to the wild-type (WT) is reduced, particularly following nitrogen depletion (black bars). The normalized values forWT (100%± 4.8%)
and ST68 (6.40% ± 0.69%) are from three biological replicates, whilst the other mutants were assayed once. Accurate determination under nitrogen replete conditions (gray bars) is
complicated by the low level of starch in the cells.
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powder resuspended in 500 μL dH2O, 500 μL, and 100 mM sodium ace-
tate (pH 3.5) and incubated at 42 °C. When the sample had reached
temperature, 3 μL of isoamylase was added and the reaction incubated
at 42 °C overnight. To remove the sodium acetate, samples were passed
through carbograph columns (Alltech Deerfield, IL) and eluted with 2mL
25% (v/v) acetonitrile. The eluted sample was lyophilized and resus-
pended in 200 μL water before analysis on high performance anion ex-
change chromatography with pulsed amperometric detection (HPAEC-
PAD) (Dionex).

2.7. Zymogram analysis of starch enzymes

Crude cell extracts were prepared from a 50 mL mid log phase cul-
ture as described in Tunçay et al. [29]. Enzymeactivitiesweremonitored
Fig. 3.Transmission electronmicroscopypictures of cells ofWT (A,D), ST68 (B, E) and ST3 (C, F),
conditions. Under depleted conditions both starch granules (S) and lipid bodies (L) accumulate
appears reduced. Under replete conditions, starch around the pyrenoid (Py) of the chloroplast
through zymogram analysis as detailed in Buléon et al. [30] and
Fontaine et al. [31]. Starch synthase was assayed as described in Buléon
et al. [30] and Maddelein et al. [32] and phosphoglucomutase activity
was monitored as described in Van den Koornhuyse et al. [33].
Phosphoglucose isomerase activity was assayed as described for phos-
phoglucomutase with the modification of using fructose-6-phophate
instead of glucose-1-phophate. Starch modifying activity was assayed
according to the methods described in Mouille et al. [38]. For native
gels, SDS and β-mercaptoethanol were omitted and gels were electro-
phoresed at 4 °C. Starch phosphorylase activity was detected on dena-
turing glycogen containing gels washed 4 times 30 min with 40 mM
Tris after the run and one time in 100 mM citrate/NaOH buffer
(pH 6.5). They were incubated overnight in the latter in the presence
of 20 mM G1P and stained with iodine.
following cultivation forfivedaysunder nitrogen depleted (A–C)or nitrogen replete (D–F)
in theWT. In contrast, only lipid bodies are seen in ST68, whilst in ST3 the amount of starch
(Ch) is seen only in WT cells.



Fig. 4. Zymogram detection of starch hydrolytic activities using a polyacrylamide gel
containing soluble starch reveals that mutant ST68 lacks isoamylase activity (arrowed).
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2.8. Lipid analysis

Total lipids were measured by direct transesterification to produce
fatty acid methyl esters (FAMEs) and analyzed by gas chromatography.
Cells were inoculated in 100 mL 1/10N TAP and cultivated for 5 days
prior to harvesting. For each sample, 10 mg of dried algae (dried by
lyophilization until the measured mass remained constant) was
weighed in a 2 mL FastPrep® tube, complete with a ceramic ball and
gravel. After addition of 1 mL of MeOH:CHCl3:HCl (10:1:1), the tubes
were shaken using the FastPrep system at 6m/s for 30 s prior to incuba-
tion at 70 °C for 60min. The tubeswere centrifuged and the supernatant
transferred to a 4 mL cryovial. By adding 1 mL of distilled water and
1 mL of CHCl3:Hexane (1:4), the phases separated and FAMEs were
recovered from the nonpolar upper phase. The samples were analyzed
directly on the GC after addition of methyl heptadecanate (C17:0) as
an internal standard. The extraction method and identification of
FAMEswere developed on a ThermoGC equippedwith a Thermo single
quadrupole electron impact mass spectrometer (DSQII). A 1 μL sample
was injected on a 30 m DB23 column, specifically designed for good
separation of FAMEs. The injection temperature was set to 250 °C, at
a split of 1:20. The carrier gas was He and used in constant flow of
1.2 mL/min. The temperature of the oven was set at 50 °C for 2 min in-
creased to 180 °C at 15 °C/min, held there for 5 min and then increased
to 240 °C at 10 °C/min before a final hold of 2.5 min. The transfer line
was set at 250 °C and the MS set to do a full scan of positive ions after
5 min run time between 50 and 750. For quantitation of FAMEs, a
Fig. 5. Zymogram analysis of phosphorylase activity in a glycogen containing gel. Three
concentrations of protein were used for the wild-type and mutants ST3 and ST12.
Phosphorylase activity is greatly reduced in both mutants.
standard flame ionization detector (FID) was employed, using the
same column, injector and temperature program. The detector was set
to 240 °C and nitrogen gas used as make-up gas at 40 mL/min. For
thin layer chromatography, total lipid was extracted from 50 mg of ly-
ophilized algal material using chloroform:methanol (2:1 v/v). Layers
were separated using water/methanol, the chloroform layer was recov-
ered and samples pipetted onto aluminum backed silica plates. Lipid
classes were separated by developing the plate to a solvent front of
two thirds in acetone:toluene:water (91:30:3 v/v/v) and fully in
hexane:diethyl ether:acetic acid (70:30:1 v/v/v). Lipids were visualized
by naphthol staining (0.5% w/v) and sulfuric acid charring.

2.9. Electron microscopy

Cells were grown in nitrogen replete or 1/10N TAP medium for five
days prior to harvesting 20 mL of culture by centrifugation and resus-
pended in 0.5mL of culturemedium. Undiluted glutaraldehyde solution
(50% inwater) and H2O2were added to a final concentration of 0.1 vol%.
Embedding and preparation for TEM were as described in [34].

3. Results

3.1. A collection of mutants showing low accumulation of storage starch

In order to isolate novel starch-deficient mutants of C. sorokiniana,
we combined UV mutagenesis with a simple iodine-staining method
to identify and recovermutagenized colonies that showdefective starch
accumulation when grown on nitrogen depleted medium [9]. From
approximately 2000 screened colonies, 30 potential mutants were
recovered and a subset of thesewas selected for further analysis, follow-
ing confirmation of their iodine-staining phenotype (Fig. 1).

Directmeasurement of starch levels in thewild-type strain and each
mutant when grown in nitrogen-depleted medium confirmed that
starch accumulation is significantly reduced in all the mutants. In the
wild-type, the starch content was determined as 11.5 mg per gram of
cell dry weight, whereas starch content in the differentmutants was re-
duced to between approximately 40% and 6% of this value (Fig. 2). Less
difference was observed under nitrogen replete conditions, although
precise measurements are complicated by the very low amounts of
starch under these conditions and high chlorophyll content in the cells
(Fig. 2). Mutant ST68 displayed the lowest level of starch under both ni-
trogen starved and nitrogen replete conditions, with ~6% of the wild
type level during nitrogen starvation. Transmission electronmicroscopy
of cells from the wild-type and ST68, and also ST3, further supports the
starchmeasurements with lipid accumulation seen in all three lines fol-
lowing nitrogen stress, but no detectable starch granules observed in
ST68 and fewer thanwild-type in ST3 (Fig. 3 and Supplementary Fig. 1).

3.2. ST68 lacks starch debranching activity, and ST3 and ST12 are defective
in starch phosphorylase

Previous studies of low-starch mutants of Chlamydomonas have
identified defects in genes for key biosynthesis enzymes including
those involved in the formation of the glycan polymers [9] and an
isoamylase involved in the debranching of amylopectin — a key step
in the formation of the semicrystalline starch granule [35–37]. The mu-
tantswere therefore analyzed using various zymogram-based assays for
these enzymes. As shown in Fig. 4, starch-hydrolytic activities are
detected following polyacrylamide electrophoresis of cell extracts in
gels containing soluble starch. However, a high molecular weight activ-
ity is absent frommutant ST68, but is readily detected in theWT and all
the othermutants (see also Supplementary Figs. 2 & 3). This activity has
previously been shown to correspond to isoamylase and is absent in
debranching mutants of Chlamydomonas such as sta7 [38]. Additional
zymogram analysis for the other starch biosynthesis enzymes: phos-
phoglucomutase, starch synthases, and starch phosphorylase (see



Fig. 6. Separation of amylopectin and amylose by sepharose CL2B chromatography. Optical density (black circles)wasmeasured at theλmaxwavelength (nm) for that fraction (gray dotted line). Starch fromwild-type andmutant strainswas extracted
from nitrogen deprived cultures. Wild-type profile showing amylopectin with an λmax of 570 nm and amylose at 648 nm. The ST68 mutant displayed a single peak with λmax of 510 nm. Both ST3 and ST12 showed a reduced amount of amylopectin
with a higher λmax, and replacement of the amylose fraction with a highly heterogeneous fraction containing polymers of different sizes.
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Fig. 7.Water soluble polysaccharides (WSP)were extracted from the supernatant of nitro-
gen deprived cells following lysis and centrifugation to remove insoluble starch. (A).
The amount of WSP in each mutant expressed as a percentage of the wild type amount.
For ST3 and ST68 the values represent the average of two replicates (914% ± 223% of
WT and 745% ± 193% of WT, respectively), with ST12 measured only once. Using the
same supernatant from ST68, total sugars were extracted and separated using size exclu-
sion chromatography. Each fraction was then subject to: (B) total sugar analysis by phe-
nol–sulfuric acid staining using a glycogen + glucose standard, with absorbance
measured at 490 nm; (C) iodine staining in which the absorbance of each fraction,
measured at its λmax, was determined.
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Supplementary Fig. 4), identified two further mutants (ST3 and ST12)
that have a significantly reduced activity of starch phosphorylase as
shown in Fig. 5. This enzyme catalyzes a reversible reaction in which
glucose-1-phosphate (G1P) is used to add a glucose unit to the non-
reducing end of an α-1,4-linked glucan chain with the release of inor-
ganic phosphate, or conversely G1P is released from the chain when
the enzyme acts in the reverse reaction. Although, plastidial phosphor-
ylases were originally thought to be involved primarily in starch degra-
dation, several mutant studies have indicated a key anabolic role in the
formation of starch [39,40]. A Chlamydomonas mutant (sta4) defective
in one of two plastidial phosphorylases showed a significant reduction
in the amount of storage starch, and with changes to the amylopectin
structure and amylose content [39]. The starch structure of ST3 and
ST12, together with ST68, was therefore investigated.

3.3. ST68, ST3 and ST12 contain a modified starch structure

The structure and composition of the low amounts of starch present
in the three mutants were analyzed by using gel permeation chroma-
tography on sepharose CL2B columns. Iodine staining of eluted fractions
from thewild-type strain shows distinct amylopectin and amylose frac-
tions, comparable to that previously found in Chlamydomonas [35] with
an λmax for the amylopectin and amylose fractions of 570 nm and
648 nm, respectively (Fig. 6A). In contrast, mutant ST68 showed an
almost complete absence of the amylopectin fraction, with a new dom-
inant peak eluting late with an λmax of 510 nm, lower than wild-type
amylopectin (Fig. 6B). Mutants ST3 and ST12 also display marked re-
ductions in amylopectin, but with an increase in the λmax, and the am-
ylose fraction was replaced with a heterogeneous polymer, exhibiting
all wavelengths (Fig. 6C and D).

3.4. The mutants show accumulation of phytoglycogen

All three mutants displayed an order of magnitude increase in
water-soluble polysaccharides (WSP) under nitrogen deprived condi-
tions compared to the wild-type strain (Fig. 7A). TheWSP frommutant
ST68 was extracted with chloroform–methanol and separated by size
exclusion chromatography. Fractions collected were subjected to
phenol–sulfuric acid determination of total sugars in comparison to a
standard of glycogen and glucose (Fig. 7B). The colorimetric determina-
tion of total sugars of all fractions revealed a prominent peak eluting
between fractions 22–28, similar to glycogen in the standard. A smaller
peakwas also detected for glucose, however the results indicate that the
WSP found in ST68 ismore glycogen-like, similar towhat has previously
been identified in the Chlamydomonas debranching mutants sta7 and
sta8 [35]. The fractions were also subjected to iodine staining as
shown in Fig. 7C. The iodine staining displayed two separate fractions
(WSP1 and WSP2); with slightly different λmax of 508 and 519 nm,
respectively — both lower than amylopectin (550–570 nm), but not as
low as glycogen (490 nm). The two fractions were closely eluting on
the column, but the difference in λmax indicates different structures.
The two fractions were collected separately (fractions 24–27 for WSP1
and fractions 30–38 for WSP2) and debranched to look at chain length
distribution, as described in the next section.

3.5. Chain length distribution of the debranched amylopectin and WSP

After debranching of the amylopectin using isoamylase, chain length
distribution (CLD)was analyzed for theWT strain and ST68 by high per-
formance anion exchange chromatography (Fig. 8). The WT strain
showed a multimodal distribution, similar to that previously described
in Chlamydomonas [35,38]. In the case of ST68, the insoluble lowmolec-
ular weight polysaccharide eluting late on the CL-2B column was used
for analyzing chain length distribution. In contrary to what was expect-
ed, the debranched polysaccharide showed a similar chain length distri-
bution to the WT amylopectin (Fig. 8B). This low molecular weight
product displayed a dark red color with iodine staining and exhibited
a lower λmax than amylopectin indicating a highly branched glucan
(as shown in Fig. 6). The late elution on the column however indicates
a modified structure with a smaller molecular weight.

The CLD of the WSP extracted from ST68 was analyzed as two
separate fractions (WSP1 and WSP2), as eluted from the TSK column.
The CLD showed a clear difference between the two fractions,
further suggesting that they are composed of differently structured



Fig. 8. Chain length distribution of wild-type and ST68mutant amylopectin andwater soluble polysaccharides from ST68, after debranchingwith isoamylase. The results are displayed as
percentages of chains of DP 2 to 42. A) WT amylopectin separated by CL-2B. B) Mutant ST68 insoluble starch separated by CL-2B. The black bars represent the relative frequencies of
the chains (left y-axis) and the gray line represents the difference in percentage with WT amylopectin (right y-axis). C/D High and low molecular mass WSP from ST68 separated by
TSK-HW-50 chromatography. The gray line represents difference compared to insoluble starch isolated from ST68, displayed in (B). Two separate fractions were isolated from
TSK-HW-50 and analyzed separately, as WSP1 and WSP2.
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polysaccharides (Fig. 8). The second fraction (WSP2) shows a more
even distribution of chain length, whilst WSP1 displays more similari-
ties with the insoluble fraction analyzed from ST68. It is possible that
parts of the structurally modified starch in this mutant stay soluble
whilst some form insoluble granule-like structures.

3.6. The ST68 mutant shows reduced growth in nitrogen
deprived conditions

In order to determine whether a defect in starch biosynthesis influ-
ences the growth of C. sorokiniana, and thus the suitability of such
Fig. 9. Growth of wild type (WT) (filled circles) and mutant ST68 (empty circles) in standard ni
lines). ST68 shows a more pronounced effect of nitrogen depletion with growth stopping at
±STD (n = 3).
mutants as ‘domesticated’ strains for industrial biotechnology, the
growth of ST68 was compared to the WT under both nitrogen replete
and nitrogen limiting conditions. No difference in growth performance
was observed where nitrogen is in sufficient supply, indicating that
the UV mutagenesis has not introduced additional mutations that gen-
erally affect the growth rate. However in nitrogen deprived storage
starch accumulating conditions, ST68 shows a marked reduction in bio-
mass productivity whereby it enters stationary phase earlier and at a
lower cell density when compared to that of WT (Fig. 9). In addition,
the chlorosis due to lack of nitrogen was more severe in the mutant
(see Supplementary Fig. S7).
trogen replete medium (1N) (black lines) and nitrogen limiting medium (1/10N) (dashed
a lower cell density (OD750) and a decline during stationary phase. Error bars represent



Fig. 10. Lipid analysis of wild-type and mutant strains. (A) Total lipid was extracted from 10mg of dried algae, directly trans-esterified to produce FAMEs and quantified using gas chro-
matography. Several isomers of C16 could not be confirmed due to lack of comparison standards and data, and were therefore identified only as C16 chains. Error bars represent ±STD
(n= 3). (B) The amounts of the individual FAMEs were combined to calculate the total FAMEs per mg of algal dry weight. (C) Thin layer chromatography analysis of total lipids extracted
from nitrogen starved cells of WT and mutant ST68. Lipids were separated on silica plates and visualized by naphthol staining and sulfuric acid charring as described in the methods.
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3.7. Low starchmutants show no hyper-accumulation of lipids or change in
fatty acid profile

As reported for many green algal species [5], C. sorokiniana accumu-
lates storage lipids under low nitrogen stress. This is seen in Fig. 3 and in
measurements of lipids using either Nile Red staining or thin layer
chromatography (Supplementary Figs. S5 and S6). To determinewheth-
er there is a hyper-accumulation of lipid in the starch mutants, as
described for Chlamydomonas [12,13,15], total lipids extracted from
WT, ST68, ST3 and ST12 were analyzed as fatty acyl methyl esters
(FAMEs) by gas chromatography. In contrast to the observations in
Chlamydomonas, and the recent findings from Scenedesmus mutants
[8], none of the three C. sorokiniana mutants showed any significant
increase in FAMEs in comparison to the WT (Fig. 10A). Indeed, ST12
had a lower amount of FAMEs per dry weight compared to the WT.
Furthermore, the FA profile in all mutants was not significantly altered,
as both WT and mutants accumulated lipids containing mainly
C18:2 and C16:0 fatty acids (Fig. 10B). Finally, a direct comparison of
triacylglycerides, as opposed to total lipid, by thin layer chromatogra-
phy confirmed that TAGs accumulate to similar levels in wild-type and
mutant strains grown under reduced nitrogen conditions (Fig. 10C).

4. Discussion

Akey step in the successful exploitation of algal species as a source of
lipids, whether as bulk oils for the biofuel sector or specialty oils for the
health food sector, is the genetic improvement of what are essentially
wild isolates [41]. One obvious strategy for such ‘domestication’ is to
increase the carbon flux to storage lipids synthesized under stress
conditions by blocking the competingpathway to starch. Several studies
of lipid accumulation in starch mutants of C. reinhardtii have supported
this idea with reported increases in lipid levels as high as ten-fold the
wild-type levels [12–15,42]. However, other studies have shown that
the choice of ‘wild-type’ reference strain can affect the validity of such
values given the significant natural variation in accumulated lipid seen
between different WT laboratory strains [7]. Indeed, Work et al. [15]
found that the isoamylase mutant sta7-10 did show a marked increase
in lipid compared to a WT control (strain CC-124), but complementa-
tion of the mutant with the wild-type STA7 gene increased the lipid
level further (together with the starch levels), rather than reducing it
to the CC-124 level. More recently, Blaby et al. [10] have demonstrated
substantial genotypic differences between laboratory strains of
C. reinhardtii. They further highlighted the complication of the mutant
analysis by showing that the presumed parental strain used in several
studies of the AGPase mutant sta6 [14,43] appears to be misidentified,
and that the insertional mutation in sta6 also disrupts a neighboring
gene involved in metabolism. Nevertheless, their analysis of several
independent complemented strains of sta6 does confirm a correlation
between hyper-accumulation of TAG in this mutant and the starchless
phenotype [10].

Studies of starch mutants in other green algal species also support
such a correlation, with reports of increased TAG accumulation in
starchless mutants of S. obliquus [8] and C. pyrenoidosa [16] when
compared to the parental strain. This raises the question as to why the
C. sorokiniana mutants described in this paper show no change in TAG
accumulation. The most compelling evidence for increased partitioning
of fixed carbon into TAGs has come from the numerous C. reinhardtii
sta6 studies [10–14,44] and evidence that the block in starch biosynthe-
sis results in an up-regulation of key enzymes of central carbon metab-
olism [10]. As shown in Supplementary Fig. S8, the sta6mutation occurs
early in the starch biosynthesis pathway, at the level of AGPase,whereas
the ST68, ST3 and ST12 mutations affect enzymes involved in the final
stages of the formation of the semi-crystalline starch granule from the
polymerized glucan chains. This results in the accumulation of water
soluble glucan polymers, but at much lower levels of glucans than that
in the starch of the wild-type strain, with ~5% being reported in the
C. reinhardtii isoamylase mutant, sta7 [28,38]. As such, it cannot be
argued that in the ST68, ST3 and ST12 mutants the flux of carbon
precursors into glucan polymers remains unchanged and therefore
explains the lack of increase in lipid levels. It is possible therefore that
the regulatory processes underlying the changes in carbon partitioning
inmutants such as sta6 are linked to glucan synthesis rather than simply
to an increase in the available pool of carbon precursors. A comparative
transcriptomic study of all the available C. reinhardtiimutants (Fig. S7)
with their complemented equivalents would help to determine if this
is the case [10].

Similarly, biochemical analysis of the starch biosynthetic enzymes in
the five Scenedesmus mutants described by de Jaeger et al. [8], would
help our understanding of how to ensure TAG hyper-accumulation
without compromising the overall productivity of TAG. Mutant
ST68 showed reduced biomass at stationary phase when grown
mixotrophically under nitrogen limiting conditions, and thus a lower
TAG productivity than the WT — a situation also observed for sta6
[12]. In contrast, the Scenedesmus mutants showed no reduction in
biomass productivity under phototrophic conditions, resulting in an
improvement of TAG productivity of as much as 41% [8].

Clearly, more detailed research into the metabolism of lipids, starch
and other hydrocarbons in microalgae is required, and systems biology
models of the underlying regulation need to be developed if we are to
have the understanding of strain improvement required to make algal
biofuels an economic reality.
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