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Abstract 

An algebraic approach is proposed which can be used to solve different problems on fasci- 
agraphs and rotagraphs. A particular instance of this method computes the domination number 
of fasciagraphs and rotagraphs in O(logn) time, where n is the number of monographs of such 
a graph. Fasciagraphs and rotagraphs include complete grid graphs Pk 0 P, and graphs Ck 0 C,. 
The best previously known algorithms for computing the domination number of Pk 0 P, are of 
time complexity O(n) (for a fixed k). 

1. Introduction 

The notion of a polygraph was introduced in chemical graph theory as a general- 

ization of the chemical notion of polymers [3]. Polygraphs are of interest not only 

in chemistry, but grid graphs, for example, provide one of the most frequently used 

models of processor interconnections in multiprocessor VLSI systems [7]. An impor- 

tant class of polygraphs form fasciagraphs and rotagraphs. For example, complete grid 

graphs are fasciagraphs and Cartesian products of cycles are rotagraphs. 

One of the main motivations for the present paper is a widely studied problem of 

determining the domination number of complete grid graphs and Cartesian products of 

cycles [5, 7, 9, 11-13, 181. Despite considerable effort, only few formulas are known 

for the domination number of these graphs. Furthermore, proof techniques, at least for 

the time being, lead to rather lengthy proofs, cf. [5]. 
In general, problems related to domination in graphs are widely studied [lo]. The 

problem of computing the domination number of grid graphs is NP-complete while 

the complexity is open for complete grid graphs, cf. [6, lo]. Hence it is worthwhile to 

look for algorithms that compute the domination numbers of these graphs. 
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Fig. 1. A polygraph. 

We consider finite undirected and directed graphs. A graph will always mean an 

undirected graph, a digraph will stand for a directed graph. P,, and C,, will denote the 

path on II vertices and the cycle on 12 vertices, respectively. An edge {u, U} of a graph 

will be denoted uu (hence uu and uu mean exactly the same edge). An arc from u to 

u in a digraph will be denoted (u, u). 

Let Gi, G2, . . ., G,, denote the set of arbitrary, mutually disjoint graphs, and let 

Xl, x2, . . . , X, be a sequence of sets of edges such that an edge of Xi joins a vertex 

of V(Gi) with a vertex of V(Gi+i ). For convenience we also set Go = G,, G,+i = Gi 

and X0 = X,. This in particular means that edges in X, join vertices of G, with vertices 

of Gi. A polygraph 

-Q, =Q,(Gl, G2, .A., G,;Xi,X2, . ...&) 

over monographs GI, Gz, . . . , G, is defined in the following way: 

Y(sZ,) = Y(Gl)u T’(G2)u-.-u Y(G,), 

E(O,) =E(G1)uXl uE(G2)uX2u...uE(Gn)uXn. 

For a polygraph Q, and for i = 1, 2, . . . , n we also define 

Di = {U E V(Gi) 1 3~ E Gi+l:UU E Xi}, 

Ri = {U E V(Gi+l) 1 GIU E Gi:uu EXi}. 

In general Ri n II+1 need not be empty. A polygraph together with its sets Di and Ri 

is schematically shown on Fig. 1. 

Assume that for 1 <i Qn, Gi is isomorphic to a fixed graph G and that we have 

identified each Gi with G. In addition, let the sets Xi, 1 6 i <n, be equal to a fixed edge 

set X. Then we call the polygraph a rotagraph and denote it o,(G; X). A fasciagraph 
+bn(G;X) is a rotagraph o,(G;X) without edges between the first and the last copy 

of a monograph. Formally, in I,Q~( G;X) we have Xi = X2 = . . . = X,_, and X,, = 8. 

Since in a rotagraph all the sets Di and the sets Ri are equal, we will denote them by 

D and R, respectively. The same notion will be used for fasciagraphs as well, keeping 

in mind that R, and D, are empty. 

The Cartesian product G = H OK of graphs H and K is the graph with vertex set 

V(G) = V(H) x V(K). Vertices (x1,x2) and (~1, ~4) are adjacent in H OK if either 

xiyl E E(H) and x2 = y2 or xzy2 E E(K) and xi = yi. Note that Pk q P, = $,(Pk;x), 

PknCn = w,(Pk;x), CkoC, = w&C&x) and CknPn = $n(Ck;X), where x iS 
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the matching defined by the identity isomorphism between two copies of Pk and CL, 

respectively. 

The rest of the paper is organized as follows. In the next section a concept of a path 

algebra is introduced and an algorithm is proposed which can be used to solve different 

problems on fasciagraphs and rotagraphs in logarithmic time. In Section 3 we give an 

instance of the algorithm which computes the domination number of a fasciagraph and 

a rotagraph. This in particular implies that the domination number of a complete grid 

graph Pk q IP, can be obtained in O(log n) time for a fixed k. In the last section we 

briefly show how the same approach can be used to compute the independence number 

of fasciagraphs and rotagraphs and how to decide k-colorability of such graphs. We 

finally observe that the approach can also be extended to polygraphs but in this case the 

algorithms become linear. However, since polygraphs have bounded tree-width, linear 

algorithms on polygraphs are already known [ 1, 21. 

2. Path algebras and the algorithm 

In this section a general framework is proposed for solving different problems on 

the class of fasciagraphs and rotagraphs. The essence of the method is a computation 

of powers of matrices over certain semirings. We wish to remark that similar ideas are 

implicitly used in [8, 151. Before giving the algorithm, a concept of path algebras is 

introduced. We follow the approach given in [4], see also [17, 191. 

A srmiriny .Y = (P, +, 0, 0, 1) is a set P on which two binary operations, + and 

0, are defined such that 

(i ) (P, + ) forms a commutative monoid with 0 as unit, 

(ii) (P_ 0) forms a monoid with 1 as unit, 

(iii) operation o is left- and right-distributive over operation +, 

(iv) for all .X E P, x 0 0 = 0 = 0 ox. 

An idempotent semiring (for all x t P, x +x = x) is called a path algebra. It is 

easy to see that a semiring is a path algebra if and only if 1 + 1 = 1 holds. Examples 

of path algebras include (for more examples we refer to [4]): 

.ipt: (RU{x},min,+,co,O), 

91: (RU {-KS}, max, +, -oo,O), 

93: ({O,l},max,min,O, 1). 

Let 9 = (P, +, 0. 0, 1) be a path algebra and let _ itfn( 9) be the set of all n x n 

matrices over P. Let A, B E ,.K,( ,P) and define operations A + B and A o B in the usual 

way: 

(A 0 B)i,j = 2Aik 0 Bkj . 

k=l 

, d,,(Y) equipped with the above operations is a path algebra itself with the zero and 
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the unit matrix as units of the semiring. 

Let P be a path algebra and let G be a labeled digraph, i.e., a digraph together 

with a labeling function 8 which assigns to every arc of G an element of P. Let 

V(G) = (~1, ~2, . ..> vn}. The labeling 8 of G is extended to paths as follows. For a 

path Q = (xi, > xi, >(Xi, 2 xi2 ) . . . (xi,_ I, xik ) of G let 

f(Q) = t(Xio,Xil )O ~(Xi,,-Gz) 0 ‘. . 0 L(Xik_,,Xi,). 

Let SE be the set of all paths of order k from xl to xj in G and let A(G) be the 

matrix defined by A(G)v = e(Xi,Xj) if (xi,x,) is an arc of G and A(G)ij = 0 otherwise. 

Now we can state the following well-known result (see, e.g. [4, p. 991): 

Theorem 2.1. (A(G)k)ij = Cafsfi 6’(Q). 
/I 

Let tin( G;X) and o,(G;X) be a fasciagraph and a rotagraph, respectively. Set W = 
Di U Ri = D U R and let N = 21Wl. Define a labeled digraph 5+? = g(G;X) as follows. 

The vertex set of 9 is formed by the subsets of W, which will be denoted by Ci; 

in particular we will use CO for the empty subset. An arc joins a subset Ci with a 

subset Cj if Ci is not in a “conflict” with Cj. Here a “conflict” of Ci with Cj means 

that using Ci and Cj as a part of a solution in consecutive copies of G would violate 

a problem assumption. For instance, if we search for a largest independent set, such 

a conflict would be an edge between a vertex of C, and a vertex of Cj. Let finally 

/:E(9) --t P be a labeling of 9 where P is a path algebra on the set P. The general 

scheme for our algorithm is the following: 

Algorithm 2.2. 

1. Select an appropriate path algebra 9 = (P, +, 0, 0, 1). 
2. Determine an appropriate labeling t of 9(G;X). 

3. In Mjv(Y) calculate A(gy. 

4. Among admissible coefficients of A(S)n select one which optimizes the corre- 

sponding goal function. 

It is well known that Step 3 of the algorithm can be done in O(logn) steps. Hence if 

we assume that the size of G is a given constant (and II is a variable), then the algorithm 

will run in O(logn) time. However, the algorithm is useful for practical purposes 

only if the number of vertices of the monograph G is relatively small, since the time 

complexity is in general exponential in the number of vertices of the monograph G. 

3. Domination numbers of fasciagraphs and rotagraphs 

A set S of vertices of a graph G is a dominating set if every vertex from V(G)\S 
is adjacent to at least one vertex in S. The domination number y(G) is the smallest 

number of vertices in a dominating set of G. For complete grid graphs, i.e., graphs 
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Fig. 2. The sets C, and C, 

Pk 0 P,, algorithms were given in [9] which for a fixed k compute y( Pk II P, ) in 0( II ) 

time. We are going to present an algorithm that computes y of fasciagraphs and 

rotagraphs in O(log n) time. 

Let $n(G;X) and w,(G;X) be a fasciagraph and a rotagraph, respectively. Let 

C,, Cj E V(%(G;X)), i.e., Ci,Cj CD U R, and consider for a moment $j(G;X). Let 

C, C Dl U RI and Cj C 02 U R?, where D1 := Dz = D and RI = Rz = R (cf. Fig. 2). 

Let ;*g( G;X) be the size of a smallest dominating set S 2 Gz\(( C, n RI ) U (D? n C, )). 

such that G2 is dominated by C, U S u Cj. Then set 

t(Cl,Cj) = IC’, n RI + ylj(G;X) + ID n C,( - ICi f7 C’ii. (I) 

The labeling in particular implies that (C,, Cj) is an arc of q(G;X) if C,nRnDnC; = 8. 

Recalling that N = 21ivl we now state: 

Algorithm 3.1. 

1. For a path algebra select 31 = (R U {co}, min. +, ZC, 0). 

2. Label ??( G;X) as defined in (1). 

3. In ck!~(Yi) calculate A(g)“. 

4. Let y($,(G;X)) = (A(% and y(o,(G;X)) = mini(A(%)“)ii. 

Theorem 3.2. Algorithm 3.1 correctl_y computes ;I( $,,( G; X)) and y(wn( G; X)) und 

cm he implemented to run in O(logn) time. 

Proof. The time complexity was already argued in the general case. We add here that 

for Step 2 of Algorithm 3.1 any procedure for computing the domination number can 

be used since the time complexity is clearly constant in n. With the same argument, 

Step 4 can be computed in constant time. 

We next show the correctness of the algorithm. By Theorem 2.1, 

(A(~)“)oo=Q$~~(Q)=. mip (~(CO,C~,)+~(~~,,~,,~+...+~(C,,,_,,C~)), 
00 l,.l?,.... I”_, 

Assume now that the minimum is attained on indices ii, i2, . . . , i,_l. Then 

(4W”)oo = (YOJ, + 10 n G, I) + (IC,, n RI 1 + ;‘r,,i: + ID? n C,J) + . 
+(lG-, n&11 + ?L,_,.O). 
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By the definition of yij, the above expression is the size of a dominating set of 

tin(G;X). On the other hand, a smallest dominating set of $J,G;X) gives rise to such 

an expression, thus (A( is the size of a smallest dominating set of $,(G;X). 

The correctness argument for the domination number of w,(G;X) is analogous and 

we omit it. 0 

Corollary 3.3. For a jixed k, one cun obtain y(Pk UP,, ) and y(Ck 0 C,) in O(log n) 

time. 

We conclude the section with a short overview of computational results. A straight- 

forward implementation of the algorithm was tested on graphs Pk 0 P,, Pk 0 C,,, Ck 0 C, 

and Ck UP,, for k =2 - 5 and for n up to 1000. The known formulas for Pk 0 P,, and 

Ck UC,, [5, 131, were used for checking the results. In one case the situation was 

opposite. Namely, it is proved in [ 131 that for n 3 5 

I;(Cs UC,) = 
{ 

n if n = 5k, 

n + 1 if n E (5k + 1, 5k + 2, 5k + 4) 

and that y(Cs 0 C5k+s) d n + 2. Our experiment showed that up to n = 1000 the upper 

bound n + 2 is the exact value of the domination number. It was then proved in [18] 

that the formula is indeed y( Cs 0 Cjk+3 ) = n + 2. 

4. Some additional applications 

The size of a largest independent set of vertices of a graph G is called the indepen- 

dence number of G, a(G). Select 92 = (RU { -co}, max, +, -co, 0) as a path algebra 

and define a labeling of %(G;X) similarly as in (1). The difference is that two vertices 

are in conflict (and hence the corresponding arc is labeled --co) if (Ci f”R) U (Cj nD) 

is not an independent set in G. Everything else is analogous as for the domination 

number, thus we have: 

Theorem 4.1. One can compute a($,(G;X)) and a(o,(G;X)) in O(logn) time. 

As a second example, we consider the k-coloring problem. To solve it on fascia- 

graphs and rotagraphs, we first select 93 = ((0, l}, max, min, 0, 1) as a path algebra. 

We next define a labeled digraph Y(G;X), slightly differently from how we did so 

far. The vertex set of 9 is formed by the k-colorings of W = D U R or, equivalently, 

by the k-partitions of W with parts being independent sets. An arc joins a k-coloring 

Ci with a k-coloring Cj if and only if the corresponding partitions coincide on their 

(possible) intersection in G2 (cf. Fig. 2 again) and can be extended to a k-coloring of 

G2. The labeling of Y(G;X) is then defined just by the adjacency relation. Finally, in 

-&~(Pp3) we calculate A(9y and conclude that $,JG;X) or o,(G;X) is k-colorable 

if and only if (A( = 1 or maxi(A(%)“)ii = 1, respectively. Thus we have: 
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Theorem 4.2. The k-coloring problem of the graphs II/,z( G;X ) und o,(G;X) is solr- 

ahle in 0( log n) time. 

We finally add that the above approach for rotagraphs and fasciagraphs can be 

extended to polygraphs as well. Instead of computing a single graph +?( G; X ) and 

calculating the nth power of A(??), we must determine II graphs and calculate the 

matrix product of the corresponding matrices over an appropriate path algebra. This 

yields to O(n) algorithms for polygraphs. However, the tree-width of a polygraph can 

be bounded by a constant depending on the size of a monograph. (For definitions of a 

tree-width see, for example, [16, 141, cf. also [l].) Arnborg and Proskurowski [2] (see 

also [ 11) obtained linear time algorithms for different problems of graphs with bounded 

tree-width, including dominating set, independent set and k-colorability problem. Their 

algorithms are linear in the size of the problem instance, but are exponential in the 

tree-width of the involved graphs - the case analogous to the present approach. 

Concluding remarks 

We learned from a referee that the domination number problem for k x n grids, where 

k is fixed, has been claimed recently to have a constant time solution (Livingston and 

Stout, 25th International Conference on Combinatorics, Graph Theory and Computing, 

March 7-l 1, 1994, Florida Atlantic University). We would also like to add that recently 

several new formulas for the domination number of complete grid graphs have been 

established in [20. 211. Finally, we wish to thank Martin Juvan for helpful remarks. 
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