
Discrete Mathematics 307 (2007) 1636–1642
www.elsevier.com/locate/disc

Dominating direct products of graphs

Boštjan Brešara,1, Sandi Klavžarb,2, Douglas F. Rallc,3

aUniversity of Maribor, FEECS, Smetanova 17, 2000 Maribor, Slovenia
bDepartment of Mathematics and Computer Science, PeF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia

cDepartment of Mathematics, Furman University, Greenville, SC, USA

Received 22 October 2004; received in revised form 8 August 2006; accepted 2 September 2006
Available online 13 November 2006

Abstract

An upper bound for the domination number of the direct product of graphs is proved. It in particular implies that for any graphs G
and H, �(G × H)�3�(G)�(H). Graphs with arbitrarily large domination numbers are constructed for which this bound is attained.
Concerning the upper domination number we prove that �(G×H)��(G)�(H), thus confirming a conjecture from [R. Nowakowski,
D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16
(1996) 53–79]. Finally, for paired-domination of direct products we prove that �pr(G × H)��pr(G)�pr(H) for arbitrary graphs G
and H, and also present some infinite families of graphs that attain this bound.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many authors have investigated the behavior of domination and independence parameters in graph products, cf.
the survey by Nowakowski and Rall [15]. In this paper we focus on domination in direct products of graphs that was
initiated in [6,15].

There is no consistent relation between the domination number of the direct product of two graphs and the product of
their domination numbers [15]. In the same paper an example was given that disproved a Vizing-type conjecture from
[6]. An infinite series of such examples was presented in [11]. Chérifi et al. [3] determined the domination number of the
direct product of two paths with the only exception when one factor is a path on 10, 11, or 13 vertices. Independently,
some of these results were obtained by Klobučar in [12,13]. In [15] it was proved that �(G×H)��(G)�t(H), see also
[17] for a shorter proof, while in [17] it was observed that

�(G × H)�4�(G)�(H).
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Other domination-type problems in direct products were studied in [4,5,9,14,19]. In this note we further investigate the
domination number, and present, to our knowledge, the first results on the paired-domination and upper domination
numbers of direct products of graphs.

In the next section we define the concepts needed and recall two known results to be used later. In Section 3 we
prove an upper bound on �(G × H) that in particular implies that

�(G × H)�3�(G)�(H).

We also construct graphs G and H with arbitrarily large domination numbers for which this bound is attained and show
that in many cases it can be further improved. In the fourth section we prove that for any graphs G and H,

�(G × H)��(G)�(H),

where �(G), as usual, denotes the upper domination number of a graph G. This result was conjectured in [15]. In the
last section we consider paired-domination in direct products. We show that for any graphs G and H

�pr(G × H)��pr(G)�pr(H),

present some infinite families of graphs for which the equality is attained and pose a problem concerning a possible
lower bound for �pr(G × H).

2. Preliminaries

All the graphs considered will be simple, undirected graphs with no isolated vertices. Let G = (V , E) be a graph. A
set S ⊆ V is a dominating set if each vertex in V \S is adjacent to at least one vertex of S. If, in addition, each vertex
of S has a neighbor in S, then S is called a total dominating set. Furthermore, as in [8], a dominating set S is called a
paired-dominating set if it induces a subgraph with a perfect matching. Equivalently, S is the set of endvertices of a
matching of G that is also a dominating set of G. If A and B are subsets of V we say that A dominates B if every vertex
of B has a neighbor in A or is a vertex of A. We also say that B is dominated by A. We will make use of the following
well-known result.

Theorem 1 (Ore [16]). A dominating set S of a graph G is minimal if and only if for every vertex u ∈ S one of the
following two conditions holds:

(i) u is not adjacent to any vertex of S,
(ii) there exists a vertex v ∈ V (G)\S such that u is the only neighbor of v from S.

The domination (resp. total domination, paired-domination) number �(G) (resp. �t(G), �pr(G)) of a graph G is the
minimum cardinality of a dominating (resp. total dominating, paired-dominating) set. A dominating set of size �(G) is
called a �-set. Analogously we define a �t-set and a �pr-set. Note that for any graph G we have �(G)��t(G)��pr(G).
The upper domination number �(G) of G is the size of a largest minimal dominating set. The 2-packing number �(G)

of G is the maximum cardinality of a set S ⊂ V (G) such that any two vertices in S are at distance at least three.
Equivalently, the vertices of S have pairwise disjoint closed neighborhoods. The open packing number �o(G) is the
maximum cardinality of a set of vertices whose open neighborhoods are pairwise disjoint. For more information on
domination in graphs we refer to [7].

For graphs G and H, the direct product G × H (also known as the tensor product, cross product, cardinal product,
categorical product, . . .) is the graph with vertex set V (G) × V (H) where two vertices (x, y) and (v, w) are adjacent
if and only if xv ∈ E(G) and yw ∈ E(H). The Cartesian product G�H is defined on the same vertex set where two
vertices (x, y) and (v, w) are adjacent if and only if either x = v and yw ∈ E(H), or y = w and xv ∈ E(G).

We will also need the following result from [1].

Lemma 2. Let X = G × H and let (x, y), (v, w) be vertices of X. Then dX((x, y), (v, w)) is the smallest d such that
there is an x, v-walk of length d in G and a y, w-walk of length d in H.
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An explicit formula for the distance function in the direct product was first obtained by Kim [10] in a somehow
more involved form. Note that Lemma 2 in particular implies that if walks of the same parity do not exist, then the
corresponding vertices are in different connected components of the direct product.

3. Domination in direct products of graphs

Let G be a graph. For a total dominating set D of G let �D(G) denote the size of a smallest subset of D that dominates
G. Note that �D(G)� |D| and so �D(G) is well-defined.

Theorem 3. For any graphs G and H,

�(G × H)� min {�D(G) |D′| + �D′(H) |D| − �D(G)�D′(H)},
where the minimum is taken over all total dominating sets D of G and D′ of H.

Proof. Let D be a total dominating set of G and D′ a total dominating set of H. Let A ⊆ D be a dominating set for G of
size �D(G) and B ⊆ D′ a dominating set for H of size �D′(H). We claim that X = (A×D′)∪ (D ×B) is a dominating
set of G × H . Let (a, b) ∈ V (G × H)\X. Suppose a ∈ D\A and b ∈ D′\B. Since A is a dominating set for G there
exists a vertex c in A such that ac ∈ E(G). Similarly, there exists d ∈ B such that bd ∈ E(H). Hence, (c, d) ∈ X and
is adjacent to (a, b) in G × H . Suppose that a ∈ V (G)\D and b is any vertex of H. As A dominates G and D′ is a total
dominating set for H, a has a neighbor c ∈ A and b has a neighbor d ∈ D′. It follows that (c, d) ∈ X and dominates
(a, b). The argument for (a, b) ∈ V (G) × (V (H)\D′) is similar, thus we have shown that X is a dominating set for
G × H .

Now,

�(G × H)� |X| = |A × D′| + |D × B| − |(A × D′) ∩ (D × B)|
= |A||D′| + |D||B| − |A| |B|
= �D(G)|D′| + �D′(H)|D| − �D(G)�D′(H). �

It was previously known [17] that �(G × H)�4�(G)�(H) for every pair of graphs G and H. If S is any dominating
set for a graph G, then S is a subset of a total dominating set for G. Consider the vertices of S sequentially and enlarge
the set to include a neighbor of any x ∈ S that is isolated in the subgraph induced by S. The resulting set is a total
dominating set D for G that may not have cardinality �t(G), but |D|�2|S|. By starting with a minimum dominating
set A for G and a minimum dominating set B for H we can thus enlarge A to a total dominating set D for G and B to a
total dominating set D′ for H such that |D|�2�(G) and |D′|�2�(H). This establishes the following corollary.

Corollary 4. For any graphs G and H, �(G × H)�3�(G)�(H).

Let G and H be graphs with at least two edges and let �(G)= �(H)= 1. Then �(G×H)= 3. Indeed, it is easily seen
that �(G × H)�3, so Corollary 4 yields the equality. On the other hand, it follows immediately from the construction
preceding the above corollary that �(G) > �(G) implies �(G × H) < 3�(G)�(H) for an arbitrary graph H. This raises
the question, whether there are any pairs of graphs with domination number greater than 1 such that equality is attained
in Corollary 4. The answer is positive, and moreover, there are such graphs with arbitrarily large domination number.

Let G be a graph with �(G) = �(G) such that there exists a maximum 2-packing of G which is at the same time a
�-set of G. By G+ we denote the graph obtained from G by attaching to each vertex of this minimum dominating set
two pendant vertices. Clearly, �(G) = �(G+).

Theorem 5. Let G and H be connected graphs each having a maximum 2-packing which is at the same time a minimum
dominating set. Then �(G+ × H+) = 3�(G+)�(H+).

Proof. Let D and D′ be minimum dominating sets of G and H. Note that D and D′ are unique minimum dominating
sets of G+ and H+. For a vertex x ∈ D ⊂ V (G+) denote by xp and xr the corresponding pendant vertices attached
to x. Similarly, let yp and yr be the pendant vertices of y ∈ D′ ⊂ V (H+). Set X = G+ × H+.
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Consider a vertex (x, y) ∈ D × D′. Then the vertices (xp, yp), (xp, yr), (xr , yp), and (xr , yr ) are pendant vertices
in G+ × H+ that are adjacent to (x, y). It follows that D × D′ must be a subset of any minimum dominating set of X.

Let (x, y) and (v, w) be different vertices of D × D′. Then the vertices (x, yp), (x, yr), (xp, y), and (xr , y) induce
a subgraph C(x, y) of X while the vertices (v, wp), (v, wr), (vp, w), and (vr , w) induce a subgraph C(v, w), where
both C(x, y) and C(v, w) are isomorphic to C4. By considering the cases where the vertices (x, y) and (v, w) differ in
both or in only one coordinate, we see that dX((x, y), (v, w))�3. Lemma 2 then implies that the distance between an
arbitrary vertex of C(x, y) and an arbitrary vertex of C(v, w) is at least four. If follows that no vertex of X can dominate
a vertex of C(x, y) and a vertex of C(v, w). Observe next that at least two vertices are required to dominate C(x, y).
Indeed, to dominate (x, yp) and (x, yr) we need to use a vertex from V (G+)×{y}, but such a vertex will not dominate
(xp, y) and (xr , y). Moreover, these two vertices cannot be in D × D′. Indeed, there is no edge between (a, b), with
b ∈ D′, and any vertex of D × D′, since D′ is a 2-packing. (And similarly, if a ∈ D.)

In conclusion, let S be a minimum dominating set of X. Then by the above, D × D′ ⊆ S. Moreover, to any vertex
(x, y) of D × D′ there are at least two additional vertices in S that dominate C(x, y). As |D × D′| = �(G+)�(H+) we
infer that �(G+ × H+)�3�(G+)�(H+). Corollary 4 completes the proof. �

The family of graphs in Theorem 5 is in fact quite large. Take an arbitrary (connected) graph and subdivide each edge
of it by two vertices. Then all the original vertices form a maximum 2-packing which is at the same time a minimum
dominating set.

In some special cases Theorem 3 assumes a more explicit form. For instance:

Corollary 6. Suppose that each of G and H contains a �-set that can be extended to a �t-set. Then

�(G × H)��(G)�t(H) + �t(G)�(H) − �(G)�(H).

Proof. Let A and A′ be �-sets of G and H as stated above and let D and D′ be �t-sets of G and H with A ⊆ D and
A′ ⊆ D′. Then apply Theorem 3. �

Since �t(G)�2�(G) and �t(H)�2�(H), the bound of Corollary 6 is at least as good as the one from Corollary 4 as
soon as Corollary 6 is applicable.

Let Sn be the graph that is obtained from K1,n by subdividing each of its edges. Then �(Sn) = n, �t(Sn) = n + 1, and
Corollary 6 can be used. Hence �(Sn ×Sn)�n2 + 2n which is close to the real value, since �(Sn ×Sn)��(Sn)�t(Sn)=
n2 + n. On the other hand, Corollary 4 only yields �(Sn × Sn)�3n2.

To conclude this section note that if �(G)=�t(G) and �(H)=�t(H) then Corollary 6 implies �(G×H)��(G)�(H).
If, in addition, �(G) = �(G) or �(H) = �(H) then �(G × H) = �(G)�(H). This last observation appeared already
in [17].

4. Upper domination in direct products

In this section we prove the before mentioned conjecture on the upper domination number of direct products. The
proof follows similar lines as the proof of a related conjecture for the Cartesian product given in [2]. For this purpose,
we first present a partition of the vertex set of a graph depending on a given minimal dominating set. This partition is
in part based on Theorem 1.

Let DG be a minimal dominating set of a graph G. If condition (ii) of Theorem 1 holds for a vertex u ∈ DG, then we
say that v is a private neighbor of u (that is, v is adjacent only to u among vertices of DG). Denote by D′

G the set of
vertices of DG that are not isolated in DG, and note that they must have private neighbors. Let PG be the set of private
neighbors of vertices of D′

G, and let NG denote the set of vertices of V (G)\DG which are adjacent to a vertex of D′
G

but are not private neighbors of any vertex of D′
G. Set D′′

G =DG\D′
G denoting the vertices of DG which are isolated in

DG, and finally let the remaining set be RG, that is, RG = V (G)\(DG ∪ PG ∪ NG). We skip the indices if the graph G
is understood from the context. Note that given a minimal dominating set D of a graph G, the sets D′, D′′, P , N and R
form a partition of the vertex set V (G). In addition, some pairs of sets must clearly have adjacent vertices (like D′ and
P), while some other pairs of sets clearly do not have any adjacent vertices. The situation is presented in Fig.1, where a
bold arrow from one set to another indicates that every vertex in the first set must be adjacent to a vertex of the second,
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R

D'' N

P

D'

Fig. 1. Partition derived from a minimal dominating set.

a normal line indicates that between the two sets edges are possible (but are not necessary), and no line between two
sets means no edges are possible. Note that every vertex of R is adjacent to a vertex of D′′, and that every vertex of
N ∪ P is adjacent to a vertex of D′. Of course, some of the sets could also be empty for a dominating set D.

Theorem 7. For arbitrary graphs G and H,

�(G × H)��(G)�(H).

Proof. We will construct a minimal dominating set D of G × H that has enough vertices. Let DG and DH be minimal
dominating sets of G and H, respectively, with maximum cardinality, that is |DG| = �(G) and |DH | = �(H).

Consider the following set of vertices D in G × H :

D = (DG × DH ) ∪ I ,

where I is a maximum independent set of the subgraph induced by

[(V (G)\DG) × D′′
H ] ∪ [D′′

G × (V (H)\DH )]
(if the subgraph is empty then we define I to be empty as well). We claim that D is a minimal dominating set of G,
while it is clear that |D|��(G)�(H).

First let us show that D is a dominating set of G×H . Observe that D′
G ×D′

H dominates (D′
G ∪PG ∪NG)× (D′

H ∪
PH ∪NH ), that D′′

G×D′
H dominates RG×(D′

H ∪PH ∪NH ), analogously D′
G×D′′

H dominates (D′
G∪PG∪NG)×RH ,

and that D′′
G × D′′

H dominates RG × RH . Finally, if the remainder [(V (G)\DG) × D′′
H ] ∪ [D′′

G × (V (H)\DH )] is
nonempty then I dominates it.

To see that D is minimal, first observe that each vertex (u, v) of D′
G × D′

H has a private neighbor in PG × PH .
Indeed, if x is a private neighbor of u with respect to DG and y a private neighbor of v with respect to DH then (x, y)

is adjacent only to (u, v) among vertices of D′
G × D′

H . Other vertices of D are in D′′
G × V (H) or in V (G) × D′′

H , and
since D′′ has no adjacencies with P we infer that (x, y) is a private neighbor of (u, v) with respect to D. It is easy to
check that vertices of D\(D′

G ×D′
H ) are isolated in D (that is, they enjoy property (i) of Ore’s theorem), by considering

different cases with respect to the partitions of V (G) and V (H). (See Fig. 2, where the gray squares denote subsets of
vertices of G × H which are all in D, while dotted areas indicate I.) �

Suppose �(G×H)=�(G)�(H) for some pair of graphs G and H. Recall that all graphs considered have no isolated
vertices, and thus �(G) must be strictly larger than �(G), the vertex independence number of G. This follows since

�(G)�(H) = �(G × H)��(G × H)��(G)|H |.
In addition, it follows from the proof of Theorem 7 that the set D′′

G, and hence also the set RG, must be empty. Both of
these restrictions must similarly hold for H. However, these conditions are not sufficient to force equality in Theorem
7 since both are satisfied for G = K2�K3, and yet �(G × G)��(G × G)�12 > �(G)�(G). On the other hand we
suspect that the bound of Theorem7 is sharp. Possible candidates for graphs that attain the bound are the Cartesian
products Gn = K2 �Kn, n�4. Clearly, �(Gn) = n, but we were not able to prove that �(Gn × Gn) = n2.
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Fig. 2. Upper domination of the direct product.

5. Paired-domination in direct products

For total domination of the direct product of arbitrary graphs G and H the following inequality was shown: �t(G ×
H)��t(G)�t(H) [15]. Similarly, if DG is a �pr-set of G and DH be a �pr-set of H, then it is straightforward to see that
DG × DH is a dominating set of G × H which at the same time induces a subgraph with a perfect matching. Hence,
for any graphs G and H,

�pr(G × H)��pr(G)�pr(H). (1)

It is easy to see that for any graphs G and H with �pr(G) = 2 = �pr(H), we obtain �pr(G × H) = 4. (In fact, note
that for any nontrivial graphs G and H, �pr(G × H)�4.) To present a nontrivial infinite family of graphs for which the
above bound is achieved we will make use of the following inequality from [17]:

�t(G × H)� max{�o(G)�t(H), �o(H)�t(G)}. (2)

Proposition 8. Let G be a graph with �o(G) = �pr(G), and H a graph with �t(H) = �pr(H). Then �pr(G × H) =
�pr(G)�pr(H).

Proof. By combining (1) with (2) we obtain

�pr(G)�pr(H)��pr(G × H)��t(G × H)��o(G)�t(H) = �pr(G)�pr(H),

and hence

�pr(G × H) = �pr(G)�pr(H). �

Since �o(G)��t(G) holds for an arbitrary graph G (see e.g. [17]), the assumption concerning G in the above
proposition implies �o(G) = �t(G) = �pr(G). This family of graphs includes paths Pn where n /≡ 1(mod 4), double-
stars, cycles Cn where n ≡ 0 (mod 4), etc. The complete characterization of trees with equal total and paired-domination
numbers is given in [18]. Since �o(T ) = �t(T ) for any tree T [17], this characterization yields all trees that satisfy the
condition imposed on the graph G in the above proposition.

On the other hand the paired-domination number of the direct product of graphs can be arbitrarily smaller than the
upper bound in (1). For example, consider again the subdivided star Sn. Denote its vertex of degree n by x, vertices
adjacent to x by y1, . . . , yn, and for each i let zi be a leaf adjacent to yi . Note that D ={x, y1, . . . , yn}×{x, y1, . . . , yn}
dominates S=Sn×Sn. Each (yi, yj ) is adjacent to (zi, zj ) that is a leaf of S.A matching of S that includes the vertices of
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D can be obtained from
⋃

i{(x, yi)(yi, x)} by adding
⋃

i,j {(yi, yj )(zi, zj )} and then replacing the edge (y1, y1)(z1, z1)

by (x, x)(y1, y1). Clearly, the endvertices of the matching induce a paired-dominating set of size 2n2 + 2n, while
(�pr(Sn))

2 = 4n2. We are not aware of any graphs G and H for which �pr(G × H)� 1
2�pr(G)�pr(H) so we pose:

Problem 9. Does

�pr(G × H) > 1
2�pr(G)�pr(H)

hold for all graphs G and H?
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