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Abstract

A multivariate interpolation problem is generally constructed for appropriate determination of a multivariate
function whose values are given at a finite number of nodes of a multivariate grid. One way to construct the
solution of this problem is to partition the given multivariate data into low-variate data. High dimensional model
representation (HDMR) and generalized high dimensional model representation (GHDMR) methods are used to
make this partitioning. Using the components of the HDMR or the GHDMR expansions themultivariate data can be
partitioned. When a cartesian product set in the space of the independent variables is given, the HDMR expansion
is used. On the other hand, if the nodes are the elements of a random discrete data the GHDMR expansion is used
instead of HDMR. These two expansions work well for the multivariate data that have the additive nature. If the
data have multiplicative nature then factorized high dimensional model representation (FHDMR) is used. But in
most cases the nature of the given multivariate data and the sought multivariate function have neither additive nor
multiplicative nature. They have a hybrid nature. So, a new method is developed to obtain better results and it is
called hybrid high dimensional model representation (HHDMR). This new expansion includes both the HDMR (or
GHDMR) and the FHDMR expansions through a hybridity parameter. In this work, the general structure of this
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hybrid expansion is given. It has tried to obtain the best value for the hybridity parameter. According to this value
the analytical structure of the sought multivariate function can be determined via HHDMR.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

When a multivariate data is given and the analytical structure of the multivariate function is sought
through this given data, a multivariate interpolation problem must be constructed. However, increasing
dimensionality of the interpolation causes such problems that it becomes quite difficult to determine the
analytical structure of the sought multivariate function. Hence, a divide-and-conquer algorithm is needed
and high dimensional model representation (HDMR) method is developed[7,6,1,4,3]. The main purpose
of the method is to partition the multivariate data into low-variate data such as constant, univariate,
bivariate terms and so on. This method works through a given multivariate data constructed as a cartesian
product set in the space of the independent variables.
If a random discrete data is given then another method based on HDMR called generalized high

dimensional model representation (GHDMR)[8] can be used. These two methods work well when the
structure of the given data, in other words, the structure of the sought multivariate function has an additive
nature.
On the other hand, if the structure of the data has a multiplicative nature then another HDMR based

representation model is used. This method is called factorized high dimensional model representation
(FHDMR) [9,10]. Thismethod uses the components of the HDMRexpansion when the nodes of the given
data are the elements of a cartesian product set. If the data is a random discrete data then this method
uses the GHDMR components instead of the HDMR components.
In thiswork, the relations for the constant, univariate and bivariate components of theHDMRexpansion

are given. On the other hand, only the relations for the constant and univariate components of GHDMR
are given. So, if the HDMR method is used to partition the given data then the FHDMR expansion is
constructed by using the constant, univariate and bivariate terms for the partitioned data. Otherwise, if the
GHDMRmethod is used for partitioning the FHDMR expansion includes the constant and the univariate
terms only.
When the sought multivariate function has neither additive nor multiplicative nature then a hybrid

basedmodel representation is needed. Hybrid high dimensional model representation (HHDMR)method
is developed for this purpose.Thismethod uses both theHDMR (orGHDMR) expansion and the FHDMR
expansion to determine the general analytical structure of the multivariate function.
The paper is organized as follows. Sections 2 and 3 involve certain details of HDMR and GHDMR,

respectively. Section 4 covers the interpolation of partitioned data while Section 5 stands for some
explanations to FHDMR. Section 6 gives themain topic, HHDMR. Section 7 is for hybridity optimization
while Section 8 includes implementations. Finally, Section 9 presents concluding remarks.
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2. High Dimensional Model Representation

The equation of the HDMR for a given multivariate function is as follows:

f (x1, . . . , xN)= f0 +
N∑

i1=1
fi1(xi1)+

N∑
i1,i2=1
i1<i2

fi1i2(xi1, xi2)+ · · · + f12...N (x1, . . . , xN). (1)

The HDMR terms of the given multivariate function are the right hand side terms of this expansion.
These terms are the constant term, univariate terms, bivariate terms and the other high-variate terms.
The following vanishing conditions are used to be able to obtain the right hand side components of the
expansion.∫ b1

a1

dx1 · · ·
∫ bN

aN

dxNW(x1, . . . , xN)fi(xi)= 0, 1�i�N . (2)

These vanishing conditions correspond to the following orthogonality condition.

(fi1i2...ik , fi1i2...il )= 0, {i1, i2, . . . , ik} /≡ {i1, i2, . . . , il}, 1�k, l�N . (3)

The right hand side terms of (1) are the orthogonal decomposition components of the original function.
Because these components must satisfy these orthogonality conditions. These orthogonality conditions
are defined over an inner product and the inner product is defined as

(u, v) ≡
∫ b1

a1

dx1W1(x1) . . .

∫ bN

aN

dxNWN(xN)u(x1, . . . , xN)v(x1, . . . , xN), (4)

whereu(x1, . . . , xN) andv(x1, . . . , xN) are two arbitrary functions. According to this definition, square
of both the original function and the right hand side components of the HDMR expansion are assumed
to be integrable functions. These square integrals are defined over a certain interval of the independent
variables and a weight function is related to each variable. The weight function appearing in the vanishing
conditions is assumed as a product type of function

W(x1, . . . , xN) ≡
N∏
j=1

Wj(xj ), xj ∈ [aj , bj ], 1�j�N . (5)

The following normalization criteria for each univariate factor of the weight function is assumed for easy
determination of the HDMR components.∫ bj

aj

dxjWj (xj )= 1, 1�j�N . (6)

It is assumed that the values of a multivariate function are given at the nodes of a cartesian product set
in the Euclidean space defined by the independent variables. For this purpose the data of the variablexj
can be defined as follows.

�j ≡ {�(kj )j }kj=nj
kj=1 = {�(1)j , . . . , �

(nj )

j }, 1�j�N . (7)
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The following cartesian product can be constructed from that data:

� ≡ {�|� = (x1, x2, . . . , xN), xj ∈ �j ,1�j�N}. (8)

Only the values of the sought multivariate function,f (x1, . . . , xN) on the points of that cartesian prod-
uct set must be used in interpolation. For this purpose, the weight function must be formatted as a
linear combination of several Dirac delta functions[11]. This means that the weight function can be
defined as

W(x1, . . . , xN) ≡
N∏
j=1


 nj∑
kj=1

�(j)kj
�(xj − �

(kj )

j )


 , xj ∈ [aj , bj ], (9)

where

Wj(xj ) ≡
nj∑

kj=1
�(j)kj

�(xj − �
(kj )

j ), 1�j�N . (10)

The � constants appearing in the weight function are used to be able to give different importance to
each node of the interpolation problem. When the normalization criteria given in (6) is taken into con-
sideration and the left hand side of this relation is rewritten for the selected weight function given
in (10), the following relation for these constants can be obtained by using Delta function’s proper-
ties:

nj∑
kj=1

�(j)kj
= 1, 1�j�N . (11)

Using the properties of the weight function and the orthogonality conditions, the right hand side terms
of the HDMR expansion can be obtained. To obtain the constant term, both sides of the HDMR equation
given in (1) are multiplied by the weight function,W1(x1)W2(x2) · · ·WN(xN), and are integrated over
whole Euclidean space defined by independent variables. For this purpose, the followingI0 operator can
be defined. This operator can be written by using an arbitrary square integrable function,F(x1, . . . , xN)

as follows:

I0F(x1, . . . , xN) ≡
∫ b1

a1

dx1 · · ·
∫ bN

aN

dxNW(x1, . . . , xN)F (x1, . . . , xN). (12)

To obtain the univariate and the bivariate terms of the HDMR expansion the following operators can be
defined in the same manner.

ImF(x1, . . . , xN)

≡
∫ b1

a1

dx1W1(x1) · · ·
∫ bm−1

am−1
dxm−1Wm−1(xm−1)

×
∫ bm+1

am+1
dxm+1Wm+1(xm+1) · · ·

∫ bN

aN

dxNWN(xN)F (x1, . . . , xN), 1�m�N . (13)
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Im1m2F(x1, . . . , xN)

≡
∫ b1

a1

dx1W1(x1) · · ·
∫ bm1−1

am1−1
dxm1−1Wm1−1(xm1−1)

×
∫ bm1+1

am1+1
dxm1+1Wm1+1(xm1+1) · · ·

∫ bm2−1

am2−1
dxm2−1Wm2−1(xm2−1)

×
∫ bm2+1

am2+1
dxm2+1Wm2+1(xm2+1) · · ·

∫ bN

aN

dxNWN(xN)F (x1, . . . , xN), 1�m1�m2�N .

(14)

If the operator,I0, is applied on both sides of (1) and orthogonality conditions together with (9) are used
then the following structure is obtained for the constant term:

f0 ≡
∑
�∈�

�(�)f (�), � = (�(k1)1 , . . . , �(kN )N ), �(�)= �(k1)1 · · · �(kN )N , 1�kj �nj , 1�j�N .

(15)

The magnitude offm(xm) can be obtained by using the operator given in (13) in the same manner as the
case of constant term determination.

fm(�
(km)
m )=

∑
�m∈�(m)

�m(�m)f (�m, �
(km)
m )−

∑
�∈�

�(�)f (�),

�(m) ≡ {�m|�m = (x1, . . . , xm−1, xm+1, . . . , xN), xj ∈ �j ,1�j�N, j �= m}
�m = (�(k1)1 , . . . , �

(km−1)
m−1 , �

(km+1)
m+1 , . . . , �(kN )N ),

�m(�m)= �(k1)1 · · · �(km−1)
m−1 �

(km+1)
m+1 · · · �(kN )N ,

�(km)m ∈ �m, 1�km�nm, 1�m�N (16)

and the magnitude of bivariate functions,fm1m2(xm1, xm2), of the HDMR expansion can be evaluated by
using the operator given in (14) as

fm1m2(�
(km1)
m1 , �

(km2)
m2 )

=
∑

�m1m2∈�(m1m2)

�m1m2(�m1m2)f (�m1m2, �
(km1)
m1 , �

(km2)
m2 )

−
∑

�m1∈�(m1)

�m1(�m1)f (�m1, �
(km1)
m1 )−

∑
�m2∈�(m2)

�m2(�m2)f (�m2, �
(km2)
m2 )+

∑
�∈�

�(�)f (�),

�(m1m2) ≡ {�m|�m = (x1, . . . , xm1−1, xm1+1, . . . , xm2−1, xm2+1, . . . , xN),
xj ∈ �j ,1�j�N, j �= m1,m2},

�(m1) ≡ {�m1|�m1 = (x1, . . . , xm1−1, xm1+1, . . . , xN), xj ∈ �j ,1�j�N, j �= m1},



112 M.A. Tunga, M. Demiralp / Journal of Computational and Applied Mathematics 185 (2006) 107–132

�(m2) ≡ {�m2|�m2 = (x1, . . . , xm2−1, xm2+1, . . . , xN), xj ∈ �j ,1�j�N, j �= m2},
�
(km1)
m1 ∈ �m1, �

(km2)
m2 ∈ �m2,

1�km1�nm1, 1�km2�nm2, 1�m1<m2�N . (17)

So, a table of pairs of data for the univariate terms,fm(xm) and a table of triples of data for the bivariate
terms,fm1m2(xm1, xm2) can be produced.
These HDMR terms correspond to the univariate and the bivariate data obtained by partitioning the

given multivariate data. The next step is to fit analytical structures to these terms. Lagrange interpolation
formula is used to interpolate that partitioned data. Using the analytical structures of these terms such
as constant, univariate and bivariate terms, the right hand side components of the FHDMR expansion,
including the constant, univariate and bivariate terms, will be obtained. By this way the HDMR and the
FHDMRexpansions including at most the bivariate terms can be determined. Using these two expansions
theHHDMRexpansion for the givenmultivariate data canbewritten.This expansionwill be the analytical
structure of the sought multivariate function.
This method can be used for only the data that has the nodes of a cartesian product set. If a random

discrete data is given then GHDMRmust be used to partition the multivariate data. In these types of cases
the components of the GHDMR expansion are used to obtain the components of the FHDMR expansion.

3. Generalized High Dimensional Model Representation

To get a more general high dimensional model representation, a nonproduct type weight function is
used instead of a product type one like in HDMR. Data partitioning is done with the help of this general
multivariate weight function. Therefore, this nonproduct type weight can be represented by an HDMR
expansion

W(x1, . . . , xN)=W0 +
N∑

i1=1
Wi1(xi1)+

N∑
i1,i2=1
i1<i2

Wi1i2(xi1, xi2)+ · · · +W12...N (x1, . . . , xN) (18)

and the components of this expansion can be used to determine the GHDMR components of the sought
multivariate weight function. To obtain the right hand side components of this expansion an auxiliary
product type weight function,�(x1, . . . , xN), is defined

�(x1, . . . , xN) ≡
N∏
j=1

�j (xj ), (19)

where the individual multiplicants are normalized over a hyperprism whose corners are located at the
points,(a1, b1), . . . , (aN, bN). That is,∫ bj

aj

dxj�(xj )= 1, 1�j�N . (20)
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The HDMR components of the weight functionW(x1, . . . , xN) satisfy the following orthogonality con-
ditions.

∫ bij

aij

dxij�ij (xij )Wi1...ik (xi1, . . . , xik )= 0, 1�k�N, 1�j�k, 1�i1< · · ·< ik�N . (21)

These orthogonality conditions can be rewritten as follows for the GHDMR components of the given
multivariate function under the general multivariate weight function and product type of auxiliary weight
function.

∫ b1

a1

dx1 · · ·
∫ bN

aN

dxN�(x1, . . . , xN)W(x1, . . . , xN)fi(xi)= 0, 1�i�N . (22)

To obtain the right hand side components of the HDMR expansion of the general multivariate weight
function and theGHDMR components of themultivariate function the operators given in (12)–(14) under
the product type weight function,�(x1, . . . , xN), instead ofW(x1, . . . , xN) can be used.

I0F(x1, . . . , xN) ≡
∫ b1

a1

dx1 · · ·
∫ bN

aN

dxN�(x1, . . . , xN)F (x1, . . . , xN), (23)

IiF (x1, . . . , xN) ≡
∫ b1

a1

dx1 · · ·
∫ bi−1

ai−1
dxi−1

∫ bi+1

ai+1
dxi+1 · · ·

∫ bN

aN

dxN�1(x1) · · ·
× �i−1(xi−1)�i+1(xi+1) · · · �N(xN)F (x1, . . . , xN), 1�i�N , (24)

Ii1i2F(x1, . . . , xN)

≡
∫ b1

a1

dx1�1(x1) · · ·
∫ bi1−1

ai1−1
dxi1−1�i1−1(xi1−1)

×
∫ bi1+1

ai1+1
dxi1+1�i1+1(xi1+1) · · ·

∫ bi2−1

ai2−1
dxi2−1�i2−1(xi2−1)

×
∫ bi2+1

ai2+1
dxi2+1�i2+1(xi2+1) · · ·

∫ bN

aN

dxN�N(xN)F (x1, . . . , xN), 1�i1�i2�N . (25)

Using these operators the general relations for the constant and the univariate terms of the GHDMR
method are obtained as

I0[W(x1, . . . , xN)f (x1, . . . , xN) ] =W0f0 (26)
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and

Ii[W(x1, . . . , xN)f (x1, . . . , xN)]
= (1+Wi(xi))f0 + (1+Wi(xi))fi(xi)

+ (1+Wi(xi))

N∑
i1=1
i1 �=i

∫ bi1

ai1

dxi1�i1(xi1)(1+Wi1(xi1))fi1(xi1)

+
N∑

i1,i2=1,i1<i2
(i1=i)∨(i2=i)

∫ (1−�i1i )bi1+�i1ibi2

(1−�i1i )ai1+�i1iai2

[ (1− �i1i)dxi1�i1(xi1)+ �i1i dxi2�i2(xi2)]

× [Wi1i2(xi1, xi2)−Wi1(xi1)Wi2(xi2)][(1− �i1i)fi1(xi1)+ �i1ifi2(xi2)], 1�i�N , (27)

where�i1i stands for Kronecker’s delta. This equation which gives the rule to obtain the univariate terms
defines a set of integral equations.
When a random discrete data set is given the above GHDMR relations are used to partition this

multivariate data. Assume that the following (N+1)-tuples are taken as data to describe a multivariate
functionf (x1, . . . , xN)

dj ≡ (x
(j)
1 , . . . , x

(j)
N ,�j ), 1�j�m, (28)

where�j , is thevalueof thesought functionf (x1, . . . , xN)at thepoint describedby thefirstNcomponents
of dj in theN-dimensional space we are concerned. That is,

�j ≡ f (x
(j)
1 , . . . , x

(j)
N ), 1�j�m. (29)

Therefore all information aboutf (x1, . . . , xN) are these values and this means that a weight function
which picks up the values of the function it multiplies, only at these points has to be used. This necessitates
the use of delta function type weight. For this problem the weight function can be defined as follows

W(x1, . . . , xN) ≡
m∑
j=1

�j�(x1 − x
(j)
1 ) · · · �(xN − x

(j)
N ), (30)

where�j parameters are used formaking it possible to give different importance to each individual datum.
The HDMR components of this weight function are used to obtain the terms of the GHDMRmethod. For
this purpose a product type auxilliary weight function as given in (19) is used .
Additionally, the weight functionW(x1, . . . , xN) should be chosen as normalized under the auxiliary

weight function�(x1, . . . , xN) because of the normalization criteria appearing in the HDMR method.

I0W(x1, . . . , xN)= 1. (31)

The following constraint on the previously mentioned� parameters can be written as the normalization
condition of the weight function,W(x1, . . . , xN),

W0 = I0(W(x1, . . . , xN))=
m∑
j=1

�j�j = 1, (32)
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where

�j ≡
N∏
k=1

�k(x
(j)
k ), 1�j�m. (33)

Using this result the relation for the constant term of GHDMR expansion given in (26) can be
rewritten as

f0 = I0[W(x1, . . . , xN)f (x1, . . . , xN)]. (34)

This equation can be more explicitly written as follows in the case of random data partitioning by taking
Eqs. (29), (30) and (33) into consideration.

f0 =
m∑
j=1

�j�j�j . (35)

It can be seen in (27) that to determine the structure of the univariate terms for the sought multivariate
function, the univariate and the bivariate terms of the HDMR expansion of the general weight function
are needed. The univariate and the bivariate terms can be evaluated by using the following relations:

Wi(xi)= Ii (W(x1, . . . , xN))−W0, (36)

Wi1i2(xi1, xi2)= Ii1i2(W(x1, . . . , xN))− Ii1(W(x1, . . . , xN))− Ii2(W(x1, . . . , xN))+W0. (37)

Using Eq. (33) the equation below is obtained for the univariate terms,

Wi(xi)=
m∑
j=1

�j�j

�i(x
(j)
i )

�(xi − x
(j)
i )− 1, 1�i�N . (38)

There seem to bem linearly independent delta functions here. But this may not be always true because
somex(j)i values may be equivalent depending on how the original data is given. At the beginning it
has been implicitly assumed thatd1,…,dm tuples are all different. This is because polation methods like
interpolation, curve or hyperspace fitting, extrapolation, etc. use unique data; no data repetition is allowed.
Althoughd1,…,dm tuples are all different their components need not be unique. That is, repetition of these
components is possible without destroying the uniqueness of each datum. This means that some ofx

(j)
i ,

1�j�m, values may be equal; multiplicities may arise. To take these cases into consideration we can

use a little bit different notation.Assume thatx
(jk,1)

i , x
(jk,2)

i ,…,x
(jk,ri,k )

i , 1�jk,1<jk,2< · · ·<jk,ri,k <m,
denotek. set of identicalxi coordinate values. Then, the delta functions corresponding to each of these
terms will become the same, and the number of the linearly independent delta functions will decrease.
In that case, it is better to denote all these equivalent values just by a single symbol, say�(k)i . The
multiplicity of this entity is characterized byri,k, 1�k�mi as we can see from the definition above. The
sum of multiplicities must be equal tom, that is,

mi∑
k=1

ri,k =m, 1�i�N . (39)
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If the following new parameters are defined:

�i,k ≡
∑
j∈Ji,k

�j�j

�i(x
(j)
i )

,

Ji,k ≡ {jk,1, jk,2, . . . , jk,ri,k }, 1�k�mi, 1�i�N , (40)

Eq. (38) can be rewritten as follows:

Wi(xi)=
mi∑
k=1

�i,k�(xi − �(k)i )− 1, 1�i�N . (41)

The next step is to determine the structure of the bivariate components of the weight function
W(x1, . . . , xN).

Wi1i2(xi1, xi2)=
mi1∑
k=1

mi2∑
�=1

�i1,i2;k,��(xi1 − �(k)i1
)�(xi2 − �(�)i2

)

−
mi1∑
k=1

�i1,k�(xi1 − �(k)i1
)−

mi2∑
�=1

�i2,��(xi2 − �(�)i2
)+ 1, 1�i1< i2�N , (42)

where

�i1,i2;k,� ≡
∑

j∈Ji1,k
j∈Ji2,�

�j�j

�i1(�
(k)
i1
)�i2(�

(�)
i2
)
,

Ji1,k ≡ t{jk,1, jk,2, . . . , jk,ri1,k }, Ji2,� ≡ {j�,1, j�,2, . . . , j�,ri2,�},
1�k�mi1, 1���mi2, 1�i1< i2�N . (43)

Using these components the univariant GHDMR equation given in (27) can be rewritten as follows for
rather general cases:

mi∑
k=1

	i,k�(xi − �(k)i )

=
mi∑
k=1

�i,k�(xi − �(k)i )(f0 + fi(�
(k)
i ))+

mi∑
k=1

�(xi − �(k)i )

i−1∑
i1=1

mi1∑
�=1

�i1,i;�,k�i1(�
(l)
i1
)fi1(�

(l)
i1
)

+
mi∑
k=1

�(xi − �(k)i )

N∑
i1=i+1

mi1∑
�=1

�i,i1;k,��i1(�
(l)
i1
)fi1(�

(l)
i1
), 1�i�N , (44)
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which implies that

	i,k = �i,k(f0 + fi(�
(k)
i ))+

i−1∑
i1=1

mi1∑
�=1

�i1,i;�,k�i1(�
(l)
i1
)fi1(�

(l)
i1
)

+
N∑

i1=i+1

mi1∑
�=1

�i,i1;k,��i1(�
(l)
i1
)fi1(�

(l)
i1
), 1�k�mi, 1�i�N , (45)

where

	i,k ≡
∑
j∈Ji,k

�j�j

�i(x
(j)
i )

�j . (46)

This ism1 + · · · + mN linear equations whose unknowns are the univariate component values at the
data given points of theN-dimensional space. The univariate component values satisfying the above
mentioned linear equation system can be obtained by the help of the orthogonality condition given in
(22). This condition can be rewritten for the univariate components as follows:∫ bi

ai

dxi�i(xi)(1+Wi(xi))fi(xi)= 0, 1�i�N . (47)

Finally, by using the above equation and the linear equations given in (45), the unknowns of the equation
system can be found. This completes the construction of the univariate components at the given data
points.

4. Interpolation

The obtained partitioned data is used to fit analytical structures of the univariate and the bivariate terms
of the HDMR expansion or it is used to fit analytical structures of the univariate terms of the GHDMR
expansion. By this way,multivariate interpolation, at least for these functions, can be reduced to univariate
and bivariate interpolations. To determine overall structure of the function, an analytical structure should
be defined or a calculation rule is needed. If the function to be determined by HDMR (or GHDMR) is
smooth, then the function can be represented with the multinomial of all independent variables belonging
to the continuous region. For this purpose, a polynomial forfm(xm) should be built.

pm(xm)=
nm∑

km=1
Lkm(xm)fm(�

(km)
m ), �(km)m ∈ �m, 1�m�N . (48)

Here,Lkm(xm)s are Lagrange polynomials[2] which are independent from the structure of the function.
The structure of these polynomials is given below

Lkm(xm)

≡ (xm − �(1)m ) · · · (xm − �(km−1)
m )(xm − �(km+1)

m ) · · · (xm − �(nm)m )

(�(km)m − �(1)m ) · · · (�(km)m − �(km−1)
m )(�(km)m − �(km+1)

m ) . . . (�(km)m − �(nm)m )

�(km)m ∈ �m, 1�km�nm, 1�m�N . (49)
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As Lagrange polynomials are determined, univariate functions given in relation (48) are obtained. These
functions are the ones used to appropriate multivariate functions at most univariate level by HDMR (or
GHDMR). The expansion formed by the summation of these functions and the constant term provides
an approximation of functions defined with the interpolation points.
This representation can be shown by the following formula:

f (x1, . . . , xN) ≈ f0 +
N∑

m=1
pm(xm). (50)

Whena table of data for the bivariate function,fm1m2(xm1, xm2) is produced, to determine overall structure
of the function a multinomial should be built.

pm1m2(xm1, xm2)=
nm1∑

km1=1

nm2∑
km2=1

Lkm1
(xm1)Lkm2

(xm2)fm1m2(�
(km1)
m1 , �

(km2)
m2 ),

�
(km1)
m1 ∈ �m1, �

(km2)
m2 ∈ �m2, 1�m1,m2�N . (51)

As these multinomials are determined, the approximate representation can be shown by the following
formula:

f (x1, . . . , xN) ≈ f0 +
N∑

m=1
pm(xm)+

N∑
m1,m2=1
m1<m2

pm1,m2(xm1, xm2). (52)

5. Factorized High Dimensional Model Representation

The factorized form of HDMR can be obtained by using the following equation of the FHDMR
expansion for a given multivariate function,f (x1, . . . , xN).

f (x1, . . . , xN)= r0


 N∏
i1=1

(1+ ri1(xi1))






N∏
i1,i2=1
i1<i2

(1+ ri1i2(xi1, xi2))




× · · · × [(1+ r12...N (x1, . . . , xN))]. (53)

The right hand side components of the above relation can be determined by making comparisons
between the above relation and the relation given in (1) for HDMR. Tomake the comparisons, idempotent
operators will be used as auxiliary tools. The properties of these operators are as follows:


(id)j 
(id)k ≡ 
(id)k 
(id)j , [
(id)j ]2 ≡ 
(id)j , j, k = 1, . . . , N , (54)

HDMR and FHDMR expansions can be rewritten by using these operators and new relations are
obtained as

S(x1, . . . , xN) ≡ f0I +
N∑

i1=1
fi1(xi1)


(id)
i1

+
N∑

i1,i2=1
i1<i2

fi1i2(xi1, xi2)

(id)
i1


(id)i2
+ · · · . (55)
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R(x1, . . . , xN) ≡ r0


 N∏
i1=1

(I + ri1(xi1)

(id)
i1

)


×




N∏
i1,i2=1
i1<i2

(I + ri1i2(xi1, xi2)

(id)
i1


(id)i2
)


× · · · .

(56)

These two entities represent the samemultivariate function. So, the right hand sides of these two relations
must match for all idempotent operators. The constant term, the univariate terms and higher order terms
of the FHDMR expansion can be determined by using this comparison.
Making comparison between these two relations through the identity operator the constant term of the

FHDMR expansion can be found as

r0 = f0. (57)

Using the operators,
(id)i1
, the structure of the univariate terms of the FHDMR expansion can be obtained.

ri1(xi1)= fi1(xi1)

f0
, 1�i1�N . (58)

The structure of the bivariate terms of the FHDMRexpansion is obtained by using the operators,
(id)i1

(id)i2

,
as follows:

ri1i2(xi1, xi2)= f0fi1i2(xi1, xi2)− fi1(xi1)fi2(xi2)

(f0 + fi1(xi1))(f0 + fi2(xi2))
, 1�i1�i2�N . (59)

The functionsf0, fi1 andfi1i2 may be the components of either HDMR or GHDMR. The use of HDMR
or GHDMR depends on the structure of the given data set. Somehow, when these components are used
in the FHDMR expansion as a truncated expression then an approximate analytical structure is obtained
for representing the multivariate function.
Two different expansions for an analytical structure of a multivariate function can be constructed when

a multivariate data set is given. The HDMR or GHDMR and the FHDMR expansions can be written
finally. But when the given data has neither an additive nor a multiplicative nature then these expansions
do not individually give the best results. A new representation method is needed. This method will have
a hybrid structure that includes all these two expansions.

6. Hybrid High Dimensional Model Representation

In this section a new algorithm is given for the high dimensional model representations to be used in
multivariate interpolationproblems.Thisnewmethodcanbeusedwhen thegivenmultivariatedatahavean
intermediate structure that means the sought multivariate function has neither additive nor multiplicative
nature. For this purpose, this new representation includes the HDMR (or GHDMR) and the FHDMR
expansions in its structure through a hybridity parameter. This expansion is written as

f (x1, . . . , xN)= �


f0+

N∑
i1=1

fi1(xi1)+ · · ·

+ (1− �)


r0


 N∏
i1=1

(1+ ri1(xi1))


 × · · ·


, (60)
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where� is the hybridity parameter. The termsf0, fi1, and so on are the components of either HDMR
or GHDMR. If the given data are from a cartesian product set in the space of independent variables
then HDMR is used. On the other hand, if a random discrete data is given GHDMR is used. So, these
components may be obtained by using one of these two algorithms depending on the structure of the
given data set in the problems. The termsr0, ri1, and so on are the components of the FHDMR expansion.
These components are obtained by using the HDMR (or GHDMR) components.
Using the equation given in (60) an HHDMR approximant can be defined as

f (x1, . . . , xN) ≈ hjk(x1, . . . , xN ; �) ≡ �Sj (x1, . . . , xN)+ (1− �)Pk(x1, . . . , xN), (61)

where

S0(x1, . . . , xN)= f0,

S1(x1, . . . , xN)= S0(x1, . . . , xN)+
N∑
i=1

fi(xi),

...

Sk(x1, . . . , xN)= Sk−1(x1, . . . , xN)+
N∑

i1,...,ik=1
i1<···<ik

fi1...ik (xi1, . . . , xik ), 1�k�N (62)

and

P0(x1, . . . , xN)= r0,

P1(x1, . . . , xN)= P0(x1, . . . , xN)

N∏
i=1

(1+ ri(xi))

...

Pk(x1, . . . , xN)= Pk−1(x1, . . . , xN)
N∏

i1,...,ik=1
i1<···<ik

(1+ ri1...ik (xi1, . . . , xik )), 1�k�N . (63)

This approximant is called as(jk)th order HHDMR approximant. It is composed of the HDMR (or
GHDMR) approximants,Sj , and the FDHMR approximants,Pk. To list these approximants a table like
that of Padé Approximants can be formed.

h00 h01 · · · h0N
h10 h11 · · · h1N
...

... · · · ...

hN0 hN1 · · · hNN

(64)

The most important step here is to determine the hybridity parameter,�. For this purpose, a functional is
defined as

F(x1, . . . , xN ; �) ≡ ‖forg(x1, . . . , xN)− fHHDMR(x1, . . . , xN ; �)‖2, (65)
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whereforg(x1, . . . , xN)andfHHDMR(x1, . . . , xN) stand for theoriginal functionand the functionobtained
from an HHDMR approximant, respectively. We need to obtain the� value that minimizes the value of
this norm. This minimization criteria can be written as

�F

��
= 0. (66)

By this way the best representation for the sought multivariate function can be determined via HHDMR.
To evaluate this normwe need aweight function.At this point the structure of theweight function depends
on the algorithm we use. It may be either HDMR algorithm or GHDMR algorithm. If the given problem
needs HDMR algorithm then the weight function given in (9) is used. Taking this weight function into
consideration the result of the above norm is obtained as

F(x1, . . . , xN ; �)=
m1∑
j1=1

· · ·
mN∑
jN=1

(
N∏
i=1

�(i)ji

)
[forg(x(j1)1 , . . . , x

(jN )
N )

− �Sj (x
(j1)
1 , . . . , x

(jN )
N )− (1− �)Pk(x

(j1)
1 , . . . , x

(jN )
N )]2, 1�j, k�N . (67)

When we take the partial differentiation of this result over� and set it equal to zero, the following result
is obtained:

� = A2 + A3 − A4 − A5

A1 + A2 − 2A5
, (68)

where

A1 =
m1∑
j1=1

· · ·
mN∑
jN=1

(
N∏
i=1

�(i)ji

)
Sj (x

(j1)
1 , . . . , x

(jN )
N )2,

A2 =
m1∑
j1=1

· · ·
mN∑
jN=1

(
N∏
i=1

�(i)ji

)
Pk(x

(j1)
1 , . . . , x

(jN )
N )2,

A3 =
m1∑
j1=1

· · ·
mN∑
jN=1

(
N∏
i=1

�(i)ji

)
forg(x

(j1)
1 , . . . , x

(jN )
N )Sj (x

(j1)
1 , . . . , x

(jN )
N ),

A4 =
m1∑
j1=1

· · ·
mN∑
jN=1

(
N∏
i=1

�(i)ji

)
forg(x

(j1)
1 , . . . , x

(jN )
N )Pk(x

(j1)
1 , . . . , x

(jN )
N ),

A5 =
m1∑
j1=1

· · ·
mN∑
jN=1

(
N∏
i=1

�(i)ji

)
Sj (x

(j1)
1 , . . . , x

(jN )
N )Pk(x

(j1)
1 , . . . , x

(jN )
N ). (69)

On the other hand if the GHDMR algorithm is used then the weight function is chosen as given in (30).
Additionally, an auxiliary weight function is needed in GHDMR in the product type of structure that is
given in (19). In this work, this product type of auxiliary weight function is chosen as

�(x1, . . . , xN)=
N∏
i=1

1

bi − ai
, (70)
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where

ai =min({x(ji)i }), bi =max({x(ji)i }), 1�i�N, 1�ji�mi . (71)

The result of the norm given in (65) is obtained under these weight and auxiliary weight functions as

F(x1, . . . , xN ; �)

=
(

N∏
i=1

1

bi − ai

)
m∑
�=1

��[forg(x(�)1 , . . . , x
(�)
N )

− �Sj (x
(�)
1 , . . . , x

(�)
N )− (1− �)Pk(x

(�)
1 , . . . , x

(�)
N )]2, 1�j, k�N . (72)

When the minimization criteria over� given in (66) is used the optimum value for� is obtained as

� = A2 + A3 − A4 − A5

A1 + A2 − 2A5
, (73)

where

A1 =
m∑
�=1

��Sj (x
(�)
1 , . . . , x

(�)
N )2,

A2 =
m∑
�=1

��Pk(x
(�)
1 , . . . , x

(�)
N )2,

A3 =
m∑
�=1

��forg(x
(�)
1 , . . . , x

(�)
N )Sj (x

(�)
1 , . . . , x

(�)
N ),

A4 =
m∑
�=1

��forg(x
(�)
1 , . . . , x

(�)
N )Pk(x

(�)
1 , . . . , x

(�)
N ),

A4 =
m∑
�=1

��Sj (x
(�)
1 , . . . , x

(�)
N )Pk(x

(�)
1 , . . . , x

(�)
N ). (74)

Using the obtained� value for the HHDMR expansion constructed from either HDMR and FHDMR or
GHDMR and FHDMR, the final HHDMR expansion for the sought multivariate function is determined
within truncation approximation.
In this work, for HDMR, the constant, univariate and bivariate terms are tried to be obtained. On the

other hand, for GHDMR, the constant and the univariate terms are obtained for simplicity. Hence, only
the corresponding FHDMR components can be evaluated. So, we can construct a table like

h00(x1, . . . , xN), h01(x1, . . . , xN), h02(x1, . . . , xN),

h10(x1, . . . , xN), h11(x1, . . . , xN), h12(x1, . . . , xN),

h20(x1, . . . , xN), h21(x1, . . . , xN), h22(x1, . . . , xN),

(75)

when we use HDMR and FHDMR in the HHDMR expansion. If we use GHDMR and FHDMR in the
expansion then the following table is obtained.

h00(x1, . . . , xN), h01(x1, . . . , xN),

h10(x1, . . . , xN), h11(x1, . . . , xN).
(76)
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7. Best Representation Determination

According to the above mentioned methods, HDMR or GHDMR, FHDMR and HHDMR, several
representations can be obtained approximately by using the constant, univariate and bivariate terms of
the mentioned truncated expansions likeS0, S1, S2, P0, P1, P2, h00, h01, h02, h10, h11, h12, h20, h21, h22.
As obtaining these several representations there exists a new question, that is, how to find the best

approximate representation for the sought multivariate function. For this purpose, the norm

N = ‖forg(x1, . . . , xN)− fnew(x1, . . . , xN)‖ (77)

will be evaluated. Here,fnew(x1, . . . , xN) stands for the multivariate function obtained via a high dimen-
sional model representation expansion. The determination of this norm depends on the method that is
used. If HDMR expansion is used in the method then the following result is obtained:

N = ‖forg(x1, . . . , xN)− fnew(x1, . . . , xN)‖

=

 m1∑
j1=1

· · ·
mN∑
jN=1

(
N∏
i=1

�(i)ji

)
× [forg(x(j1)1 , . . . , x

(jN )
N )− fnew(x

(j1)
1 , . . . , x

(jN )
N )]2



1/2

. (78)

This relation is used in a problemwhen theHDMRexpansion or the FHDMRexpansion includingHDMR
or the HHDMR expansion including HDMR and FHDMR is chosen. On the other hand if GHDMR
expansion is used in the method then the result is obtained as

N = ‖forg(x1, . . . , xN)− fnew(x1, . . . , xN)‖

=
[(

N∏
i=1

1

bi − ai

)
×

m∑
�=1

��[forg(x(�)1 , . . . , x
(�)
N )− fnew(x

(�)
1 , . . . , x

(�)
N )]2

]1/2
(79)

and this relation is used when the high dimensional model representation method includes GHDMR
expansion.
The minimum norm value obtained either in the first type (in which the relation given in (78) is used)

or in the second type (in which the relation given in (79) is used) through all the evaluated norm values
will show the best representation for the sought multivariate function. This result is assumed to be the
best representation for the multivariate function.

8. Implementations

In this section there exist two main parts. In the first part the examples in which the given multivari-
ate data set is a cartesian product set in the space of independent variables are given. In the second
part of this section the examples have multivariate data sets whose nodes are the elements of ran-
dom discrete data. The data sets given in the examples are constructed from the known functions for
testing.
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8.1. First type HHDMR implementations

The elements of the cartesian product set is constructed through the multivariate function

f (x1, x2, x3, x4, x5)= 3(x1+x2+x3+x4+x5) + (x1 + x2 + x3 + x4 + x5) (80)

which has five independent variables. This function does not have neither an exactly additive nature nor an
exactlymultiplicative nature. So, it can be said that theHHDMRapproximant is the best high dimensional
model representation for this function.This best approximantwill beh11 in thiswork.Whenever thehigher
level approximants are evaluated the efficiency of the HHDMR approximants increases.
A cartesian product set is constructed by using this function. The elements of the space of each

independent variable are chosen as

�1 = {0.242,0.387,0.451,0.473},
�2 = {0.056,0.082,0.122,0.291,0.302},
�3 = {0.219,0.345},
�4 = {0.032,0.045,0.134,0.256},
�5 = {0.139,0.118,0.223,0.389,0.405}, (81)

where�1, �2, �3, �4 and �5 stand for the points of the independent variables,x1, x2, x3, x4 and x5
respectively.As a result, a cartesian product set is obtained with 800 nodes.We try to represent the sought
multivariate function by using the elements of this cartesian product set via HHDMR approximants
including the HDMR and the FHDMR expansions.
In this subsection we use the constant, univariate and bivariate terms of the HDMR and the FHDMR

expansions and we try to determine the structures of the HHDMR approximants related to these terms as
given in (75). These structures are not given here because of their lengths. However, the norm values of
these structures are as

‖forg(x1, . . . , xN)− S1(x1, . . . , xN)‖ = 0.13524499453977703533,
‖forg(x1, . . . , xN)− S2(x1, . . . , xN)‖ = 0.013647716570590333214,
‖forg(x1, . . . , xN)− P1(x1, . . . , xN)‖ = 0.02149689711443302713,
‖forg(x1, . . . , xN)− P2(x1, . . . , xN)‖ = 0.0049439080539559701279,
‖forg(x1, . . . , xN)− h01(x1, . . . , xN)‖ = 0.021295447618337878911,
‖forg(x1, . . . , xN)− h02(x1, . . . , xN)‖ = 0.0049438290001234530808,
‖forg(x1, . . . , xN)− h10(x1, . . . , xN)‖ = 0.13524499453977703533,
‖forg(x1, . . . , xN)− h11(x1, . . . , xN)‖ = 0.001463268385059634399,
‖forg(x1, . . . , xN)− h12(x1, . . . , xN)‖ = 0.0049382446679351377083,
‖forg(x1, . . . , xN)− h20(x1, . . . , xN)‖ = 0.013647716570590333214,
‖forg(x1, . . . , xN)− h21(x1, . . . , xN)‖ = 0.011216704905337068529,
‖forg(x1, . . . , xN)− h22(x1, . . . , xN)‖ = 0.00069521416178464045601. (82)

These results do not includeh00 in which only the constant terms of the HDMR and the FHDMR
expansions are used. Because this approximant cannot represent a multivariate function.
As it is estimated the best result is obtained via an HHDMR approximant,h22. This approximant

includes the constant, univariate and the bivariate terms of HDMR and FHDMR. This representation
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Fig. 1. Comparison betweenforg(x1, . . . , xN ) andh22(x1, . . . , xN ).
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Fig. 2. Comparison betweenforg(x1, . . . , xN ) andS1(x1, . . . , xN ).

obtained from the givenmultivariate data is the best approximation to the sought multivariate function. In
Fig.1 the comparison between the original function and the function obtained via this HHDMR approxi-
mant is shown. This comparison is done between the values of the original function andh22(x1, . . . , xN)

at the given nodes.
Also, the graph for the worst representation is given in Fig.2.
Another example can be given for the following multivariate function:

f (x1, x2, x3, x4, x5)= 3(x1+x2+x3+x4+x5) + (x1 + x2 + x3 + x4 + x5)
5 (83)
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Fig. 3. Comparison betweenforg(x1, . . . , xN ) andh22(x1, . . . , xN ).

and the elements of the cartesian product set can be constructed from this function again according to the
points given in (81). The multiplicative nature of this function is more powerful than the first one.
The norm values obtained for the high dimensional model representations by using the elements of the

given cartesian product set are as

‖forg(x1, . . . , xN)− S1(x1, . . . , xN)‖ = 1.279622230216363416,
‖forg(x1, . . . , xN)− S2(x1, . . . , xN)‖ = 0.25655195337274256609,
‖forg(x1, . . . , xN)− P1(x1, . . . , xN)‖ = 0.1208121815594374236,
‖forg(x1, . . . , xN)− P2(x1, . . . , xN)‖ = 0.071503347228574939441,
‖forg(x1, . . . , xN)− h01(x1, . . . , xN)‖ = 0.11551890836967593447,
‖forg(x1, . . . , xN)− h02(x1, . . . , xN)‖ = 0.071234334554449252377,
‖forg(x1, . . . , xN)− h10(x1, . . . , xN)‖ = 1.279622230216363416,
‖forg(x1, . . . , xN)− h11(x1, . . . , xN)‖ = 0.028330471813608913224,
‖forg(x1, . . . , xN)− h12(x1, . . . , xN)‖ = 0.069029107823516765199,
‖forg(x1, . . . , xN)− h20(x1, . . . , xN)‖ = 0.25655195337274256609,
‖forg(x1, . . . , xN)− h21(x1, . . . , xN)‖ = 0.11330787977165316297,
‖forg(x1, . . . , xN)− h22(x1, . . . , xN)‖ = 0.022688420249987844076. (84)

According to these results the graph for the best representation is obtained as in Fig.3 and the graph for
the worst representation is obtained as in Fig.4.
To test the method presented here for the multivariate functions having larger numbers of independent

variables following multivariate function is chosen

f (x1, . . . , x10)= 3(
∑10

i=1 xi) +
10∑
i=1

xi , (85)
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Fig. 4. Comparison betweenforg(x1, . . . , xN ) andS1(x1, . . . , xN ).

which has 10 independent variables and the elements of the space of each independent variable
are as

�1 = {0.242,0.387,0.451,0.473},
�2 = {0.045,0.072},
�3 = {0.219,0.345},
�4 = {0.032,0.045,0.134,0.256},
�5 = {0.028,0.105},
�6 = {0.147,0.301},
�7 = {0.067,0.1,0.156,0.205},
�8 = {0.391,0.412,0.504,0.597},
�9 = {0.2,0.3},

�10= {0.02,0.03}, (86)

where� sets stand for the points of the independent variables of the selected function given in (85).
Using these points a cartesian product set having 16384 nodes is constructed. Nature of this exam-
ple is very similar to the first example of this subsection. This time, number of independent vari-
ables, thus the number of nodes appearing in the cartesian product set, is quite greater than the first
example.
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When we represent the sought multivariate function by using this cartesian product set via HHDMR
method, following norm values are obtained:

‖forg(x1, . . . , xN)− S1(x1, . . . , xN)‖ = 0.29526876087691317882,

‖forg(x1, . . . , xN)− S2(x1, . . . , xN)‖ = 0.031157601007825162813,

‖forg(x1, . . . , xN)− P1(x1, . . . , xN)‖ = 0.0045368835831433528207,

‖forg(x1, . . . , xN)− P2(x1, . . . , xN)‖ = 0.0024944809740598579755,

‖forg(x1, . . . , xN)− h01(x1, . . . , xN)‖ = 0.0045185481593857157829,

‖forg(x1, . . . , xN)− h02(x1, . . . , xN)‖ = 0.0024942864956462731098,

‖forg(x1, . . . , xN)− h10(x1, . . . , xN)‖ = 0.29526876087691317882,

‖forg(x1, . . . , xN)− h11(x1, . . . , xN)‖ = 0.0032362299190889442295,

‖forg(x1, . . . , xN)− h12(x1, . . . , xN)‖ = 0.0024828436593431108486,

‖forg(x1, . . . , xN)− h20(x1, . . . , xN)‖ = 0.031157601007825162813,

‖forg(x1, . . . , xN)− h21(x1, . . . , xN)‖ = 0.0034424195018858646235,

‖forg(x1, . . . , xN)− h22(x1, . . . , xN)‖ = 0.00022271477719217785418. (87)

If we compare the norm values above and the ones given in (82), then we see that the convergence
rate of the HHDMR method becomes better when the number of independent variables of the sought
function increases. This result was observed via several number of other numerical tests done during the
preparation of this paper. This is because of the nature of the method. The purpose of the method is to
obtain better representations for the multivariate functions having large number of independent variables.
However, of course, increase in the number of independent variables causes an increase in the number
of nodes appearing in the cartesian product set and an increase in the CPU time needed for the computer
programs written to obtain numerical results.

8.2. Second type HHDMR implementations

In this part we try to construct a multivariate function by using the given random data. This random
data set is constructed via a MuPAD[5] program and the values of the multivariate function at those
points are evaluated by using a known function to test the efficiency of the method.
In this implementation the elements of the space of each independent variable are chosen in the intervals

of

0.1��1�0.5, 0.3��2�0.7, 0.5��3�0.8, 0.6��4�0.9, 0.2��5�0.6, (88)

where�1, �2, �3, �4 and �5 stand for the points of the independent variables,x1, x2, x3, x4 and x5
respectively. There are 400 nodes in this random data set.
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Fig. 5. Comparison betweenforg(x1, . . . , xN ) andh11(x1, . . . , xN ).

The following multivariate function is used for this numerical implementation:

f (x1, x2, x3, x4, x5)= (x1 + x2 + x3 + x4 + x5)
6. (89)

Using this given information the norm values are obtained for the high dimensional model representations
as follows.

‖forg(x1, . . . , xN)− S1(x1, . . . , xN)‖ = 80.523419697190321995,
‖forg(x1, . . . , xN)− P1(x1, . . . , xN)‖ = 30.077784150567727218,
‖forg(x1, . . . , xN)− h01(x1, . . . , xN)‖ = 27.03830526358356032,
‖forg(x1, . . . , xN)− h10(x1, . . . , xN)‖ = 80.523419697190321995,
‖forg(x1, . . . , xN)− h11(x1, . . . , xN)‖ = 19.305513430561362063. (90)

The nature of the givenmultivariate function is neither additive nor multiplicative. So we need to use both
GHDMR and FHDMR for this function. According to these results it is easily seen that the best result
is obtained forh11. This is also seen in the given graphs. Fig.5 shows that the best result is obtained
when HHDMR expansion is used. The convergence of the other representations of which GHDMR and
FHDMR are seen in Figs.6 and7.
The method works well when the number of independent variables of the sought function increase and

this result is shown in the previous subsection. However, the main purpose of the GHDMR method is to
use less number of nodes. All nodes appearing in the given cartesian product set are not used, instead
certain nodes which are selected randomly will be used to determine an approximate analytical structure
for the sought multivariate function. Hence, the number of these randomly selected nodes affects the
efficiency of the method. To show this effect, the multivariate function whose analytical structure given
in (89) is used again. But, this time there are 800 nodes in the given set instead of 2000 nodes which
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Fig. 6. Comparison betweenforg(x1, . . . , xN ) andS1(x1, . . . , xN ).
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Fig. 7. Comparison betweenforg(x1, . . . , xN ) andP1(x1, . . . , xN ).

correspond to the whole mesh. Norm values are obtained as follows for this case.

‖forg(x1, . . . , xN)− S1(x1, . . . , xN)‖ = 78.262873999161280334,
‖forg(x1, . . . , xN)− P1(x1, . . . , xN)‖ = 28.025500630630085936,
‖forg(x1, . . . , xN)− h01(x1, . . . , xN)‖ = 24.738907968576798583,
‖forg(x1, . . . , xN)− h10(x1, . . . , xN)‖ = 78.262873999161280334,
‖forg(x1, . . . , xN)− h11(x1, . . . , xN)‖ = 16.793878521419317341. (91)
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A last case can be given for the same multivariate function where there are 1600 nodes in the set. This
time, following norm values are evaluated:

‖forg(x1, . . . , xN)− S1(x1, . . . , xN)‖ = 74.141285261016663574,
‖forg(x1, . . . , xN)− P1(x1, . . . , xN)‖ = 21.134001763000061555,
‖forg(x1, . . . , xN)− h01(x1, . . . , xN)‖ = 20.472502150402939149,
‖forg(x1, . . . , xN)− h10(x1, . . . , xN)‖ = 74.141285261016663574,
‖forg(x1, . . . , xN)− h11(x1, . . . , xN)‖ = 11.793369068976120446. (92)

It can be seen that increase in the number of nodes randomly selected from the whole mesh permits
us to obtain better results through the HHDMR method. Only disadvantage here is to need more CPU
time when larger numbers of nodes are selected to determine an approximate structure for the sought
multivariate function. However, by this way better approximations to the sought functions are obtained.

9. Conclusion

When a data set is given and the analytical structure of the multivariate function which passes through
the nodes of this data set is asked then an interpolation method is used to determine this structure. If the
sought function is a multivariate function and the given data set is constructed from so many nodes then
it may be difficult to obtain the resulting structure by using the existing interpolation methods. One way
to reach the solution is to use a divide-and-conquer method like high dimensional model representation
(HDMR). This method approximately partitions the multivariate data into less-variate data.After making
tests for this method in data partitioning problems it is seen that the HDMR expansion can be used for
the given data whose nodes are the elements of a cartesian product set. When a random discrete data set
is given then it is needed a general method. This method is generalized HDMR (GHDMR). These two
methods are efficient for the multivariate functions which have additive natures as seen in the numerical
implementations given in the previous section. Another method is factorized HDMR (FHDMR) and this
method is useful for the multiplicative type of functions.
When a data set is given and it has neither exactly additive nor exactly multiplicative nature then a

new method is developed and is called hybrid HDMR. This method uses both the HDMR (or GHDMR)
and the FHDMR expansions. In the implementations the representations obtained via HDMR, GHDMR,
FHDMR and HHDMR are examined through the given nodes and it is seen that if the nature of the
multivariate function is neither exactly additive nor exactly multiplicative then the HHDMR approximant
gives the best results. This can be observed also in the given graphs.
Implementations given in the paper also show that the performance of the HHDMR method becomes

better when the number of independent variables increases. This is a result of the structure of the HDMR
which is one of the components of this new method. The other components GHDMR and FHDMR
methods have also the same philosophy as HDMR. These methods were designed for the multivariate
functions having large numbers of independent variables. Hence, better approximations for the sought
functions are obtained through HHDMR method when the number of independent variable increase to
large values. In HDMR based HHDMR applications all nodes of the given cartesian product set are used.
We partition this multivariate data into at most bivariate data. Hence, Lagrange interpolation formula
is used for only at most these bivariate data instead of the original multivariate data. As a result the
computational complexity of the given multivariate interpolation problem and the CPU time needed for
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the computer programs reduce. On the other hand, the accuracy of the obtained approximations seems to
be acceptable for the engineering problems if the norm values obtained for the numerical implementations
are examined carefully. Hence, it can be said that there is no need to use the multivariate data through
Lagrange interpolation formula (oneN-dimensional interpolation problem) to determine an analytical
structure for the sought function. Instead, the partitioned data can be used in the Lagrange interpolation
formula. This means that there existN number of one-dimensional interpolation problems when we use
only the univariate data or, in addition to this,N(N − 1)/2 number of two-dimensional interpolation
problems when we use both univariate and bivariate data.
In GHDMR based HHDMR applications randomly selected data set is used. The nodes of this data

set are selected from all nodes of the whole mesh randomly. At this point, behaviour of the accuracy
of the approximations obtained through GHDMR based HHDMR algorithm must be examined when
different numbers of nodes appearing in the given data set are tested in the same interpolation problem.
Results obtained in Section 8.2 show that when larger number of nodes are taken into consideration,
better approximations are obtained for the sought function. At this point, needed CPU time increases.
One may decide either to have better approximation by using larger data or to have less CPU time by
using less data. However, it can be said that the performance of the method is also acceptable for the
interpolation problems that have less data. As we do not use all the nodes of the given mesh, Lagrange
multivariate interpolation formula cannot be used for these types of data. In this work, first we partition the
given random discrete data into univariate data by using the GHDMR method and then one-dimensional
Lagrange interpolation formula is used and required expansions are obtained for the FHDMR method
and finally for the HHDMR method. Perhaps the most unpleasnt aspect of GHDMR is the necessity
of solving a set of linear equations whose coefficient matrix may have quite large condition number in
certain circumstances. We will focus on this point and try to find a way to get rid of this necessity in our
coming studies.
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