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A lower bound of Richert on the number of solutions of N — p = P, is improved.

1. INTRODUCTION

Let N be a large positive even number, p be a prime, and let P, denote an
almost prime with at most r prime factors counted with multiplicity.
Furthermore we set

o 11 (-t 15

p>2 2<pIN

In 1969, Richert [6, 8] proved

THEOREM 1. There exists an absolute constant N, such that, if N > N,,
then

13 N
p<N.N—p=P|>—Cy—+:
{p:p< p=Pill>=Cyiry

in particular, every sufficiently large even number N can be represented in
the form

N=p+P,.

Richert’s proof is based on a logarithmic weighted sieve, Jurkat-Richert’s
theorem, and Bombieri’s theorem. Qualitatively speaking, Chen’s theorem
[3] is better than Theorem 1. However, as a quantitative statement about the
representation of N — p as a P,, Theorem 1 is still unsurpassed. In this paper
we shall prove
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THEOREM 2. There exists an absolute constant N, such that, if N> N,
then

N

The proof of Theorem 2 depends on a theorem of Jurkat-Richert on the
linear sieve, Bombieri-type mean value theorem, and Chen’s idea of
switching. It is interesting to observe that we are able to show the existence
of P, in the sequence {N — p: p < N| without any elaborate weighted sieve.
With more calculations, it is possible to improve the constant 6.173. Of
course, the conjugate result for the number of representations of p + h = P,
{(p <N, 2| h) can be proved in precisely the same way.

2. Proor OF THEOREM 2

Let (7 be a finite sequence of integers, .7’ be a set of primes and |(7| the
number of elements in 7. Furthermore, for a positive integer d, suppose that
the quantity

|| ={a € (7;a = 0(mod d)}
may be written in the form

=2 Dxir, wa@o)

where w(d) is multiplicative with 0 w(p)< p, X is a large enough
parameter independent of d, r, is considered as an error term, and u(d) is the
Moébius function.

Finally, for a given z > 2, we let

Pz)=[] p,
p<z
peF
S 7 z)= N1,
ae@
(a,P(z))=1

and

vo=]1(1-7)

We now state some well-known results.
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LEMMA 1 (Selberg). If w(d) satisfies the conditions

0——< 1l ——, 1

<= <7 (1)

—A,< : w—("ilogp—logiéA” 2w z, (2)
wgp<z p w

for some suitable constants A; > 1, i=1,2,3, then

A A
S 7, z2) < XW(z)e? (1 +0 (logz )) + N7 3
. S

d<z?
d|\P(z)

Here y is Euler’s constant and v(d) is the number of distinct prime factors
of d. For a proof of this lemma, see [6, Chap. 5|.

Lemma 2 (Jurkat-Richert). Suppose w(d) satisfies conditions (1) and
(2). For £> z we have

S(ﬂ;y’“.z)gXW(z)gF(logéz>+0( 4, >€+R, 3)

log z (log &)1
S /”z)>XW(z)%/<fggézz)+0<(ngAig)lw)€—R, (4)

where

3 Wd

R = ‘_\__ 3L( ’|rd|,
d<§?
d|P(z)

the functions F and [ are defined by F(u)=2e'/u, f(u)=0 for 0 <u<?2
and (uFw)) = fu—1), () =F@u—1) for u>?2.

This lemma is also true if 1 < & < z but z < & with a positive constant 4,
in which case the O constant in (3) depends also on A. The proof of this

lemma can be found in [6, Chap. 8].
It is well known that

27
F(u)z_e_ 0<ug3, )

F()—E(HJ log(t—l)—) 3<u<s, 6)

and

fuy =2 rog(u~ 1), 2<u<h ™
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LEMMA 3 (Bombieri). Given any positive constant A, there exists a
positive constant B, = B (4) such that

. li
\ max max |7n(y;d, l)—L-

y X
dgxl/z‘m‘)gx)-ﬂl y<x (hd)=1 (p(d)

< og 0"

where o(d) is the Euler function and i v is the logarithmic integral of y,

R ) vodt
yid, )= N 1 and liy= ‘
p<y /5 logt
p=l(modd)

For a proof, see [1,4]. Simplified proofs have been given by Gallagher
and Vaughan.

LeMMA 4 (Ding and Pan). Let

madl)= N 1
apsy
ap ={(mod d)

and let [(a) be a real function, f(a) < 1; then, for any given A > 0, we have

. . li y/a x
5 max max N fla) (n yia,d,l)— )) < )
dgxl/z‘(l_o‘gx)vﬂz y<x =1 ag?*f ( $(d) (10g x)A
{a.d)=1

where B, = B,(A)=34+ 17 and 0 < e < 1.

The proof of this mean value theorem can be found in |7].
Using familiar methods, we deduce from Lemmas 3 and 4, respectively,

LEMMA 5. Given any positive constant A, there exists a positive constant
B, =B,(A4) such that

ﬂ(y;ds l)_

liy X
A 2 vid) .
~  #(@)3" max max, (p(d)‘ < log )

d< x12(logx) 83

LEMMA 6. Assume the hypotheses of Lemma 4. Given any positive
constant A, there exists a positive constant B, = B ,(A) such that

A . | li y/a
\ uHd)3" max max N f(a)(n(y;a,d, N — ¥/ )
d<x\/2(logx)—F4 y<x (=1 ag?** o(d)
{a,d})—=1

<«
(log x)*~
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To proceed further, we take
X={N-p :p<N}, F={p:pfN}
Consider the quantity
UN = p:p <N, (N—p, PIN'*)) = 1}| =S, 7, N'"*).
Since ),y 1 = O(log N), clearly we have
Lemma 7.

HN—p:p<N,N—p=P}

>S(; #,N'"* -8, ~8,—8;,—8,+ 0(log N),
where

S;=UN—p:p<N,N—p=p,p,psps, b2 N"% i=1,.,4}|,
S, ={N—p:p<N,N—p=p,p, - ps, p; 2N, i= 1., 5}
t

i

IN—p:p<N,N—p=p,py- D, p; 2N i= 1., 6},
UN—p:p<KN,N—p=ppy--py, pi 2N i= 1.7,

"

S,
Sy
and p; stands for a prime, p;}N.

In what follows, ¢,, €,,... denote small positive numbers, tending to 0 as N
approaches infinity.

LEMMA 8.
ay; 7, N'®) > 8.7888 Cy ———.
S ) ¥ log* N
Proof. We apply (4) of Lemma 2 with

X=0iN, ow(p)=—L—  pin,
p—1

7= NI/S’ 62 — NI/Z Iog—c N,
where ¢ is a suitable positive constant. Combining with Lemma 5 and (7),
we find
N
S 7N > (1 —¢,)81log 3 - C”m

N
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provided that we choose N large enough. This completes the proof of
Lemma 8.

It remains to estimate §,, S,, S;, .5, from above. This is accomplished by
using Chen’s idea of switching, Lemma | and Lemma 6.

LemMMA 9. S, <2.3952C, N/log*N.

Proof. According to the definition,

S ==\ v
! P pa—
4! PisNVE pIN N=p=DpiDyP3Ps
i=1i.., 4 PN
1 - -
=— N \ 1
‘ p— =
4! PizNUS PN p=N—p pyP1p4
i=1,....4 PN
AN N g
£— =— 81, say.
— — 4!
PP P3SN P=N—ppyP3Py
Pz NVBI=1,2.3 pa< N/ pyD3. PatN
(P P03 M =1 PEN

We now consider the sets

B={b:b=p,pp, KN (OLN)=1,p; 2N i=1,2,3}

and
Y ={l:l=N—bp, b€ #,bp <N}
Clearly,
\&?(«N”B and b= N be .z
Moreover,

Hile & IS N < N&,

It follows that if we choose
F = {p: p{N},
then

S < 8L P, 2)+ ON?), 7z NV,
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To estimate S(¥; .7, z) from above, we apply Lemma 1 with

~ . N
X= N li—,
be # b

d
d = = 1.
w(d) 0@’ u(d) # 0, (d.N)=1

Conditions (1) and (2) are met. Taking z> = D = N'*log ¢ N, where ¢ is
a suitable positive constant, we get

X
S(¥#3.2, D)< 8(1 +¢,)Cy——+ R, +R,,

log N
where
1 N
R — Sw IUZ(d)3u(d) “1 ( N l—— 1 ‘) ]
: d<b bez bPEN od) b
(dN) =1 (bud)=1 bp=N(d)
and
2 v(d)
R2 = S ﬁ_(dl}__ 2 Ii—.
d<b o(d) be.# b
(d,N)=1 (byd)y>1

If b€ .#, then N*®* < b N8 Thus

. . . 1 N
R,= Y w@@3@, \ f(a)( N 1——-11—)‘,
d<b NYBLa < NT/8 ap<N od) a
(d,N)=1 (a,dy=1 ap=N(d)

where

fl@y= 3 1<é.

=a
€.z

oo

Using Lemma 6 and with an appropriate choice of ¢, we obtain

N
R <€—a—.
' log’ N

Next we turn to R,. Changing the variable of summation from d to g and
using the fact that 4*(g)3%'? < d*(q), where d(g) is the divisor function, we
find
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. d \ N

N LR

<o @) S a
(a,q) >N1/8

vy L@

= ] et
oo 9@) G a
(a,q)>N1/8
< Ni+e N7 _1_ \° _1_
qu g9 ey @
(a.g)>N1/8
T A CEEEC I
qzl) q n‘1—lz‘] aaﬂs a
m>N1/8 (a,q)=m
eyt Lo b
qu q m_lq m
m}Nl/S
< NU/BI+3e
Finally, observe that
5 . 5 . N
X< N N 3 li

NUBCp <NSB NIBL py < N6/ p, NIRC prNT/8/p py  P1P2 D3

Using Stieltjes integration, we get

-5/8 (6/8Y—a (1/8)—a-b 1
X<\ dcdb b
S+e) log N Jis /1s 1/8 abc(l1 —a—b—rc¢) “
N 38 68 -alog(T7 — 8a — 8b)
=2(1 — db da.
(I+2) logNJ,/s 1/8 ab(l —a—b)
Putting all these estimates together, we have
(1+¢,) N 38 68 -a og (7 — Ba — 8b)
S, < 16 C,, dbd
Y Cw log? N Jys /s ab(l —a —b) @
€ 2.3952 Cy, ———.
= Ylogt N

provided that N is sufficiently large. This completes the proof of Lemma’9.

Remark. The evaluation of the above double integral is done by a
computer, using Simpson’s rule.
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Similarly, we have

LemMMA 10.
S§,<0.2140 Cy, Bg—zv’
S, < 0.0052 CNl—og—N,
and
S, < 0.0007 CNTW?A:—V'

Proof. We follow closely the proof of Lemma 9 and use more numerical
integrations, again done by the computer.

Finally, we can now prove Theorem 2. This follows from Lemmas 7-10.
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