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A lower bound of Richert on the number of solutions of N ~ p = P, is improved. 

1. INTRODUCTION 

Let N be a large positive even number. p be a prime, and let P, denote an 
almost prime with at most r prime factors counted with multiplicity. 
Furthermore we set 

c,=n l- 
i 

l 
1 I1 p-1 

P>2 (P - II2 2<p,lv p-2’ 

In 1969, Richert [6,8] proved 

THEOREM 1. There exists an absolute constant N, such that, g N > N,, 
then 

~{p:p<N.h’-~=P~ll~~C,~; 
log N 

in particular, every sufficiently large even number N can be represented in 
the form 

N=p+P,. 

Richert’s proof is based on a logarithmic weighted sieve, Jurkat-Richert’s 
theorem, and Bombieri’s theorem. Qualitatively speaking, Chen’s theorem 
[3] is better than Theorem 1. However, as a quantitative statement about the 
representation of N - p as a P,, Theorem 1 is still unsurpassed. In this paper 
we shall prove 
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THEOREM 2. There exists an absolute constant N, such that, if N > N, . 
then 

The proof of Theorem 2 depends on a theorem of Jurkat-Richert on the 
linear sieve, Bombieri-type mean value theorem, and Chen’s idea of 
switching. It is interesting to observe that we are able to show the existence 
of P, in the sequence {N - p : p < NJ without any elaborate weighted sieve. 
With more calculations, it is possible to improve the constant 6.173. Of 
course, the conjugate result for the number of representations of p + h = P, 
(p < N, 2 ) h) can be proved in precisely the same way. 

2. PROOF OF THEOREM 2 

Let 0’ be a finite sequence of integers, .9 be a set of primes and / 671 the 
number of elements in r5!!. Furthermore, for a positive integer d, suppose that 
the quantity 

may be written in the form 

where w(d) is multiplicative with 0 <w(p) < p, X is a large enough 
parameter independent of d, rd is considered as an error term, and ,a(d) is the 
Mobius function. 

Finally, for a given z 2 2, we let 

and 

We now state some well-known results. 
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LEMMA 1 (Selberg). If o(d) satisfies the conditions 

()< 4P) 
’ P 

<I-+, 
1 

-AZ< x W(P) -logp-log&GA,, 2<w<z, (2) 
W<P<Z P 

for some suitable constants Ai > 1, i = 1, 2, 3, then 

S(M;.P,z) <XW(z)eY (1 + 0 (2)) + dz2 3L.(d) Ir,i. 

dlP(z) 

Here y is Euler’s constant and v(d) is the number of distinct prime factors 
of d. For a proof of this lemma, see [6, Chap. 51. 

LEMMA 2 (Jurkat-Richert). Suppose o(d) satisfies conditions (1) and 
(2). For C > z we have 

s(@; .3. z) < XW(z) 1 (S) + o((,ogA+4) [ +R? F (3) 

s(fl; ~~8, z) >xw(z) /f (g) + 0 ((logA;)l,14) ( -R, (4) 

where 

R = \’ 30(d) lrdJ, 
dz2 

dlP(:) 

the functions F and f are defined by F(u) = 2eY/u, f(u) = 0 for 0 < u < 2, 
and (uF(u))’ = f (u - l), (uf (u))’ = F(u - 1) for u > 2. 

This lemma is also true if 1 < [ < z but z < r’ with a positive constant 1, 
in which case the 0 constant in (3) depends also on A. The proof of this 
lemma can be found in [6, Chap. 81. 

It is well known that 

F(u) = $, o<u<3, (5) 

( J 
u-l 

y If 
F(u)=+ z 

log@- l)Ti, 3<u<5, (6) 

and 

f(u)=+?og(u- l), 2<u<4. (7) 



232 EUGENE KWAN-SANGNG 

LEMMA 3 (Bombieri). Given any positive constant A, there exists a 
positive constant B, = B,(A) such that 

\‘ liv . 
max max 

d<Xl,i;ii,g.r)-BI YSX (‘A)=’ 
TC( y; d, 1) - - 

rp(4 
-e qgxy- 

where p(d) is the Euler function and li v is the logarithmic integral of y, 

_ 
n(y;d,l)= \ 1 and 

PSY 
P =i(mod d) 

For a proof, see [ 1.41. Simplified proofs have been given by Gallagher 
and Vaughan. 

LEMMA 4 (Ding and Pan). Let 

and let f (a) be a real function, f (a) < 1; then, for any given A > 0, we have 

\‘ max max 
d<X,,>&X)-~2 VSX (J.d)= 1 , 

a<~msf(a, (+;a.d,W!!$$)) @ 
(o:d) = I 

whereB,=B,(A)=~A+17andO<&<l. 

The proof of this mean value theorem can be found in [ 7 1. 
Using familiar methods, we deduce from Lemmas 3 and 4, respectively, 

LEMMA 5. Given any positive constant A, there exists a positive constant 
B, = B,(A) such that 

\‘ ,az(d)3”‘d’ 
li y 

max max 
dSx’J2(logx)-~~ 

-“<, (I d)=, 71(y;d~1)-- , 3 d4 

LEMMA 6. Assume the hypotheses of Lemma 4. Given any positive 
constant A, there exists a positive constant B, = B,(A) such that 

\’ ,a2(d)3r’d’ max max 
d<x’/2(logx)-h 

y Sx (/.d) = I 
oG;mef(a) ($.v;a.d,l)-!$$) 1 
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To proceed further, we take 

G’={N-p :p<NJ, 9= (p:p%N). 

Consider the quantity 

l(N - p:p < N, (N-p, P(N”“)) = l}j = S(M, ,.8, N”‘). 

Since CD,,,, 1 = O(log N), clearly we have 

LEMMA 7. 

l{N-P:P<N,N-P=PP,}I 

> S(@; 9, N”8) - S, - S, - S, - S, + O(log N), 

where 

S,=I(N-p:p,<N,N-p=p,p,p3p4,pi>N”*,i= 1,...,4)(, 

S,=I{N-p:p<N,N-p=p,p,~~q,,pi>N”*,i=l ,..., 5)1, 

S,=l(N-p:p<N,N-p=p,p,y,,pi>N”8,i=1 ,..., 6}/, 

S,=I(N-p:p~N,N-p=p,p,...p,,pi>,N1’8,i=1,...,7)), 

and pi stands for a prime, pi%N. 

In what follows, E,, Ed ,... denote small positive numbers, tending to 0 as N 
approaches infinity. 

LEMMA 8. 

S(@; 3, N”‘) > 8.7888 C, L 
log’ N ’ 

Proof. We apply (4) of Lemma 2 with 

X=liN, o(p) = --E- 
p-l’ P%N, 

2 = N”8, (’ = N’/’ log -’ N, 

where c is a suitable positive constant. Combining with Lemma 5 and (7), 
we find 

N 
S(@‘; 9, N”‘) 2 (1 - cl)!3 log 3 * C, ~ 

log* N 

N 
> 8.7888 c, 2, 

log N 
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provided that we choose N large enough. This completes the proof of 
Lemma 8. 

It remains to estimate S, , S,, S3, S, from above. This is accomplished by 
using Chen’s idea of switching, Lemma 1 and Lemma 6. 

LEMMA 9. S, < 2.3952 C, N/log’N. 

Proof: According to the definition, 

1 \‘ \‘ 
= 4! pi>~Tzqpip p’&;P2P3P4 

i=1,....4 P<N 

1 

We now consider the sets 

9 = (b: b = pIpzp3, b ,< N”‘, (6, N) = 1, pi 2 N”8. i= 1, 2, 3 / 

and 

L“= {I:I=N-bp,bE.~,bp~N). 

Clearly, 

19 1 < N’/’ and b > N3/‘. b E 9. 

Moreover, 

It follows that if we choose 

9 = {p,: p%Nj, 

then 

S; < S(Pe; ~9, z) + O(N”*), z < N31s. 
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To estimate S(P; 9, z) from above, we apply Lemma 1 with 

d 
w(d) = -, 

h4 
44 f 0, (d,N)= 1. 

Conditions (1) and (2) are met. Taking z2 = D = N1’2 log PC N, where c is 
a suitable positive constant, we get 

S(4p; 9, D1’2) < 8(1 + s,)C, &+R, +R23 

where 

R, = c p2((d)3”‘d’ r l- l .N 
d$D bpyN cp(d)% 

(d,N) = 1 (b-d) = 1 bpsN(d) 

and 

R,= 5‘ ,u2(d)3”‘d’ \q ,iN 

d:D cp(4 by8 b’ 
(d,N) = 1 (b.d)>l 

If b E .-59, then N318 < b < N7’8 Thus 1, . 

R, = s p2(d)3”d’ 
d<D 

(d,N) = 1 

1 N3,8;<*,,,* f(a) ( $*, 

(u:d,‘l up cN(d) 

where 

Using Lemma 6 and with an appropriate choice of c, we obtain 

Next we turn to R 2. Changing the variable of summation from d to q and 
using the fact that p’(q) 30t4) < d2(q), where d(q) is the divisor function, we 
find 
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+N’+” \- _ 1 \‘ - 1 

q?D 4 a<,~ -7 18 a 
(a.q)>N’/E 

1 =N’fE \‘ _ \‘ 
qzl 9 mlq - a<N/B -7 a 

rn>N’l8 (a,q)=m 

<N’+*& \‘ - 1 \‘ - 1 

qy.D 9 ml9 - m  
Pl>N1/8 

< ~(7/8)+3& 

Finally, observe that 

Using Stieltjes integration, we get 

.5/S .(6/8)-o .(7/R)-a-h 

&.!I,8 ! I . ,  I,:, 

1 
x< (1 + &3) 

abc(1 -a-b-c) 
de db ba 

N .5’s 
=2(1 +e,)--- J J 

-‘h/8)-a 

’ log N I,8 

log(7 - 8a - 8b) db da 

l/8 ab(1 -u-b) 

Putting all these estimates together, we have 

s < (1 f&J 16c N 
11 4! “logZ ,,* J .) 

.?/X .(6/X) -n log(7 - ga - 86) db da 

,/* ab( 1 - a - b) 

N 
< 2.3952 C,v z 

log N’ 

provided that N is suffkiently large. This completes the proof of Lemma 9. 

Remark. The evaluation of the above double integral is done by a 
computer, using Simpson’s rule. 
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Similarly, we have 

LEMMA 10. 

237 

S,<:.214OC, N 
logZ’ 

s, < 0.0052 c, N 
log2’ 

and 

N 
s, < 0.0007 c, ___ 

1og’N. 

ProoJ We follow closely the proof of Lemma 9 and use more numerical 
integrations, again done by the computer. 

Finally, we can now prove Theorem 2. This follows from Lemmas 7-10. 
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