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1. INTRODUCTION 

“Early deterministic models of biological populations where necessarily highly simplified in 
nature. The usual simplifying assumptions were that changes in the environment, including 
those brought about by the increasing population itself, all took place instantaneously, all of the 
terms were linear, and the only variables in the equations were the population numbers or 
population densities. Although analytic solutions to the simplified equations have been demon- 
strated, the situations described by these early equations are so far from those observed in 
natural populations, and in natural systems in general, that the validity of the whole approach 
has been questioned quite often. In many cases, the behavior of the laboratory populations- 
grown under strictly controlled conditions-has been quite different from that predicted by the 
theoretical models that were proposed to describe the specific behavior.“[l]. Let us very 
briefly review some of the literature to see how various models arise. 

2. DISCRETE AGE STRUCTURE 

While homogeneous age structure population models offer a wide variety of interesting 
mathematical problems and a “horn of plenty” when it comes to dynamical behaviors[2], in 
biological populations it is natural to consider the question of how many people of age a there 
will be at time t. This problem may also be phrased in terms of the density of individuals of age 
a at time t. These questions involve the inclusion of age-structure in the population model. One 
can introduce age structure in a variety of ways. 

Assuming a discrete time and age structure, letting n, be a column vector containing m age 
groupings of a population at time t, letting M(n,) be the classical Lewis-Leslie matrix, and letting 
b(q) be an immigration/emigration vector, one can write the following classical Lewis-Leslie 
model [3-61. 

n,+, = M(n,)n, + b(n,) (2.1) 

Discrete models are not only found in demography, and ecology (see Refs.[2,9] for 
extensive bibliographies), but also in cell kinetics and cellular aging[ 10,111. 

The continuous time-discrete age models are essentially of the same form as equation (2.1) 
where t is considered to be a continuous variable. In this case, we arrive at a system of 
differential equations having the form 

dn(t) - = M(n, t)n(t) + b(n, t) dt (2) 

An elegant discussion on this type of model may be found in Ref.[7]. 

3. CONTINUOUS AGE-TIME STRUCTURE: HYPERBOLIC SYSTEMS 

In passing to the limit of continuous age-time structutre in biological populations, one is lead 
most naturally to the partial differential equation as a means of describing the density of 

‘Present address: Department of Mathematics. Illinois Institute of Technology Chicago. IL 60616. U.S.A. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82109025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


32-I MATTHEW WITTED 

individuals of age a at time f, denoted n(t, a). The most common among these models is the 
Von Foerster age-time model of population dynamics. Here. one assumes that if ~(f, a) is the 
age specific death rate, Ah is a small time increment. and the number of deaths in the 
population is proportional to the product ~(f. a)n(t. a)Ah then the net change in the population 
over the time increment Ah is given by the equation 

n(t + Ah, a + Ah)- n(t, a) = -/.L(L a)n(t, a)ilh (3.1) 

expanding n(t + Ah, a + Ah) in a Taylor series and letting Ah -0 we’obtain the classical linear 
nonconservative hyperbolic partial differential equation 

WC a) + antt, a) 
at - = -/.L(f, a)n(t, a) aa 

(3.2a) 

with the given initial population distribution 

n(0, a) = no(a). (3.2b) 

Finally, at any given time, the number of newborns (births) in this population (which is always 
assumed to be female in these types of model) is given by 

n(t,O) = h(t, n)n(t, a) da = B(t) (3.2~) 

Equations (3.?a, b, c) constitute the McKendrick/Von Foerster model of population growth. 
One can demonstrate that these equations may be solved to obtain a general solution for the 
system via the method of characteristics. For details see Refs.[l, 81. 

4.CLOSINGCOMMENTS 

Since the appearance of the McKendrick/Von Foerster system much work has been done 
studying their solution under a variety of assumptions. Many of the papers in this issue contain 
references to a number of classic papers in this area. It is beyond the scope of these opening 
comments to even begin a comprehensive literature bibliography. We will leave this to the 
various authors in this journal. 

This particular special topic journal issue arose out of the need to fuse together research in 
analytic and numerical solution of hyperbolic partial differential equations, as well as a personal 
desire to ascertain what the areas of current application were. 

For example, equations (3.2a, b, c) describe a non-environmentally influenced population. If 
we were to extend this model to a population with logistic density dependent growth, migration, 
and density dependent deathrate, one would arrive at a nonlinear hyperbolic partial differential 
equation of the form 

g+g=-p(f,a,n)n l- 
[ &A + mU, a, n) (4.1) 

Numerical methods for equations of this type are sparse in the literature. Yet, there is good 
reason for having to deal with such equations, both from a numerical as well as an analytic 
point of view. 

One might also wish consider the following question. Given a model of the form of (4.1) in 
which the analytic solution is not available, how might we fit that model to known experimental 
data. Given a set of data, how might we estimate the birthrate and deathrate functions. Further, 
how might we choose these functions so that we obtain the best fit of the experimental data to 
the model. For more details see Ref.[9]. Some of these questions will be addressed in this issue, 
other questions will, no doubt be posed. and many shall remain unanswered. 

It is hoped that this special issue will provide the reader with an insight into the wide variety 
of real world applications of hyperbolic partial differential equations, 
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The contributors to this special edition consist of guest speakers at the 1982 IMACS 
Conference Symposium Session on Hyperbolic Partial Differential Equations with Integral 
Boundary Conditions, as well as those solicited from experts working in the field of hyperbolic 
partial differential equations. To those who were missed, I must claim sole responsibility for 
this oversight. 
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