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Abstract

The non-Fourier heat conduction in a ®nite medium subjected to a periodic heat ¯ux is modelled using the ®nite

integral transform technique and an analytic solution is obtained. An analogy between thermal oscillation and oscil-

lation of mechanical and electrical systems is drawn. A transition criterion from the non-Fourier heat conduction

formulation to the Fourier formulation is obtained and a simple analytical expression of the phase and amplitude of

thermal oscillation is derived. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

The use of heat sources such as lasers and microwaves with extremely short duration or very
high frequency has found numerous applications in many di�erent areas of mathematical physics,
applied sciences and engineering. In such situations, the classical Fourier's heat conduction theory
becomes inaccurate and the non-Fourier e�ect becomes more reliable in describing the di�usion
process and predicting the temperature distribution.

The classical theory of heat conduction is based on the un-physical property that heat prop-
agates at an in®nite speed. On such basis, the constitutive equation governing heat ¯ow is given by
Fourier's law

q � ÿkrT : �1:1�
When this relation is incorporated in the local energy balance equation

r � q � ÿqc
oT
ot
; �1:2�

the classical parabolic heat conduction equation

oT
ot
� ar2T �1:3�
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results, provided that k, c and q are constant for the given temperature range. In the above
equations k is the thermal conductivity of the media, c the speci®c heat capacity, q the mass
density and a � k=qc the thermal di�usivity. Fourier's law is quite accurate for most common
engineering situations. However, for situations involving very short times, temperature near
absolute zero or extreme thermal gradients, Fourier's law becomes invalid.

Experimental evidence showed that thermal disturbances appear to propagate as waves at ®nite
speeds in the case of temperature near absolute zero; for instance, in NaF at about 10°K [1], in Bi
at 3.4°K [2] and for substances with an extremely ordered internal structure [3]. Recently there has
been experimental veri®cation of hyperbolic heat transfer in non-homogeneous materials, such as
sand and NaHCO3 which have a relaxation time of about 20 s [4], in super-cooled materials [5]
and in biological materials [6]. The non-homogeneous structures apparently induce waves by
delaying the response between heat ¯ux and temperature gradient. The delay may represent the
time needed to accumulate energy for signi®cant heat transfer between structural elements [4]. The
classical Fourier's law does not lead to this type of thermal wave behavior since the law permits
the heat ¯ux to respond immediately to changes in temperature gradient.

A modi®ed non-Fourier heat ¯ux equation has been developed by several di�erent approaches
[7±14]. When heat waves are important Fourier's conduction law, which connects the heat ¯ux q
to the temperature, must be modi®ed by adding an extra thermal inertia term. Vernotte [15] and
Cattaneo [16] independently proposed a di�erent constitutive equation for conduction heat
transfer in the form

s
oq

ot
� q � ÿkrT ; �1:4�

where s is the relaxation time. The relaxation time depends on the mechanism of heat transport,
and represents the time lag needed to establish steady-state heat conduction in an element of
volume when a temperature gradient is suddenly applied to that element. An analysis of the
compatibility of Eq. (1.4) with the hypothesis of local thermodynamic equilibrium is presented in
Ref. [13].

When Eq. (1.4) is used in conjunction with the local energy balance Eq. (1.2), a general hy-
perbolic equation governing the non-Fourier heat conduction results and can be written in the
form

ar2T � oT
ot
� s

o2T
ot2

: �1:5�
Eq. (1.5) describes heat propagation with a ®nite speed V � k=cs� �1=2

and allows a direct deter-
mination of the temperature ®eld. It has also been used in modelling a high velocity heat source
moving through a medium [17] and in modelling the propagation of the solid±liquid interface
during the rapid solidi®cation of liquid metals [18], where convective e�ects were accounted for in
the boundary conditions. It is important, however, to note that non-Fourier conduction is usually
associated with micro-scale applications involving very small time and length scales, such as in
heating of silicon thin ®lm during integrating circuit fabrication. Convection may not be im-
portant in micro-scale applications because of insu�cient time for development of ¯uid motion
[19].

The heat ¯ux vector q can be determined by integrating Eq. (1.4) with respect to time to get

q�x; t� � eÿ�tÿt0�=sq�x; t0� ÿ k=s
Zt

t0

eÿ�t
0ÿt�=srT �x; t0� dt0: �1:6�
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Various solutions of the hyperbolic heat conduction equation for ®nite and semi-in®nite media
under di�erent boundary conditions can be found in the literature. A semi-in®nite medium is
considered and a temperature distribution is obtained in Refs. [20±22] due to a step change in
temperature at the boundary, in Ref. [23] due to a step change of heat ¯ux, in Ref. [24] due to
distributed volumetric energy sources, in Ref. [25] due to internal Joule heating and convection
heat exchange with the surrounding and in Ref. [19] due to only surface convection.

The hyperbolic heat conduction in a ®nite medium has been investigated in Ref. [10] due to a
step change of temperature on both sides and in Ref. [26] due to a step change of temperature on
one side. A ®nite slab with volumetric energy source and insulated boundaries is treated in
Ref. [27] and a ®nite slab subject to rectangular heat pulses at one of its surfaces is studied in
Ref. [12]. A ®nite medium with surface radiation boundary condition is considered in Ref. [28]
and a ®nite medium with temperature-dependent conductivity is considered in Ref. [29]. A ®nite
slab exposed to a boundary condition of an instantaneous pulsed heat ¯ux and extended heat ¯ux
is reported in Ref. [30]. A very thin solid plate subjected to an asymmetrical temperature change
on both surfaces is modelled in Ref. [31].

Most previous works were performed for a pulsed heat ¯ux or for a sudden temperature
change. However, for a periodic ¯ux in a ®nite medium, the work is seldom found in the liter-
ature. Recently, a ®nite medium exposed to a periodic ¯ux was considered in Refs. [32,33], where
an analytic solution was derived; however, an analytic expression for the amplitude and phase was
not obtainable from that solution.

In this work, we model the hyperbolic heat conduction in a ®nite medium subjected to a pe-
riodic heat source using the ®nite integral transform technique to obtain, in a straightforward
manner, a di�erent form of the analytic solution compared to that obtained in Ref. [33]. Analytic
expressions for the amplitude and phase are obtained and an analogy between thermal oscillation
and mechanical oscillation is presented. The present work complements the author's previous
work on parabolic partial di�erential equations under periodic boundary condition [34,35].

2. Mathematical analysis

The present investigation concerns a ®nite medium with insulated boundaries where one-di-
mensional heat conduction and constant thermal properties are considered to prevail. The me-
dium of thickness ` is assumed initially in equilibrium at temperature T �x; 0� � 0. At time t � 0
the external surface at x � 0 is exposed to a periodic heat ¯ux with amplitude q0 and frequency x.
The situation is illustrated schematically in Fig. 1.

2.1. Governing equations

The propagation of thermal energy for this physical problem is described by the one-dimen-
sional form of Eq. (1.5), namely

a
o2T
ox2
� oT

ot
� s

o2T
ot2

: �2:1�

This hyperbolic heat equation is now considered subject to the following boundary and initial
conditions

ÿk
o
ox

T �0; t� � s
o
ot

q�0; t� � q�0; t�; o
ox

T �`; t� � 0; �2:2�
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T �x; 0� � 0;
o
ot

T �x; 0� � 0; �2:3�

where q�0; t� � q0 cos xt and q�x; 0� � 0.
Introducing the following dimensionless parameters

g � x
`
; f � at

`2
; v �

�����
as
p
`
; l � a

x`2
; U�g; f� � T �g; f�

q0=qcx`
�2:4�

into Eqs. (2.1)±(2.3), we obtain the non-dimensional form of the non-Fourier heat conduction
equation as

o2U
og2
� oU

of
� v2 o2U

of2
; �2:5�

ÿ o
og

U�0; f� � 1

q0l
v2 o

of
q 0; f� �

�
� q 0; f� �

�
;

o
og

U�1; f� � 0; �2:6�

U�g; 0� � 0;
o
of

U�g; 0� � 0; �2:7�

with

q 0; f� � � q0 cos
f
l
; q g; 0� � � 0: �2:8�

In the above equations f is the Fourier number, v the Vernotte number (also known as the re-
laxation Fourier number) and is related to the propagation speed, V , of temperature wave by
V � 1=v.

Fig. 1. A schematic representation of geometry and coordinates.
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2.2. Developing the transformation pair

The analytical solution of the above system is obtained by the application of the ®nite integral
transform technique. The procedure is initiated by considering the homogeneous problem asso-
ciated with the original problem given by Eqs. (2.5)±(2.7), namely,

Ugg � Uf � v2Uff; �2:9�
Ug�0; f� � Ug�1; f� � U�g; 0� � Uf�g; 0� � 0: �2:10�

Separation of variables in Eqs. (2.9) and (2.10) leads to the following eigenvalue problem

U00�g� � k2
nU�g� � 0; �2:11�

U0�0� � U0�1� � 0; �2:12�
for which the eigenfunctions and eigenvalues are given by

Un�g� � cos�kng�; kn � np; n � 0; 1; 2; . . . �2:13�
The eigenfunctions form an orthogonal set in terms of which we can express the solution of the
original problem as

U g; f� � �
X1
n�0

cn�f�Un�g�: �2:14�

Operating on both sides by
R 1

0
Un�g� dg and utilizing the orthogonality relation [36], yields

cn�f� � 1

N�kn�
Z1

0

U g; f� �Un�g� dg;

and Eq. (2.14) becomes

U g; f� � �
X1
n�0

Un�g�
N�kn�

Z1
0

U g; f� �Un�g� dg; �2:15�

where,

N�kn� �
Z1

0

U2
n�g� dg: �2:16�

On de®ning the integral transform as

U n�f� �
Z1

0

U�g; f�Un�g� dg; �2:17�

the inversion formula becomes

U�g; f� �
X1
n�0

Un�g�U n�f�
N�kn� : �2:18�

Eqs. (2.17) and (2.18) de®ne the integral transformation pair needed for the solution.
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2.3. The transformed problem

We now use the transformation pair to remove the spatial variable and reduce the original
hyperbolic partial di�erential equation into a second order ordinary di�erential equation in the
temporal variable. The process is initiated by operating on Eq. (2.5) by

R 1

0
Un�g�dg and utilizing

the de®nition of the integral transform (2.17) to getZ1
0

Un�g� o
2U

og2
dg � dU n�f�

df
� v2 d2Un�f�

df2
: �2:19�

The left-hand side is integrated by parts twice and the result is simpli®ed by making use of the
boundary conditions given in Eqs. (2.6) and (2.12) to obtain,Z1

0

Un�g� o
2U

og2
dg �

Z1
0

U�g; f� d2Un

dg2
dg� 1

q0l
v2 o

of
q 0; f� �

�
� q 0; f� �

�
: �2:20�

The integral on the right side of Eq. (2.20) is evaluated by operating on Eq. (2.11) by
R 1

0
U�g; f�dg

and utilizing the de®nition (2.17). Inserting the result into Eq. (2.19), one obtains

d2U n�f�
df2

� 2P
dU n�f�

df
� x2

nU n�f� � 1

q0l
o
of

q 0; f� �
�

� 2Pq 0; f� �
�
; �2:21�

subject to the transformed initial conditions

U n�0� � d

df
U n�0� � 0; �2:22�

where P � 1=2v2 and xn � kn=v. Thus, the hyperbolic problem given by Eqs. (2.5)±(2.7) is reduced
to a linear second order ordinary di�erential equation in only the temporal variable and the
boundary conditions of the original problem are incorporated in the non-homogeneous term.

2.4. Solution

The ordinary di�erential Eq. (2.21) has characteristic roots given by ÿP � ����������������
P 2 ÿ x2

n

p
and its

general solution consists of a complementary solution U c�f� and a particular solution U p�f�. Since
kn � 0 is an eigenvalue of the problem given by Eqs. (2.11) and (2.12), we consider the cases when
kn � 0, P > xn, and P < xn. The complementary and particular solutions are evaluated for each
of the three cases.

2.4.1. Case 1: Solution for kn � 0
For this case

U
0

c�f� � A1 � A2eÿ2Pf; �2:23�

U
0

p�f� �
1

lq0

Z
q�0; f� df: �2:24�

The transformed initial conditions (2.22) and the condition imposed on q in Eq. (2.8) yield
A1 � A2 � 0, and Eq. (2.23) gives

U 0�f� � sin
f
l
: �2:25�
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2.4.2. Case 2: Solution for P > xn

For this case the complementary solution is

U
R
c �f� � eÿPf A1 exp

����������������
P 2 ÿ x2

n

q
f

� �h
� A2 exp

�
ÿ

����������������
P 2 ÿ x2

n

q
f
�i
; �2:26�

the particular solution may be written in the form

U
R
p�f� � Cn sin

f
l
� Dn cos

f
l
; �2:27�

and the general solution is

U
R
n �f� � U

R
c �f� � U

R
p�f�: �2:28�

For the given set of initial conditions,

A1 � ÿÿ�P � b�dÿ
2b 1� d2

ÿ
ÿ � ; A2 � �P ÿ b�d�

2b 1� d2
ÿ

ÿ � ;
Cn �

1� dÿd�� � � d2
� � d2

ÿ
ÿ �

1� d2
�

ÿ �
1� d2

ÿ
ÿ � ; Dn � dÿd� d� � dÿ� �

1� d2
�

ÿ �
1� d2

ÿ
ÿ � ; �2:29�

with

d� � l P� � b�; b �
����������������
P 2 ÿ x2

n

q
: �2:30�

2.4.3. Case 3: Solution for P < xn

For this case,
����������������
P 2 ÿ x2

n

p
is imaginary and the complementary solution may be written as

U
C
c �f� � eÿPf B1 cos

����������������
x2

n ÿ P 2

q
f

� �h
� B2 sin

����������������
x2

n ÿ P 2

q
f

� �i
; �2:31�

the particular solution is written as

U
C
p �f� � En cos

f
l
� Fn sin

f
l
; �2:32�

and the general solution as

U
C
n �f� � U

C
c �f� � U

C
p �f�: �2:33�

For the given set of initial conditions,

B1 � ÿEn; B2 � c�cÿ ÿ 1

2bc

� �
En;

En � 4v2

l
1� b2

c

1� c2
�

ÿ �
1� c2

ÿ
ÿ � ; Fn � 2v2

l

� �2
3ÿ c�cÿ

1� c2
�

ÿ �
1� c2

ÿ
ÿ � ; �2:34�

with

c� � bc �
1

lP
; bc �

�������������������
4v2k2

n ÿ 1

q
: �2:35�

Inserting the solutions obtained for the transformed variable into the inversion formula over
the spectrum of all eigenvalues, and noticing that

N�kn� � 1 for n � 0;
1
2

for n 6� 0;

�
�2:36�
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one obtains the mathematical expression for the temperature distribution through the region
under consideration in the form

U�g; f� � U 0�f� � 2
XM

n�1

U
R
n �f� cos�kng� � 2

X1
n�M�1

U
C
n �f� cos�kng�; �2:37�

where M is the number of real roots and U 0�f�, U
R
n �f�, and U

C
n �f� are determined from

Eqs. (2.25), (2.28) and (2.33), respectively.

3. Model validation

The mathematical analysis presented in Section 2 leads to a general analytic solution of the
hyperbolic heat conduction problem in a ®nite medium subjected to a periodic heat source located
at g � 0. This result is validated analytically by considering the limiting case when v � 0, for
which case the temperature distribution predicted by the hyperbolic formulation should reduce to
that predicted by the parabolic formulation.

3.1. Reduction to Fourier heat conduction

When v equals zero, the hyperbolic partial di�erential Eq. (2.5) reduces to the parabolic
equation

o2U
og2
� oU

of
: �3:1�

As v! 0, P !1 and En � Fn � 0. Eq. (2.33) then reduces to U
C
n �f� � 0: For this limiting case

b � ����������������
P 2 ÿ x2

n

p � P ÿ �x2
n=2P � leading to the following

exp
�
ÿ P �

����������������
P 2 ÿ x2

n

q �
f! eÿk2

n ; exp
�
ÿ P ÿ

����������������
P 2 ÿ x2

n

q �
f! 0;

A1 ! ÿlk2
n

1� l2k4
n

; Cn ! 1

1� l2k4
n

; Dn ! lk2
n

1� l2k4
n

: �3:2�

Inserting these results into Eq. (2.28), yields

U
R
n �f� �

1

1� l2k4
n

sin
f
l

�
� lk2

n cos
f
l

�
ÿ eÿk2

nf

��
; �3:3�

and, consequently, Eq. (2.37) reduces to

U�g; f� � sin
f
l
� 2
X1
n�1

cos�kng�
1� l2k4

n

sin
f
l

�
� lk2

n cos
f
l

�
ÿ eÿk2

nf

��
: �3:4�

This is the same solution given by Eq. (A.5) in Appendix A, which is derived using the ®nite
integral transform for the Fourier heat conduction described by the parabolic Eq. (3.1). Eq. (3.4)
satis®es the initial conditions as well as the boundary condition given by the second of Eq. (2.6), it
also satis®es the boundary condition given by the ®rst of Eq. (2.6) in the sense of generalized
functions [37].

Finally, the expression in Eq. (2.37) is equivalent to the analytic expression obtained in Ref.
[33] using the Laplace transform method. However, the expression given by Eq. (2.37) is obtained
in a straight forward manner, more compact and in a form which re¯ects the signi®cance of the
physical parameters involved, as will be shown in Section 4.
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4. Results and discussion

The ®nite integral transform approach presented in this work eliminates the spatial variable
and reduces the problem into an ODE in the temporal variable. The resulting equation is in the
standard form used in studying mechanical and electrical oscillations (see for example Ref. [38]).
One can, therefore, extend the well-known results obtained elsewhere onto the heat conduction
problem described by a hyperbolic partial di�erential equation. From Eq. (2.21), one may rec-
ognize 2P dU=df as a damping term with P as a damping parameter, xn as a characteristic angular
frequency in the absence of damping and - � 1=l as the angular frequency of the driving force
(the heat ¯ux) de®ned in the right-hand side of Eq. (2.21).

As we noted in Section 2, in the solution U n�f� � U c�f� � U p�f�, the complementary solution
U c�f� represents the transient e�ects and the terms contained in this solution damp out with time
because of the factor exp�ÿPf�. The term U p�f� represents the steady-state e�ects and contains
the information for large values of time compared with v2.

4.1. Application

We now study the details of the temperature distribution during the period before the transient
e�ects have disappeared. We therefore consider a ¯at plate conductor, of dimensionless thickness
equal unity, insulated at both sides and exposed to an oscillating heat ¯ux with period - and a
dimensionless relaxation time (Vernotte number) v. Di�erent values of - and v were chosen to
re¯ect di�erent e�ects. Numerical computation was performed by utilizing the analytic solution
obtained in Section 2.

For small values of the Vernotte number v, the damping e�ect becomes su�ciently large and
the temperature is prevented from undergoing oscillation. For this case P > xn and the tem-
perature may be considered as being overdamped. The temperature distribution due to the
complementary solution approaches the equilibrium value asymptotically as shown in Fig. 2.

As v increases, the damping e�ects decreases resulting in increasing the temperature oscillation
of the complementary solution. When P becomes less than xn, �P < xn�, the temperature may be
regarded as being underdamped. Eq. (2.31) can be written in the amplitude-phase form

U
C
c �f� � DeÿPf cos x1f� ÿ d�; �4:1�

Fig. 2. The complementary and solutions and their sum for the overdamped temperature oscillation at the front surface

(v � 0:15;- � 10).
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where D is the amplitude of the temperature oscillation, d is a phase angle and x1 �
����������������
x2

n ÿ P 2
p

.
Because of the damping term eÿPf in Eq. (4.1), the temperature decays as it oscillates and the
distribution is not periodic and, therefore, a frequency cannot be de®ned. The amplitude of the
temperature oscillation in this case decreases with time. The envelope of the temperature versus
time, is given by

Uenv�g; f� � �2eÿPf
X1
n�1

Dcos�kng�; �4:2�

where D �
����������������
B2

1 � B2
2

p
: Fig. 3 displays the temperature envelope, the transient (complementary)

solution and the undamped (particular) solution at the front surface. The distribution of U C
c �g; f�,

UC
p �g; f� and their sum UC�g; f� are displayed in Figs. 4 and 5 for di�erent values of the driving

frequency -. When - < x1, the transient response of the temperature oscillation noticeably
distorts the sinusoidal shape of the forcing function during the time interval immediately after the
application of the driving force, Fig. 4. When - > x1, the e�ect is a modulation of the forcing
function with little distortion of the high-frequency sinusoidal oscillation, Fig. 5. Both ®gures
show the strong dependence of the transient distribution of the relative magnitudes of the fre-
quency of the driving force and the damping frequency.

Numerical values of the analytic solution, Eq. (2.37), are evaluated at both the front and rear
surfaces for - � 4 and Vernotte number v � 0:8 and the result is displayed in Fig. 6. The jump
points on the graph denote the moments at which the thermal wave front reaches the front and
rear surfaces after propagation through the medium and a series of re¯ections at the two surfaces.
Since the thickness (normalized) of the slab is 1:0 and the speed of propagation is 1=v, the wave
front takes a time equal to v from one side of the slab to the other. Thus, the jump points occur at
times 2v, 4v, 6v; . . . at the front surface and at times v, 3v, 5v; . . . at the rear surface. As time
progresses, the jump points get lower and then disappear and the temperature response becomes a
smooth periodic wave.

In searching for a limiting criterion of the transition from the parabolic to the hyperbolic
heat conduction, the parabolic temperature response depicted by Eq. (3.4) and the hyperbolic
temperature response depicted by Eq. (2.37) are evaluated for di�erent values of v. The results
are displayed in Fig. 7 for the front and the rear surfaces. It is noticed that the di�erence in the

Fig. 3. The temperature envelope, the complementary (transient) and the particular (steady) solutions for the under-

damped temperature oscillation at the front surface (v � 0:8;- � 4).
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Fig. 4. The e�ect of the driving frequency on the complementary and particular solutions of the underdamped case at

the front surface when - < x1.

Fig. 5. The e�ect of the driving frequency on the complementary and particular solutions of the underdamped case at

the front surface when - > x1.
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Fig. 6. The temperature distribution at the front and rear surfaces (v � 0:8;- � 4).

Fig. 7. The temperature response of the parabolic and hyperbolic solutions and their di�erence for di�erent Vernotte

numbers when - � 4.
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temperature distribution obtained from the parabolic and hyperbolic equations becomes in-
signi®cant whenever v6 0:1. That is, v > 0:1 is the limiting criterion for the occurrence of dif-
ferences in temperature response between the parabolic and hyperbolic modelling of heat
conduction.

4.2. Amplitude and phase

The analytic solution given by Eq. (2.37) is rewritten in the following detailed form

U�g; f� � sin�xf� � 2
XM

n�1

U
R
c

�
� U

R
p

�
cos�kng� � 2

X1
n�M�1

U
C
c

�
� U

C
p

�
cos�kng�; �4:3�

As indicated above, U
R
c decays asymptotically and U

C
c is not periodic because of the eÿPf term.

The e�ect of both parts dies out with time and the temperature distribution eventually will be
given by the remaining terms of Eq. (4.3) which are all periodic. Upon the utilization of
Eqs. (2.27) and (2.32), the temperature distribution becomes

U�g; f� � C sin�-f� �P cos�-f�: �4:4�
This equation can be written in the amplitude-phase form

U�g; f� � A cos�-fÿ /�; �4:5�
where the amplitude A is given by

A �
�����������������
C2 �P2

p
; �4:6�

and the phase angle / is given by

/ � tanÿ1 C
P

� �
; �4:7�

where

C � 1� 2
XM

n�1

Cn cos�kng� � 2
X1

n�M�1

Fn cos�kng�;

P � 2
XM

n�1

Dn cos�kng� � 2
X1

n�M�1

En cos�kng�: �4:8�

The quantity / represents the phase di�erence between the driving force and the resultant tem-
perature; a real delay occurs between the action of the driving force and the temperature response.

Eq. (4.6) is used to evaluate the amplitude di�erence between the front and the rear surfaces for
di�erent values of Vernotte number and the result is shown in Fig. 8(a). This curve agrees with the
numerical results in Ref. [33]. The phase di�erence between the front and the rear surfaces is
evaluated from Eq. (4.7) and the result is shown in Fig. 8(b).

As v! 0, both ®gures indicate that the amplitude di�erence and the phase di�erence of the
hyperbolic formulation approach those of the parabolic one. With the increase of v (enhancement
of the non-Fourier e�ects), the amplitude damping and the phase di�erence deviate relatively
from their parabolic correspondent. The deviation of the phase di�erence indicates that the hy-
perbolic formulation predicts a relative low speed of thermal disturbance propagation, while the
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deviation of the amplitude di�erence indicates that the damping in amplitude decreases with the
increase of the non-Fourier e�ects.

5. Conclusion

An analytic solution of the non-Fourier heat conduction in a ®nite medium insulated at both
sides and subjected to a periodic heat ¯ux is obtained by the use of the ®nite integral transform
technique. For the limiting case as the relaxation time equals zero, the obtained temperature
response from the non-Fourier (hyperbolic) formulation reduces to the temperature response
obtained from the classical Fourier (parabolic) formulation. Solutions to hyperbolic heat con-
duction problems are non-Fourier thermal waves damped by heat di�usion. In contrast, Fourier
solutions show conduction only by di�usion. Further, solutions to hyperbolic problems converge
to corresponding Fourier solutions for su�ciently large time after thermal disturbances (i.e.
imposition of heat ¯uxes) because of wave damping.

A transition criterion from the hyperbolic formulation to the parabolic formulation is found to
appear when v > 0:1. A simple analytical expression of the phase and amplitude of thermal os-
cillation is given. It is shown that the hyperbolic formulation predicts a relatively low speed of
thermal disturbance propagation and that the damping in amplitude decreases with the increase

Fig. 8. (a) The amplitude di�erence of temperature oscillation at the front and the rear surfaces for di�erent Vernotte

numbers. (b) The phase angle di�erence of temperature oscillation at the front and the rear surfaces for di�erent

Vernotte numbers.
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of the non-Fourier e�ects. The mathematical treatment in this work leads to an analytic solution
of the hyperbolic heat conduction problem in a straight forward and systematic way.

Appendix A. Finite integral transform solution of Fourier heat conduction in a ®nite medium exposed
to periodic heat ¯ux

For this situation, the boundary and initial conditions associated with Eq. (3.1) are

o
og

U�0; f� � ÿ 1

l
cos

f
l
;

o
og

U�1; f� � 0 and U�g; 0� � 0 �A:1�
The eigenvalue problem associated with the homogeneous part of the current problem is given by

U00 � k2
nU � 0 with U0�0� � U0�1� � 0: �A:2�

Operating on Eq. (3.1) by
R 1

0
U�g�dg, integrate the left side by parts twice, then operate on

Eq. (A.2) with
R 1

0
u�g; f�dg, utilize the de®nition of the integral transform, substitute for the

surface conditions and simplify to get

dU n

df2
� k2

nUn � 1

l
cos

f
l

�A:3�
subject to the transformed initial condition Un�0� � 0. The solution of this system is evaluated to

U n�f� � 1

1� l2k4
n

sin
f
l

�
� lk2

n cos
f
l

�
ÿ eÿk2

nf

��
: �A:4�

Now substituting in the inversion formula over all the spectra of eigenvalues to obtain the
temperature distribution of the parabolic heat conduction in the form

U�g; f� � sin
f
l
� 2
X1
n�1

cos�kng�
1� l2k4

n

sin
f
l

�
� lk2

n cos
f
l

�
ÿ eÿk2

nf

��
�A:5�
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