Information and Computation 140, 158-182 (1998)
Article No. 1C972678

A Collusion Problem and Its Solution*

View metadata, citation and similar papers at core.ac.uk

Department of Electrical and Electronic Engineering, University of Melbourne,
Parkville, Victoria 3052, Australia
E-mail: slow@ee.mu.oz.au

and

Nicholas F. Maxemchuk

AT&T Research, Murray Hill, New Jersey 07974
E-mail: nfm@research.att.com

Consider a group of colluders, each with certain knowledge such as the
identity of some other colluders, some cryptographic keys, and some data,
possibly multiply encrypted. Two colluders can combine their knowledge
if their current knowledge satisfies certain conditions. Their cryptographic
keys can help decrypt each other’s encrypted data, expanding their knowl-
edge and revealing more collusion opportunities, and the process of
collusion continues. The question we address is whether it is possible for
the colluders to uncover a target set of unencrypted data. In this paper we
formulate the collusion problem and provide an algorithm that determines
whether a collusion problem has a solution and, if so, computes one.
A solution is a specific way by which the colluders can uncover the hidden
information. The solution generated by our algorithm is generally not one
that involves the minimum number of colluders. We show, however, that
to find such a solution is NP-complete. Complex communications protocols
employing cryptographic building blocks are being developed to transfer
information among some users and hide from others. The algorithm
presented here can be applied to determine whether and how a subset of
protocol users can discover during or after the protocol’s execution the
information that is to be hidden from them. © 1998 Academic Press

* Partial and preliminary results have been presented in Low and Maxemchuk (1996) and in Low and
Maxemchuk (1997).

"1 am grateful to AT & T Bell Laboratories and the Department of Electrical and Electronic Engineering,
Hong Kong University of Science and Technology, where part of this work was done, and to Australian
Research Council Grant S49711288 for partial financial support.

0890-5401/98 $25.00 158

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.

https://core.ac.uk/display/82108991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A COLLUSION PROBLEM AND ITS SOLUTION 159

1. INTRODUCTION

Consider a group of colluders each knowing certain information such as the
identities of some other colluders, some cryptographic keys, and some data,
possibly multiply encrypted. Two colluders can combine their knowledge provided
their current knowledge satisfies certain conditions. A colluder’s cryptographic key
can help decrypt the encrypted data in the other colluder’s possession, expanding
its knowledge. This may reveal even more decryption keys and new collusion
opportunities, and the process of collusion continues. The question we address is
whether it is possible for the colluders to uncover a target set of unencrypted data.

This is motivated by the recent proliferation of complex communications protocols
employing cryptographic building blocks not only to communicate, but also to
protect privacy, e.g., in broadband networks (Pfitzmann and Waidner (1987);
Pfitzmann et al. (1991)), in mobile networks (Federrath et al. (1996)), in electronic
commerce (Dukach (1992); Low et al. (1996)), and in health insurance systems
(Maxemchuk and Low (1995)). The credit card protocol of Low et al. (1996), for
instance, uses cryptographic techniques to hide different pieces of transaction
information from different parties involved in the transaction so that at the end of
a credit card transaction, no single party except the cardholder can associate the
cardholder’s identity with what has been purchased or where. Moreover, it takes
many parties to collude in order to compromise the cardholder’s privacy.

One may think of a cryptographic protocol as defining a process by which some
information is transferred among some users and hidden from others. Solution of
the collusion problem presented here can be applied to determine whether, and
how, it is possible for a subset of users to discover the information that is to be
hidden from them during or after during a protocol’s execution. An example is
given in Low et al. (1996).

It is not always possible for two users to collude. In order to collude they might
have to share a unique piece of information pertaining to the protocol run. This
may be a unique message that has been exchanged during that protocol run or a
unique piece of data. See Section 2.2 below for motivation of this requirement. We
stress, however, that our formulation includes as a special case the situation where
two users can collude as long as one knows the other, even if they share no unique
message or data.

In Low and Maxemchuk (1996) we first introduced a formal model for collusion
analysis that consists of two phases in sequence: a protocol execution phase followed
by a collusion phase. The protocol phase is modeled as a transition system and the
collusion phase is modeled as a related transition system. We presented an algorithm
there that completely solves the special case where two users can collude only if
they share a unique message that is exchanged during the protocol phase. That
algorithm was extended in Low and Maxemchuk (1997) to solve the general case
where users can collude on unique data as well as on unique messages.

In this paper we simplify our original formulation and extend and provide proofs
for these results. In the current formulation, the protocol phase is eliminated
from the formal model and its effect can be summarized by the initial state of the
transition system modeling the collusion phase.

160 LOW AND MAXEMCHUK

In Section 2, we present our model and formulate the collusion problem as a
reachability analysis on a large transition system, on which an exhaustive search is
impractical. The state of the transition system represents the colluders’ knowledge
and a transition represents a two-party collusion that expands the receiver’s
knowledge. A solution to the collusion problem, called a collusion path, is a specific
way in which the colluders can uncover the hidden information. We show that the
existence of a solution, as well as the construction of a collusion path, can be
determined by examining just the initial knowledge of all the colluders. This
eliminates the need to explore the large transition system.

In Section 3 we treat the special case where collusion is allowed only between two
colluders sharing unique messages. We prove a closed form expression specifying a
condition under which a solution exists and clarify the simple structure of collusion
paths. The result establishes that for a collusion problem to have a solution it is
necessary and sufficient that a subset of colluders exist such that the decrypted
union of their initial knowledge contain the hidden information and such that they
share among them unique messages. This characterization leads to the algorithm
that checks whether the condition is satisfied and if so computes a collusion path.

The special case illustrates the structure of the problem and leads to the solution
for the general case where collusion is allowed between colluders sharing unique
data as well. This is explained in Section 4. We prove an algorithm that determines
whether a collusion path exists and, if so, computes one. The algorithm includes the
solution for the special case as its first step.

The collusion path computed by our algorithm is not necessarily one that involves
the minimum number of colluders. More generally, suppose that a cost is incurred
when a pair of users collude and that the cost of a collusion path is the sum of
collusion costs associated with each pair of colluders on that path. We show in
Section 5 that to find a collusion path that involves the minimum number of
colluders is NP-complete. This implies that the least cost collusion problem is
NP-hard.

Cryptographic protocols are notoriously hard to design and their correctness is
harder to prove (Simmons (1994)). Numerous cryptographic protocols have been
published and later found to contain security flaws; see, e.g., Needham and Schroeder
(1978), Denning and Sacco (1981), Needham and Schroeder (1987), Tatebayashi et
al. (1989), Simmons (1985), Meadows (1991), Moore (1988), Burrows et al. (1990).
These often subtle failures do not require eroding the integrity of the underlying
cryptoalgorithm and hence are weaknesses of the protocols. They clearly demonstrate
the need for formal methods to verify cryptographic properties of protocols, such
as the algebraic method of Dolev and Yao (1983), and Dolev et al. (1982) to
analyze the security of a class of public key protocols, the logic of Burrows et al.
(1990) and Gong et al. (1990) to verify authentication protocols, and the state
machine models of Millen (1984), Kemmerer (1989), Meadows (1991), and Kemmerer
et al. (1994) to specify and automatically verify cryptographic protocols.

There are two important differences between our work and earlier work on
formal analysis of cryptographic protocols. First, previous work (Dolev and Yao
(1983), Dolev et al. (1982), Burrows et al. (1990), Gong et al. (1990), and
Kemmerer et al. (1994)) mostly verified the security of a protocol, i.e., whether it

A COLLUSION PROBLEM AND ITS SOLUTION 161

fulfills its intended function. Given a secure protocol, we are concerned with how
easy it is for a subset of protocol users to discover a target set of information
through collusion. Second, as will be explained in Section 2, a collusion problem is
defined on a transition system and hence can in principle be solved by an
exhaustive reachability search, as done in Millen (1984), Kemmerer (1989), and
Meadows (1991). By exploiting the special structure of the collusion problem,
however, our algorithm avoids searching the state space of the transition system,
which can have 2!Y1¥1=D reachable states, and works on a graph with |U| nodes,
where |U| is the number of colluders. This reduction in time complexity is important
as large multiparty cryptographic protocols become common. We note that our
algorithm supplements, and can be incorporated into, existing protocol analysis
tools such as those in Millen (1984), Kemmerer (1989), and Meadows (1991).

2. MODEL AND PROBLEM FORMULATION

In this section we first present our formal model and formulate the collusion
problem. Then we remark on a possible application that motivated our work.

2.1. Notation

We use (y;, jeJ) to denote a vector with components y;, j spanning the index
set J; the jth component y; is sometimes denoted y.j. For any set 4, |A4| denotes the
number of elements in A, 2* denotes the collection of subsets of 4, and A* denotes
its Kleene closure.

If d is a datum and k is a cryptographic key, then k(d) denotes the encryption
of d with k. A string k,, ---k, represents successive application of keys k., ..., k,, in
order. We use ¢ to denote the identity key: for any piece of data d, &(d)=d.

For any key k, k~! denotes its inverse with the cancellation rule k 'k =k k' =e.
For example, the keys k and k' are identical in secret-key cryptosystems, but not
in public-key cryptosystems. When we refer to a string y of keys, we always assume
that y is in reduced form that cannot be further simplified by application of the
cancellation rule.

A transition system is a triple @ =(Q, 2, J), where Q is a set of states, 2 is a finite
set of transition labels or events, and the partial function J: OQx2— Q is a
transition function. For example, a finite state machine is a special transition system
in which Q is finite. A path is a sequence of transitions. A concatenation of two
paths p, and p, is denoted p, - p,.

The following is a list of symbols used and their meanings for easy reference:

A set of colluders.

A finite set of data.

A finite set of cryptographic keys.
A subset of UuD UK.
Information set K*(Uu D U K).
Decryption function 4: 27— 27,
Set of unique message identifier.

ZAh~DDRUO QT

162 LOW AND MAXEMCHUK

/4 Knowledge set 2V x 27,

6= (W'Y x §) Collusion (transition) system.

w(0) Initial state of 6.

w(p) State of O after p is followed starting from w(0).
wJp)e W Knowledge of colluder ce U when @ is in state w(p).
G(p) Labeled graph corresponding to path p.

p(G) Path corresponding to labeled graph G.

A(y; p) Set of all timed ancestors of y in G(p).

A(y: p) A(y; p)u iy}

F=(U, E(w(0)) Graph where there is an edge (u, v) € E(w(0)) iff u ~v.

2.2. Collusion Model

Consider a group of colluders, who have been involved in a protocol execution.
Each colluder initially has a set of knowledge that includes a subset of messages
that have been exchanged during a protocol run, the identity of some other colluders,
a set of data, possibly multiply encrypted, and a set of cryptographic keys. The
colluders’ objective is to collectively discover a certain set of information. A colluder
first finds another colluder with which it can collude and then sends it its complete
knowledge, including cryptographic keys in its possession. The recipient attempts to
decrypt the combined knowledge with the keys it now has, and the process continues.
We are interested in whether a given set of colluders can discover a target set of
information. We now make these notions precise.

Collusion is carried out in an environment described by the quadruple (U, D, K, L),
where

1. U s a set of colluders;
2. D is a finite set of data;
3. K is a finite set of cryptographic keys, including the identity key ¢;

4. L= UuDuUKis a set of information that determines whether two colluders
can collude; see condition (6) below.

Define the information set as the set of every possible encryption and clear text
combination of every piece of information in the system:

I:-=K*(UuDuK).

For example, if de Uu D U K and k;e K, then d, k,(d), k,k,(d), k k,k,(d) are all
in I

Decryption is a function 4:27— 2’ that is defined through the cancellation
rule k 'k =k k~'=¢, the identity key, as the removal of encryption from a piece
of encrypted data. For instance, 4({k(d)} v{k~'})={d k~'}. In general 4(A)
represents the decryption of a set 4 =7 of information by the keys included in 4
such that if k,, ---k,(d)e 4(A) then k,'¢ A(A). The precise specification of 4 is

A COLLUSION PROBLEM AND ITS SOLUTION 163

straightforward but cumbersome. In fact it is not important for our purpose, as we
only need the following property of 4: for any 4, A’ in I,

AAA) LA)=A(A0 A, (1)

i.e.,, the order in which a user receives and decrypts information is immaterial. The
final combined and reduced information is the same. Whenever we refer to a subset
of I we always assume that it is in this reduced form.

The knowledge set is the combination of the messages and information

W.=2Nx2%,

where N is the set of unique message identifiers and 7 is the information set. An
element w=(w.N, w.I) of W represents a user’s knowledge. It has two components:
the first component w. N < N represents all the messages the user has seen, and the
second component w./ < I represents all the information the user knows. As noted
above w.[is in reduced form. User «’s knowledge is denoted w, € W. We naturally
assume that uew,.I for all ue U.

As colluders in U collude by exchanging messages, their knowledge is modified.
This evolution is modeled by a transition system @ =(W'Y!, X, §). Here, a state
w=(w,, ueU) in W'Y is the knowledge of all colluders. An event ¢ =(s,7) in
2 :=Ux U describes the transfer of the sender’s complete knowledge w, to the
receiver r to attempt to extract the hidden information at the receiver. The partial
function ¢ describes the transformation of receiver’s knowledge as a result of the
message exchange. When the current state is w=(w,,, ue U) and the next event is
o= (s, r), then the next state w' :=d(w, a), if defined, is

wh=w, if y#r (2)
w.N=w,. Nuw, N (3)
wiI=Aw, Tuw,), (4)

i.e., the receiver’s knowledge is expanded to include that of the sender.
For each state w=(w,,ue U) and event o= (s, r), the next state d(w, g) is
defined if and only if re w,.I and at least one of the following conditions is satisfied:

w . Now, N#¢ (5)
welnw, . InL#d¢. (6)

The conditions say that for s and r to collude, s must know r and they must either
share a message (condition (5)) or a piece of data in L (condition (6)). Note that
if L = U then since u € w,, for all u, r € w,.I implies condition (6). Then the condition
for the next state d(w, a) to be defined reduces to the special case in which collusion
is allowed as long as the sender s knows the receiver r.

164 LOW AND MAXEMCHUK

To motivate the requirements (5)—(6) consider as an example an intermediary cx
that forwards a piece of data to its recipient » in order to hide the identity of its
sender s from r (Chaum (1981)):

1. s—ocex:k.(r,k(d))
2. cx—rikJ(d).

In the above s encrypts the (encrypted) data k,(d) and the recipient’s identity r with
a key k., that can only be decrypted by the intermediary cx and sends them to cx
(message 1). The intermediary cx then forwards the encrypted data to r (message
2), thus hiding the identity of the sender s from r. Variants of this simple protocol
have been the building blocks of large cryptographic protocols to provide privacy
in broadband networks (Pfitzmann and Waidner (1987), Pfitzmann et al. (1991)),
in credit card transactions (Low et al. (1996)), and in mobile networks (Federrath
et al. (1996)), where traffic volumes are high. After the above steps are carried out,
cx knows w,, :=({message 1, message 2}, {s,cx,r, k', k/(d)}) and r knows
w, :=({message 2}, {cx,r, k', d}). For r to discover s, r must learn the informa-
tion in w,,. In a large system however cx may have forwarded a large number of
messages to the same recipient r in a short period of time and they have collected
a large number of w_, and w,, corresponding to different protocol runs. Moreover,
the larger protocol of which the above is only a part can be implemented on a
datagram network so that messages from different protocol runs may be interleaved
at ¢x. Hence to combine the information in w_, and w, of the same protocol run,
c¢x and r must share a unique piece of information pertaining to that protocol run.
The unique message that is exchanged between cx and r can be used to pair up w,,
and w, that belong to the same protocol run. This is modeled by condition (5).
Sometimes two colluders can combine their knowledge pertaining to a particular
protocol run if they share a piece of data. For instance, two banks may have the
unique social security number of a customer and hence can combine their
knowledge about the customer. This is modeled by condition (6).

We call an event g = (s, r) enabled in state w if the transition d(w, o) is defined;
we often say that o is enabled when the state from which the transition is made is
understood.

Note that the set of users that can collude can increase as users collude and
information is combined. For instance, a sender can have encrypted information
that includes the identity of a user and a piece of data in L that the sender and that
user share, and a receiver may have the key to decrypt that information. After the
sender transfers its information to the receiver, the receiver can collude with the
user that was hidden in the encrypted information.

We summarize our model in the following definition. The transition system ©
describes all the possible sequences of message exchanges among the colluders and
how their knowledge evolves as collusion proceeds.

DerFNITION 1. Given an environment (U, D, K, L), a collusion system is the
(unique) transition system @ = (W'Y, X, §) defined above.

A COLLUSION PROBLEM AND ITS SOLUTION 165

2.3. Problem Formulation

The collusion problem is to determine if the colluders can combine their knowledge,
by passing messages, and extract the hidden information. Suppose we have a collusion
system @ = (W'Y X, 6).

Collusion Problem. Given an initial state w(0)e W!Y! and a target set of
unencrypted information 7< Uu D U K, does there exist a path p in @ that starts
in w(0) and terminates in a state w(p) in which a colluder ce U knows T ie.,
w(p) I2T?

We call p in the definition of the collusion problem a collusion path. 1t specifies
which colluders should transmit to which other colluders and when.

The collusion problem is simply a reachability analysis on the state machine 0.
Given w(0), however, the set of reachable states in @ is a subset of all possible
combinations of the colluders’ initial knowledge, and contains up to 2!VI(IVI=D
states. For example, for the simple protocol analyzed in Low et al. (1996), |U| =8
and the reachable set contains up to 10'7 states. It is hence impractical to do an
exhaustive search. In the next two sections we develop a solution that avoids
exploring O.

For the rest of this paper, we make the following natural assumption on the
initial state w(0) of the collusion problem. We assume that in state w(0), if (u, v)
is enabled because u and v share a message (condition (5)), then they must know
each other in w(0) and hence (v, u) must also be enabled; i.e., w(0) satisfies the
condition:

w,(0).Naw,(0).N#£¢p=vew,0).] and uew,0).1 (7)

The motivation behind this assumption is that, in our setting, if # and v share a
message, then they must have directly exchanged that message during protocol
execution before collusion is carried out. Clearly the source of this exchange knows
the destination. In almost all communication protocols the identity of the source is
also included in the header of the message for error and flow control. Hence the
source and destination of a direct message exchange always know the identity of
each other after the exchange.

Henceforth fix an environment (U, D, K, L), an initial state w(0), and a target
information set 7.

24. Example Application

We now describe an example application that motivated this work. A crypto-
graphic protocol was designed in Low et al. (1996) to implement anonymous credit
cards in which a typical transaction involves the cardholder, the store where a
purchase is made, the cardholder’s bank, the store’s bank, and several intermediaries.
At the end of a transaction no single participant, except the cardholder, knows both
the cardholder’s identity and what was purchased. The question one might ask is
which subsets of these participants (except the actual cardholder) must collude to
associate the cardholder’s identity and the purchase.

166 LOW AND MAXEMCHUK

This question can be broken down into several subproblems, each involving a
different subset of participants. Each subset defines an environment (U, D, K, L)
and a collusion problem, where the set U of colluders is the subset of participants
under study and the target information 7 is the cardholder’s identity and purchase.
These collusion problems can be solved using the algorithm presented in the sequel
and exhibit the potential vulnerabilities of the protocol to privacy protection; see
Low et al. (1996). In fact, by Theorem 4 below, we do not need to consider all
possible subsets of participants, but only those subsets whose initial information,
when combined, contains 7.

3. SPECIAL CASE: L=¢

In this section we consider the special case in which L =¢; i.e., two users can
collude only if they share a unique message that was exchanged during the protocol
run (condition (5)). It illustrates the structure of the problem and is useful to the
solution of the general case, presented in the next section.

We solve this special case in two steps. In Section 3.1 we prove in Theorem 4 that
the collusion problem has a solution if and only if there is a set of colluders who
have exchanged messages among themselves during protocol execution and whose
initial information in state w(0), when combined, contains 7. This means, in particular,
that if the target information in 7 is distributed among clusters of users who have
not communicated during protocol execution, then no user can discover the entire
T regardless of what knowledge each user has. This theorem is proved through a
sequence of lemmas.

Based on this characterization we present in Section 3.2 an algorithm that checks
whether the condition is satisfied and, if so, computes a collusion path.

3.1. Solution Characterization

The structure of a collusion path on the transition system @ can be better exhibited
in terms of a collusion graph which we now explain. Consider a path p=(s,,r;)---
(8., 7,). We may also use p to refer to the set of events p={(s,,r,),t=1,..,n} in
the path or the set of colluders p = {s,, r,, t=1, .., n}; the meaning should be clear
from the context. Hence by “(s, r)€p” and “cep,” we mean (s,r)=(s,,r,) and
c¢=s, or r,, respectively, for some 7. As noted above, all paths are assumed to start
from the given initial state w(0) unless otherwise specified. For any path p in @
starting from w(0), w(p) denotes @’s state after the transitions in p have been made.

A path in @ can be equivalently specified by a labeled graph G=(V, E), where
V are the nodes and E={(u, v, t)|u,ve V, te{l, .., |E|}} is a set of directed edges
from node u to node v labeled by 7. The nodes represent colluders involved in the
path and the edges represent messages among the colluders. The label on an edge
indicates its relative transmission time. This is an important consideration because
some events are not enabled until other messages have been transmitted. There can
be multiple edges with different labels in the same direction between two nodes,
corresponding to the same sender-receiver pair appearing multiple times in the
path. Let p(G) be the path in @ defined by a sequentially labeled graph G such that

A COLLUSION PROBLEM AND ITS SOLUTION 167

each edge (u, v, t) € E corresponds to the event (u, v) and is the ¢th event in p(G).
Similarly, let G(y=(V(p), E(p)) be the unique labeled graph defined by p in 6,
such that V(p)={cep} and E(p)={(u, v, t) | (u,v) is the rth event in p}.

DEFINITION 2. A labeled graph G is a valid graph if p(G) is a path in ©; it is
a collusion graph if p(G) is a collusion path.

Consider a path p=(s;,r;)---(s,,r,) with n events and the associated labeled
graph G(p)=(V, E). A timed path (with respect to p) from node x to node y is a
directed path in G(p),

(x:ul: Zl)"'(ukfh Vs Zk)9

starting at x and terminating at y, such that 1 <¢, < ... <t, <n. If there is a timed
path from x to y, we call x a timed ancestor of y. Let A(y; p) denote the set of all
timed ancestors of node y with respect to p. An example is given in Fig. 1.

The following useful lemma explains how to compute a colluder’s knowledge
after a path p is followed. It says that a colluder ¢ knows in state w(p) the
decrypted union of the initial information of all, and only, its timed ancestors
and c¢. To simplify notation define functions f;: 2Y— 2" and f,: 2Y — 2. For any
subset 4 = U of colluders,

fiA)= U wi0).N)
fr=4(U wio).1); ©)

i.e., f1(A4) is the union of message identifiers colluders in A initially have and f,(4)
is the decrypted union of their initial information. Note that (f,(A4), f5(4))e W.
Define A(c; p) = A(c; p)u {c}.

LemMmA 1. The knowledge of any colluder c¢ in state w(p) to which a path p leads

is given by

wd(p)=(f1(A(c; p)), fo(A(c5 p))). (10)
Note that (10) expresses each colluder’s final knowledge, and hence the final state
w(p), in terms of the initial state w(0).

Proof. Let p=(sy,r;)(sy,75) --(5,,r,) consist of n events. We prove the lemma
by induction on n.

Let n—l If ¢c=s, then A(c; p)={c}, and hence w.p)= =(f\(A(c; p)),
SA(A()) by update rule (2). If c=r, then A(c; p)={s,, ¢}, and hence w (p) =
(fi(A(c; p)), fo(4)) by update rule (2-3).

Assume the theorem holds for n=k. Consider n=k+1. Let pF=(s;, 7))
(85, 75) - (S, 1) consists of the first k events of p, ie., p=p~-(sp 1,7 .1) By

induction hypothesis w (p*) = (fi(A(c; p*)), fo(A(c; p*))).

168 LOW AND MAXEMCHUK

/77< \a//)%\\

B // : 1 h .
(o) (9
N P
\\\\ //

. -

2 ~ V73

FIG. 1. Labeled graph G. p(G)=(a,b)(b, c)(b,d)(c, a)(d, a)(a,e). An example timed path is
(a, b, 1)(b, ¢, 2)(c, a, 4). Timed ancestors of a are A(a; p(G))={a, b, ¢, d}.

If c#7r, ., then A(c; p)= A(c; p*) and hence by update rule (2),

w(p)=wp")
= (fi(A(c; p*)), fo(A(c; p*)))
=(fi(A(c: p)), fo(A(c; p))).

If c=r, ., then A(c; p) = A(s;, 13 p*) U A(rs, 1; p¥) and hence by update rule (3-4),

wip)-N=w, (p).NOw, (p").N

=f1(Z(5k+1§pk)) Ufl(Z(’”kH; Pk))

=fi(A(c; p))
and

wc(p).1=A(kaﬂ(pk).lu w,.kH(pk).I)
=A(f2(Z(Sk+l; pk)) Ufz(g(”/wl;pk)))
:fz(Z(SkH; pX) UZ(”/(H;Pk)) =fo(A(c; p))

where we have used (1) twice in the second last equality. Hence the theorem holds
for n=k + 1, and this completes the proof. |i

A COLLUSION PROBLEM AND ITS SOLUTION 169

Minimal collusion paths, those on which no event can be omitted in order to
complete the path in the same relative order, have an especially simple structure.
Denote by p — (s,, r,) the sequence

(S1,70) (S)85 Trpn) oo (8,5 7,)

obtained by deleting (s,, r,) from p=(s,, r;)--- (s, r,). Note that p being a path in
@ does not imply that p —(s,, r,) is also a path.

DEFINITION 3. A collusion path p={(s,,r,),t=1,..,n} is minimal if for all
je{l,...n}, p—(s; r;) is not a collusion path. A collusion graph G is minimal if
p(G) is a minimal collusion path.

For a minimal collusion path p, either p — (s,, r,) is not a path or it does not lead
to the target information; ie, T Zw. (p—(s,,r,)).l for all cep. A minimal
collusion path is not necessarily a collusion path with the minimum length. For
instance, there may be a single user, which is not on the path, which has all of the
information in 7.

The next lemma says that on a minimal collusion path, every colluder is an
ancestor of the last recipient, and only the last recipient knows the target
information set.

Lemma 2. Suppose p=(s,,ry)---(S,,r,) is a minimal collusion path. Then
(1) no cep except r, satisfies T=wp).I;
(il) A(r,; p)=p, ie., ue A(r,; p) if and only if uep.

Proof. Since p is a collusion path there is some c € p with w.(p).I= T. Suppose
¢ #r, satisfies this property. Then w.(p —(s,,, r,)).I=wp).I 2 T, contradicting the
minimality of p. Hence only r, knows T in state w(p).

Let G(p)=(V, E), V=p, be p’s collusion graph. The second claim asserts that
V=A(r,; p). By definition of A(r,; p) we have V2 A(r,; p). Hence we only need to
show that V' A(r,; p).

Consider the subgraph G'=(V', E') of G(p) induced by V' :=A(r,;p)<=V,
where E'={(s,r,7) | (s,r, t) is on a timed path in G(p) from some ue A(r,; p) to
r,}. We need to show that ¥’ = V. Suppose not; i.e., V' and E’ are strict subsets of
V and E, respectively. We will construct a new collusion path p’ by removing some
events from p and keeping the relative order of the remaining events, hence
contradicting the minimality of p.

The collusion path p is of the form

P =24(81, 1) Aa(82,15) -+ Al 1)

where ¥, =r,, s\, ¥, e A(r,; p), and A, is a sequence of events not in E’. Consider the
sequence

plz(sll9rll)"'(sg(’ r;c)

170 LOW AND MAXEMCHUK

obtained from p by removing all edges not in E’. If p’ is a path, then since A(r,; p')
=A(r,; p), by Lemma 1,

Wrn(P')-szz(/T Tys ,))
—fz “T }17
w,(p)I=2T;

Le., p' is a collusion path. We hence only need to show that p’ is indeed a path.

Now the first event (s},7}) of p" is enabled if rjewy(0).7 and w,(0).Nn
wy (0). N # ¢. By construction colluders in 4, cannot be timed ancestors of s} or rf,
for otherwise they will be in A(r,; p). Hence, since A(s}; 4,) ={s}} and A(r}; 4,) =
{r}, we have

=
N
—
~
-
Il

(f1(A(s; 20)), fo(A(sy5 2)):Ws’l(o)
W (A) = (A(A(ry s 20)), fo(A(r 20)) = wy (0).

Therefore 4,(s’, r}) being a path implies that (s}, r}) is also a path. Repeating the
argument shows that the knowledge of s/ and r}, does not depend on transitions in
A1y - 4,, and hence since p is a path, so is p’. Hence p' is a collusion path,
contradicting the minimality of p. ||

Lemmas I and 2 imply that w, (p).J, which contains the target information 7, is
the decrypted union of the initial information w,(0) in p. Hence, to solve the
collusion problem, it is necessary and sufficient to find a set of colluders whose
initial information in state w(0), when combined, yields 7 and to find a way for all
of them to communicate their information to the same colluder. We now show that
such a set of colluders must share unique messages among them in the initial
state w(0). In the next subsection we will show how these colluders can combine
their information.

Define the symmetric and reflexive relation ~ on the set U of colluders:

U~D ifft w,(0).Nw,(0).N#¢. (11)

By assumption (7), uew,(0).f and vew,(0).1. That is, u ~ v if and only if they can
collude in the initial state w(0). This relation can be represented by an undirected
graph F= (U, E(w(0))) with all colluders as its nodes. There is an edge (u, v) in
E(w(0)) if and only if u ~ v. F thus describes all the events that are initially enabled
by condition (5). The next lemma says that it is not possible for two colluders in
different connected components of F to collude.

LemMmA 3. Given any path p=(sy, 1)+ (S,,), S, ~F, for t =1, ..., n. Hence if p
is a minimal collusion path then the set p= A(r,; p) of colluders are all in the same
connected component of F.

Proof. Let p'=(s,,7r,)---(s,,r,) be the first ¢ events of p and let w(p’) be the
state of O after p’ is followed starting from w(0). We prove by induction on ¢ that
all timed ancestors A(r,; p) of receiver r, belong to the same connected component
of F. This then implies the first assertion of the lemma since s, A(r,; p").

A COLLUSION PROBLEM AND ITS SOLUTION 171

By construction of F, s, and r, are in the same connected component. Suppose
the assertion holds for =1, ..., k.

For 1=k + 1 consider the state w(p”) before the transition (s, , 7, ;) is made.
If s, #7r; for j=1,..k, ie, s,,, has not been a receiver, then A(sp 15 p5) =
{5/ 4 1}. Otherwise let J be the largest j <k such that s, , , =r;. Then A(s; , ; p*)
A(r,; p”). Similarly let J' be the largest j <k such that r,, , =r;. Then A(r, . ,; p*)
A(ry; p”). If no such J' exists then A(ry .15 p*)={rc,1}. Since (sp,1>7yq) 18
enabled in state w(p*), s, and r, ., must share a message:

wo (PF).Now, (p*).N#.

By (10) and (8) there must be an ue A(s; , ;; p*) and an ve A(r, . ,; p*) that share
a message in the initial state w(0). That is u and v satisfy (11) and hence are in the
same connected component of F. But then the induction hypothesis implies that
A(s 15 p%) and A(ry, ;; p*) are all in the same connected component. This
completes the induction.

If p is a minimal collusion path then, by Lemma 2(ii), p = A(r,; p). Then the
above induction shows that colluders in p are in the same connected component. i

We hence have the following characterization of when the collusion problem has
a solution.

THEOREM 4. The collusion problem has a solution if and only if there is a
connected component C=(V, E) of the undirected graph F such that f5(V)=2T.

Proof. 1If there is such a connected component C of F then, since the edges
connecting them are enabled in w(0) and remain enabled as collusion proceeds, any
path that visits every node in the connected component C is a collusion path with
the last recipient of the path knowing 7 by Lemma 2. (For a construction of such
a path see Theorem 4 below.)

Conversely, suppose there is a collusion path p. We can assume that it is minimal
for otherwise we can make it minimal by removing redundant events from p
and keeping the remaining events in the same relative order. Lemma 3 then implies
that p is a connected component of F. Lemmas 1 and 2 imply that f,(p)=

AUye,w (0).1)2T. |

3.2. Algorithm

Theorem 4 specifies a condition under which a collusion graph exists. In general
a collusion graph can take the form of any directed graph. The next result clarifies
the simple structure of collusion paths and leads to our algorithm. It says that every
colluder, except the first and the last, receives, decrypts, and forwards exactly once.

THEOREM 5. The collusion problem has a solution if and only if there is a
collusion path with the simple structure

p=(ug, uy)(uy, uy) - (U, _y,u,)

where u; are all distinct.

172 LOW AND MAXEMCHUK

Proof. The sufficiency follows from the definition of the collusion problem. For
necessity, suppose the collusion problem has a solution. By Theorem 4, there is a
connected component C=(V, E) of graph F in which all edges in E are enabled in
w(0) and f5(V)=A4(U,cpw,(0).1)2T. We will construct a valid graph G=(V, E’)
that consists of a simple path' that visits every node in V exactly once. By Lemma
1, the last recipient knows f5(7") and hence T in the final state; i.e., G is indeed a
collusion graph. Moreover, the corresponding collusion path p(G) has the structure
given in the theorem.

To construct G=(V, E'), we only need to specify the set £’ of edges. Let u, be
any node in the connected component C. We will construct G to be a simple path
that starts from u, and visits every node in V exactly once. Indeed it visits them in
the same order as in a breadth-first search on C starting from u,, but possibly with
new edges not in C. Specifically, let G' be a spanning tree of C rooted at u,. Let
nodes in G' that are one hop away from u, be u,y, u,, ..uy; , those that are two

hops away from u, be uy,, ty;, ..z, and so on. Then the graph G, specified as a
path, is

(o uyys D)(uyy, Uiny 2) oo (U, —1ys Uiys k) (U, Uy Ky + 1) (o, Ugy, Ky +2) -

until all nodes in C are visited. This is illustrated in Fig. 2. We need to show that
G is a valid graph.

The first edge (ug,u;,, 1) is valid by the choice of u, and u,,. For edges
(#y;, Uy 4 1), i+ 1), note that u, and each u,,, ;, share a unique message in w(0) by
definition of C. After the first i events, u,,’s knowledge includes that of u,. Hence
uy; knows u;;,,, and shares a unique message with u,,, ;, (even though u,;,
does not necessarily know u,;). Thus the edge (u;, u;; 1), i+ 1) is valid. For the
edge (uyx,, Uy, ki + 1), note that u,, shares a unique message with some u,;. Since

uy,’s knowledge includes that of uy, after the first k, events, uy,, knows u,, (not
necessarily vice versa) and shares a unique message with u,,. Hence the edge
(U1x,> U1, by + 1) 1s valid. Other edges are valid following a similar argument. This
completes the proof. ||

Theorems 4 and 5 suggest the following algorithm to solve the collusion problem.
It first constructs the graph F that specifies all events that are initially enabled.
Then it finds each connected component of F using a breadth-first search while, at
the same time, constructing a candidate collusion path that visits every node in the
connected component. The path has the same structure as in Theorem 5 and the
construction follows that in its proof. Theorem 4 then guarantees that the collusion
problem has a solution if and only if such a collusion path can be found.

The algorithm maintains several data structures. The adjacent lists Adj[v]
represent the graph F. The variable discovered[v] stores the status of a node v
in F. It is initialized to be NO and becomes YESs after it is discovered by the breadth-
first search. Q is a queue of nodes and HEAD[Q] is the node at the head of the
queue. A node is appended to the end of Q when it is first discovered and removed

VA simple path is a graph that contains no loop.

A COLLUSION PROBLEM AND ITS SOLUTION 173

u 0
()
/AN
7/ \\
/ 1
/ \
bt P § A><—2 A/\ v
= <
S
/ \
/,4/ S T N
(= ()
u 23 u b 21

22

FIG. 2. Construction of collusion graph G. Dashed line indicates the spanning tree G’; solid line
is G.

from the queue when all its neighbors have been discovered. The variable p stores
the path under construction and /ast stores the last node visited by p. The algorithm
extends p, whenever possible, by a directed edge from /Jast to a newly discovered
node.

Finally, the algorithm initializes a list GROUP of pairs (p, i), where p denotes a
path or a set of colluders on the path, depending on context, and ie/ is the
combined information of colluders in p. GROUP is empty on entry of the
algorithm; when returned it contains a pair (p, i) for each connected component of
F, with the interpretation that p is a path that visits every colluder in the connected
component and 7 is the information of the last recipient if p is followed. The list
GROUP will be used to solve the general case in the next section.

ALGORITHM 1.

Input: An initial state w(0) and a target information set 7.
Output: A collusion path p if the collusion problem has a solution; GROUP otherwise.
1. Construct graph F= (U, E) from w(0).N
2. For each ve U, discovered[v] <« No; GROUP « ¢
3. Foreach seU
If discovered[s]=No, then SEARCH(s)
4. Return(GROUP)
SEARCH(s)

1. discovered[s] « YES
2. peNIL; last < 53 Q < {s}

174 LOW AND MAXEMCHUK

3. While Q+#¢
U < HEAD[Q]
For each ve Adj[u]
If discovered[v] =NO
then p « p - (last, v); last < v
discovered[v] = YES; append v to the end of Q
Remove u from Q
4. 1If p=niL, then p «s;
i f(p) = 4(U,c, w,(0).); append(p, i) to GROUP
5. If i= T, then Return(p)

In Algorithm 1, the function SEARCH(s) is an adaptation of a breadth-first
search (Cormen et al. (1993)). It finds a connected component of F that contains
the node s. The function SEARCHY(s) also constructs a path p while it scans the
connected component, by adding an edge from the last node of the current p to
a new node when the new node is first discovered (see proof of Theorem 5 for
correctness). If the connected component consists of a single node, so does p. It has
visited every node in the connected component when the entire connected compo-
nent has been scanned. It then stores in i the combined initial information of all
nodes on the path p. According to Lemmas 1 and 2 this represents the knowledge
of the last recipient on the path when p is followed. The algorithm adds the pair
(p, i) to the list GROUP. If i contains T then the algorithm stops and returns the
collusion path p. Otherwise, it repeats the search on a different connected compo-
nent of F. If all connected components of F have been searched without producing
a collusion path, then Theorem 4 guarantees that none exists, in which case it
returns GROUP. We summarize.

THEOREM 6. If the collusion problem has a solution, Algorithm 1 returns a
collusion path p; otherwise, it returns GROUP.

4. GENERAL CASE: L>¢

In the previous section we showed how to solve the collusion problem for the
special case where collusion is allowed only on unique messages. In this section we
solve the general case where collusion is allowed on data in L as well.

The condition under which a solution exists is no longer a simple expression as
in Theorem 4 for the special case, but it can still be determined from just the initial
state w(0). We present Algorithm 2 below, which verifies if a solution exists and, if
so, computes a collusion path. Indeed, the algorithm uses Algorithm 1 of the last
section as its first step. If a collusion path exists that involves only colluders which
share unique messages in state w(0) (i.e., in the same connected component of F),
then Algorithm 1 will identify it. Otherwise any collusion path must involve two
colluders that are in different components of F. Such collusion can occur only if
these two colluders share a piece of data in L when they collude. As Algorithm 2

A COLLUSION PROBLEM AND ITS SOLUTION 175

proceeds knowledge of different connected components of F is combined, whenever
possible, by constructing a path that visits every node in these components.
Algorithm 2 stops either when a collusion path is found or no further combination
is possible (in which case the collusion problem has no solution). We now describe
the algorithm in more detail.

Recall the graph F that describes all events that are initially enabled in w(0). The
algorithm starts by calling Algorithm 1 to identify a connected component of F
whose combined initial information contains the target information set 7. If it
succeeds it returns a collusion path. Otherwise Algorithm 1 will have initialized the
data structure GROUP to specify, for each connected component of F, a path
through all nodes in the connected component and their combined initial informa-
tion. To simplify exposition in what follows we assume that each connected
component of F has more than a single node. The results can be easily extended to
allow single-node components as well.

For any path p the variable TAIL[p] represents the last recipient on p. At any
time, an element (p, i) of GROUP identifies a group of colluders, a path p that
visits every colluder in the group and the combined initial information i=f,(p) =
AUy, e, w,(0).1) of the group. The last recipient TAIL[p] knows i when p is
followed. Immediately after Algorithm 1 returns without finding a collusion path,
each element of GROUP corresponds to a connected component of F. As Algorithm
2 proceeds these elements are “combined” to form bigger and fewer groups, until
either a collusion path is found or no further combination is possible. The collusion
problem has no solution in the latter case. By combining we mean construction of
a path, from the spanning paths of the two individual connected components, that
visits every colluder in both components, as explained next.

Lemma 3 implies that two colluders in different connected components of F can
collude only if they share a piece of data in L (condition (6)). The algorithm
searches for two elements in GROUP, identified by (p,, i;) and (p,, i,), such that
TAIL[p,] knows a colluder v in p, and shares a piece of data L with TAIL[p,]. Note
that TAIL[p,] may not share a piece of data in L with v to allow them to collude,
nor may it know TAIL[p,] to collude with it. But by construction TAIL[p,] knows
all colluders involved in p,, in particular v. TAIL[p,] transfers all its knowledge to
v. Then v and TAIL[p,] indeed share a piece of data in L and can collude. Hence

Pr2i=py-(TAIL[p5],v) - py - (TAIL[py], v)

is a path in @. Moreover its last recipient v knows the combined information i, :=
A(i, U i,). The construction of p,, from p, and p, is illustrated in Figs. 3 and 4. If
i;, contains 7, then the algorithm stops and returns the collusion path p,.
Otherwise, the two elements (p,, ;) and (p,, i,) are removed from GROUP and
the new element (p,,, i;,) is added, and the search repeats. When no further elements
in GROUP can combine their information the algorithm concludes that the collusion
problem has no solution and returns NIL.

We now present the algorithm. Recall that p denotes a path or the set of colluders
involved in the path, depending on the context.

176 LOW AND MAXEMCHUK

FIG. 3. Elements (p,,i,) and (p,, i,) of GROUP.

ALGORITHM 2.

Input: An initial state w(0) and a target information set 7.
Output: A collusion path p if the collusion problem has a solution; NIL otherwise.

1. Execute Algorithm 1
2. If a collusion path p is found, then Return(p)
3. While there are distinct elements (p, i;), (p,, i,) of GROUP satisfying
ihnpyZdand i;ni,nL#¢P
Let vei,np,
P12 P2 (TAILLpy], v) - py - (TAIL[py], 0)
i< A(i Vi)
If i;, = T then Return(p,,)
Remove (p,, iy), (p,, i) from GROUP
Add (py5, 1) to GROUP
4. Return(NiL).

The correctness of the algorithm is guaranteed by the following theorem.?

THEOREM 7. The algorithm terminates. Moreover it returns a collusion path if the
collusion problem has a solution and NIL otherwise.

Proof. 1If there is a connected component of F whose combined initial informa-
tion contains 7, then Algorithm 1 will return a collusion path and Algorithm 2
terminates in step 2. Otherwise Algorithm 1 will return the linked list GROUP that
contains one element for each connected component of F. Each time the “while”

21f both p, =u and p,=v consist of single nodes, then the assignment for p,, in step 3 should be
modified to be p;, < (u, v). If only p, =u is a single node, then p,, < p, - (TAIL[p,], v) - (1, v). If only
p>=v is a single node, then p, < p, - (TAIL[p,], v). The proof for these cases is simpler and omitted.

A COLLUSION PROBLEM AND ITS SOLUTION 177

4 v
| O
\ 5 3 /
\ /
\ 2 /
N\ /
AN ~ 7
~N ®) ¢ e
~ ~
~ ~
\\\ //

FIG. 4. New element (p,,, i;;) of GROUP.

loop in step 3 is entered, the linked list GROUP is shortened by one. Hence
Algorithm 2 must terminate, either inside the “while” loop with a collusion path,
or in step 4 with NiL. We are left to show that the collusion problem has a solution
if and only if a collusion path is returned.

Suppose Algorithm 2 terminates in step 3 with a p,,. Then i;, 2 7. Hence, to
show that p,, is a collusion path, we will show by induction on n, the number of
times the “while” loop is entered, that p,, is a path in @ and that its last recipient
knows i,.

Consider n=1. As proved in the last section p, and p, are paths in @ and their
last recipients know i, and i,, respectively. We show portion by portion that p,, is
a path. To show that p,-(TAIL(p,), v) is a path, note that vep, and hence
UE Wran(py)(p2)-1. Moreover ¢ #w (p3). N S Wy (,)(p2). N since v and TAIL(p,) are
in the same connected component of F. Hence the event (TAIL(p,), v) is enabled in
state w(p,); i.e., p, - (TAIL(p,), v) is a path. Since p, is a path starting from state
w(0), so is it starting from state w(p, - (TAIL(p,), v)); i.e, p, - (TAIL(p,),v)-p, is a
path. Finally since TAIL(p,) knows i, and v knows i,, the condition guarding the
entry to the “while” loop guarantees that the last event (TAIL(p,), v) is enabled in
state w(p, - (TAIL(p,), v)-p,). Hence p,, is a path; moreover its last recipient v
knows i, = 4(i; U i,).

When n> 1, TAIL(p,) and v may be in different connected components of F, yet
the event (TAIL(p,), v) is still enabled because the set of message identifiers that
TAIL(p,) has includes those that v has as vep,. With this observation the same
argument as for n=1 goes through to show that p,, is a path and that its last
recipient v knows i, = A4(i, ui,). Hence when the algorithm terminates in step 3,
P1» 1s a collusion path.

Conversely suppose a collusion path p exists; without loss of generality we may
assume that p is minimal. We now show that a p,, can be constructed according

178 LOW AND MAXEMCHUK

to the recipe in step 3. Hence the algorithm cannot terminate with a NiL. The
collusion path p must involve nodes that belong to different connected components
of F, for otherwise, there is a connected component of F whose combined initial
information contains 7" and Algorithm 1 would have returned a collusion path.
Hence suppose the set of colluders in p belongs to two connected components
of F; the argument can be easily extended to the case where p involves more than
two connected components.

Let p=(sy,7)($1,7) - (S,,7,). Since p is minimal only the last recipient r,
knows T by Lemma 2. Without loss of generality, suppose that the two connected
components correspond to (p,,i;) and (p,,i,) of GROUP after Algorithm 1
terminates and before step 3 is entered for the first time. Suppose that in each of
the first k—1 events of p both the sender and the receiver belong to the same
connected component of F, and (s, r,) is the first event that crosses between the
two components, i.e., s,€p, and r,€p,, say. We claim that the path p,, so
constructed from p, and p, in step 3 would have been a collusion path.

To see this, let p* ' be the first k — 1 events of p. Since (s;, r,) is enabled after
p*~1 has been followed, we must have

reewy(pt .1 (12)

p#w (pF). Tavw, (pF). In L. (13)

But s,ep, and r ep,, and hence ilzfz(pl)gka(p"_l).l and i,= f5(p,)2
w, (p*~").1 Thus (12) implies that i, N p, # ¢ and (13) implies that i, ni, " L #¢.
Therefore p,, can be constructed as specified in step 3. Moreover p, U p,2p by
choice of p, and p,, and hence i, =4(i; Vi,)2f(p)2T; ie., p,, is indeed a
collusion path.

Finally it is possible that the execution of the algorithm combines one of the
two elements, say (p,, i), with some other elements, instead of combining it with
(p,,i,). In this case, since information of colluders can only increase, the new
combined element of GROUP remains eligible to be combined with (p,, i,). Hence
the algorithm must eventually terminate either with a collusion path that involves
colluders in p, U p, or some other collusion path. This completes our proof. ||

5. LEAST COST COLLUSION

Suppose a cost is incurred when a pair of users collude. In this section we present
the negative result that the problem of determining a collusion path that incurs the
least cost, when one exists, is NP-hard.

This problem is of interest for two reasons. First, it is usually impossible to
completely eliminate successful collusion. For instance, if every participant colludes,
any information can be uncovered. Hence it might be more practical to design
protocols that eliminate successful collusions that are inexpensive. Second, crypto-
graphic protocols are used to keep information apart in order to protect privacy.
However, it may sometimes be necessary to link information, e.g., for law enforcement

A COLLUSION PROBLEM AND ITS SOLUTION 179

purposes or to uncover an audit trail, by forcing protocol participants to collude.
It is then desirable to determine a collusion path that incurs the least cost.

The algorithms presented earlier determine whether the collusion problem has a
solution and produce a collusion path when it does, but the collusion path produced
is generally not the least-cost path. For instance, the algorithm in Section 3 constructs
a collusion path that visits every node in a connected component of the graph F,
even when a subset of the colluders in the connected component suffices. This is
illustrated in Low et al. (1996).

To narrow our problem, we will consider the special case considered in Section 3
where L =¢. We argue that the algorithm there is polynomial and hence can be
first used to determine a connected component of graph F from which a collusion
path can be constructed, if any. We will show that, even for the special case where
L = ¢, determining the least cost collusion is NP-hard with respect to this connected
component.

We claim that the complexity of the algorithm in Section 3 is polynomial in
|U| +|T|+ M +J, where U is the set of colluders, T is the target information set,
M :=|U,cow,0).N|, and J:= |,y Ww.(0).1]. The construction of graph F in line
1 of the algorithm takes O(M?) time. We make the assumption that the verification
of the condition 4(B) =2 T takes O(|B| |T|) time. Then lines 4 and 5 of SEARCH(s)
takes O(J |T|). Since SEARCHY(s) is an adaptation of a breadth-first search, each
call to SEARCH(s) takes O(k2+J |T|) time (see Cormen et al. (1993, Chap. 23)),
where k, is the number of nodes in the connected component of F that contains s
when SEARCHY(s) is invoked for the nth time. Since SEARCHY(s) is called as many
times as the number m of connected components of F, the algorithm takes time

OM?+ (ki+J|T|)+ --- + (k2 +J|T))),

where 37 k,=|U|. Noting that m<|U| and ¥"_, k2<|U|? this expression is
reduced to O(M?+ |U|*> +J |T| |UJ).

Hence, suppose we have already determined a connected component G = (V, E)
of the graph F using the polynomial algorithm in Section 3. Suppose that

£1=4(U wior1)=2T (14)

uelV

and hence a collusion path can be determined from G. Suppose that for each pair
(u, v) € E, collusion between them costs c¢(u, v) in either direction. We are interested
in the following decision problem. Recall that the environment for the collusion
problem is (U, D, K, L = ¢).

Least-Cost Collusion

Instance. A connected component G = (V, E) of F, initial state (w,(0), ue V') for
nodes in V, target information set 7, such that (0) is satisfied; an integer k.

180 LOW AND MAXEMCHUK

Question. Does there exist a collusion path p such that the total collusion cost
2w vyep (U, v) is less than k7

To show that the least-cost collusion problem is NP-hard, we consider a
special case where ¢(u, v) =c¢, independent of (u, v). Then the total collusion cost
2w vyep C(u, V) =c | p| where |p| is the number of colluders in p. Note that we only
need to consider collusion paths p of the form in Theorem 5. Hence the total
cost is minimized if p is a collusion path that involves the minimum number of
colluders.

Minimum Collusion Path

Instance. A connected component G = (V, E) of F, initial state (w,(0), ue V') for
nodes in V, target information set 7, such that (14) is satisfied; an integer k.

Question. Does there exist a connected subgraph G' =(V', E') of G such that

fz(V’)=A< U %(0).1>2T (15)

uel”

and |V'| <k?

In the definition of the minimum collusion path problem we only need to identify
a connected subgraph of G with the smallest number of colluders. Application of
the polynomial algorithm in Section 3 to the subgraph will then yield a collusion
path that involves the minimum number of colluders. When collusion costs are
equal it is also the least-cost path. Hence the minimum collusion path problem is
indeed a special case of the least-cost collusion problem.

We now show that the minimum collusion path problem is NP-complete, by
reducing the well-known NP-complete set-covering problem to it.

THEOREM 8. Suppose that the verification of the condition A(B)2T takes
polynomial time. Then the minimum collusion path problem is NP-complete.

Proof. We will first show that the minimum collusion path problem is in the
class NP. Then we will show how to reduce any instance of the set-covering problem
to an instance of the minimum collusion path problem. Since the minimum set-
covering problem is NP-complete, the theorem will be proved.

Given a candidate subgraph G' =(V’, E') of G, we only need to verify condition
(15) and that | V'] <k. Both can be done in polynomial time under the assumption
of the theorem. Hence the least-cost collusion problem can be verified in polynomial
time and is therefore in NP.

An instance (X, Z,[) of the set-covering problem (see Cormen et al. (1993,
Chap. 37)) consists of a finite set X and a family 2 of subsets of X, such that every
element of X belongs to at least one subset in . The question is to find a subset
% < Z such that

x= c (16)

Ce%

A COLLUSION PROBLEM AND ITS SOLUTION 181

and that |%| < /. Given an instance (X, Z, [) of the set-covering problem, construct
the following instance (G, w(0), T, k) of the minimum collusion path. Let G = (V, E) be
a fully connected undirected graph that has a node v for every subset X(v) of X
in . For the initial state, let w,(0)./= X(v) for each ve V, and let w,(0).N be such
that the graph derived from w(0) is fully connected (i.e., every pair (u, v) shares a
unique message in state w(0)). Let 7= X and k = . Treat the elements of X as unen-
crypted elements so that 4(B)= B for any subset B of (J,., w,(0).1. Then there is
a solution % to the set-covering problem such that (16) holds if and only if the
subgraph G’ =(V", E') of G induced by V' ={v|X(v)e %} =V is a solution to the
minimum collusion path problem. Hence the set-covering problem can be reduced
to the minimum collusion path problem. Moreover, the reduction takes polynomial
time. Hence the minimum collusion path problem is NP-complete. |

Since the minimum collusion problem is a special case of the least-cost collusion
problem, we have the following corollary.

COROLLARY 9. The least-cost collusion problem is NP-hard.

6. CONCLUSION

We have formulated a collusion problem that determines whether a group of
colluders can collectively discover a target set of unencrypted information starting
from their initial knowledge. We have designed a simple algorithm that determines
whether a collusion problem has a solution and, when it does, computes a collusion path.

We view a cryptographic protocol as defining a process by which information is
transferred among some users and hidden from others. The algorithm presented
here can be applied to determine whether a subset of protocol users can discover,
through collusion, the information that is to be hidden from them during or after
a protocol’s execution.

Our algorithm does not necessarily compute a collusion path that involves the
minimum number of colluders. We have shown, however, that this problem is
NP-complete. More generally, suppose there is a collusion cost associated with each
pair of colluders. We have shown that the least-cost collusion problem is NP-hard.

ACKNOWLEDGMENT

We are grateful to the anonymous referees for helpful suggestions that led to Lemma 3 and that
improved the presentation of the paper.

Received January 14, 1997; final manuscript received September 5, 1997

REFERENCES

Burrows, M., Abadi, M., and Needham, R. (1990), A logic of authentication, ACM Trans. Comput.
Systems 8(1), 18-36.

Chaum, D. (1981), Untraceable electronic mail, return addresses, and digital pseudonyms, Comm. ACM
24(2), 84-88.

182 LOW AND MAXEMCHUK

Cormen, T., Leiserson, C., and Rivest, R. (1993), “Introduction to Algorithms,” MIT Press, Cambridge,
MA.

Dolev, D., Even, S., and Karp, R. (1982), On the security of Ping-Pong protocols, Inform. and Control
55, 57-68.

Denning, D., and Sacco, G. (1981), Timestamps in key distribution protocols, Comm. ACM 24(8),
533-536.

Dukach, S. (1992), SNPP: A Simple Network Payment Protocol, in “Proceedings of the Computer
Security Applications Conference,” San Antonio, TX.

Dolev, D., and Yao, A. (1983), On the security of public key protocols, IEEE Trans. Inform. Theory
1T-29(2), 198-208.

Federrath, H., Jerichow, A. and Pfitzmann, A. (1996), Mixes in mobile communication systems:
Location management with privacy, in “Proc. Workshop on Information Hiding” (Ross Anderson,
Ed.), Lecture Notes in Computer Science, Vol. 1174, pp. 121-135, Springer-Verlag, Berlin/New York.

Gong, L., Needham, R., and Yahalom, R. (1990), Reasoning about belief in cryptographic protocols, in
“Proceedings of the 1990 IEEE Symposium on Security and Privacy,” pp. 234-248.

Kemmerer, R. (1989), Analyzing encryption protocols using formal verification techniques, /IEEE J.
Selected Areas in Comm. 7(4), 448-457.

Kemmerer, R., Meadows, C., and Millen, J. (1994), Three systems for cryptographic protocol analysis,
J. Cryptology 71, 79-130.

Low, S., and Maxemchuk, N. (1996), Modeling cryptographic protocols and their collusion analysis, in
“Proc. of First International Workshop on Information Hiding” (Ross Anderson, Ed.), Lecture Notes
in Computer Science, Vol. 1174, pp. 169-186, Springer-Verlag, Berlin/New York.

Low, S., and Maxemchuk, N. (1997), An algorithm to compute collusion paths, in “Proc. of
Infocom’97,” Kobe, Japan.

Low, S., Maxemchuk, N., and Paul, S. (1996), Anonymous credit cards and their collusion analysis,
IEEE/ACM Trans. Networking 4(6), 809-816.

Meadows, C. (1991), A system for the specification and analysis of key management protocols, in
“Proceedings of the 1991 IEEE Symposium on Security and Privacy,” pp. 182-195.

Millen, J. (1984), The Interrogator: A tool for cryptographic protocol security, in “Proceedings of the
1984 IEEE Symposium on Security and Privacy,” pp. 134-141.

Maxemchuk, N., and Low, S. (1995), The use of communications networks to increase personal privacy,
in “Proceedings of Infocom’95,” pp. 504-512.

Moore, J. (1988), Protocol failures in cryptosystems, Proc. IEEE 76(5), 594-602.

Needham, R., and Schroeder, M. (1978), Using encryption for authentication in large networks of
computers, Comm. ACM 21(12), 993-999.

Needham, R., and Schroeder, M. (1987), Authentication revisited, ACM Oper. System Rev. 21(1), 7.

Pfitzmann, A., Pfitzmann, B., and Waidner, M. (1991), ISDN-MIXes—Untraceable communications with
very small bandwidth overhead, in “Proc. IFIP/Sec’91,” pp. 245-258.

Pfitzmann, A., and Waidner, M. (1987), Networks without user observability, Comput. and Security
6(2), 158-166.

Simmons, G. (1985), How to (selectively) broadcast a secret, in “Proceedings of the 1985 IEEE
Symposium on Security and Privacy,” pp. 108-113.

Simmons, G. (1994), Proof of soundness (integrity) of cryptographic protocols, J. Cryptology 7(2),
69-717.

Tatebayashi, M., Matsuzaki, N., and Newman, D. (1989), Key distribution protocol for digital mobil
communication systems, in “Advances in Cryptology—-CRYPTO’89” (G. Brassard, Ed.), Lecture
Notes in Computer Science, Vol. 435, pp. 324-333, Springer-Verlag, New York.

