NOTE

A Generalization of a Theorem of Dirac

Tristan Denley
Department of Mathematics, The University of Mississippi, University, Mississippi 38677

and
Haidong Wu^{1}

Denartment of Mathematics. Southern Universitv. Baton Rouge. Louisiana 70813
iew metadata, citation and similar papers at core.ac.uk

Abstract

In this paper, we give a generalization of a well-known result of Dirac that given any k vertices in a k-connected graph where $k \geqslant 2$, there is a circuit containing all of them. We also generalize a result of Häggkvist and Thomassen. Our main result partially answers an open matroid question of Oxley. © 2001 Academic Press

1. INTRODUCTION

All graphs considered in this paper are simple. A well-known result of Dirac [2] states that, given any k vertices in a k-connected graph where $k \geqslant 2$, there is a circuit containing all of them. More generally, Dirac [2] proved the following theorem:

Theorem 1.1. Given any two edges and any $k-2$ vertices of a k-connected graph, where $k \geqslant 2$, there is a circuit containing all of them.

Considering edges rather than vertices, Häggkvist and Thomassen [3] proved the following result.

Theorem 1.2. For any set S of independent edges of size $k-1$ in a k-connected graph, where $k \geqslant 2$, there is a circuit containing all edges of S.
${ }^{1}$ The research of this author was partially supported by the Louisiana Board of Regents Support Fund LEQSF (1999-2002)-RD-A-34. His current address is Department of Mathematics, The University of Mississippi.

The following corollary of Theorem 1.2 is a slight extension.
Corollary 1.3. For any set S of independent paths of total length $k-1$ in a k-connected graph, where $k \geqslant 2$, there is a circuit containing all elements of S.

The aim of this paper is to generalise both of these results, taking the following result of Oxley [7] as inspiration. A cocircuit of a graph is a nonempty minimal-edge cut. In a matroid, a circuit C meets a cocircuit C^{*} if they have at least one common element.

Theorem 1.4. If M is a 3 -connected matroid, then, for every pair $\{a, b\}$ of distinct elements of M and every cocircuit C^{*} of M, there is a circuit that contains $\{a, b\}$ and meets C^{*}.

Note that for a k-connected graph where $k \geqslant 2$, each vertex is associated with a cocircuit, that is, the set of edges that are incident with that vertex. Therefore, Theorem 1.4 generalizes Theorem 1.1 for the case $k=3$. The answer to the following open question of Oxley [7], if true, would be a natural extension of Dirac's results to matroids.

Question 1. Let M be a k-connected matroid where $k \geqslant 4$. Given any two edges e, f and $k-2$ cocircuits, is there a circuit of M containing e, f and meeting all the $k-2$ cocircuits?

Clearly, Question 1 is stronger than the following question:
Question 2. Given any k cocircuits of a k-connected matroid, where $k \geqslant 4$, is there a circuit of M meeting all these cocircuits?

In this paper, we show that the answers to these two questions are affirmative for graphic matroids. Our main theorem also gives a common generalization to both Theorem 1.1 of Dirac and Theorem 1.2 of Häggkvist and Thomassen. For terminology not mentioned in the paper, we follow Bondy [1]. In a graph, a circuit C meets a cocircuit C^{*} if $E(C) \cap$ $E\left(C^{*}\right) \neq \varnothing$. Let T be a circuit or a cocircuit of a graph G, for simplicity, we may use T to denote the set of edges in T. For example, we use $G \backslash T$ to denote the graph $G \backslash E(T)$.

2. THE MAIN RESULT

Our main result generalizes both Theorem 1.1 and Theorem 1.2. It also answers Oxley's question affirmatively for graphic matroids.

Theorem 2.1. Let G be a k-connected graph where $k \geqslant 2$. Let S be a set of independent paths of total length s and T be a set of t cocircuits, where $s+t=k$ and $t \geqslant 1$. Then there is a circuit of G containing each path of S and meeting each cocircuit of T.

We will use the following well-known lemma, a direct consequence of Menger's Theorem [5].

Lemma 2.2. Let G be a k-connected graph, where $k \geqslant 1$, let x be a vertex of G, and let Y be a set of vertices of G, where $x \notin Y$. Then there exist distinct vertices $y_{1}, y_{2}, \ldots, y_{m}$ in Y, where $m=\min \{k,|Y|\}$ and internallydisjoint paths $P_{1}, P_{2}, \ldots, P_{m}$, such that (i) P_{i} is an $x y_{i}$-path, and (ii) $V\left(P_{i}\right) \cap Y=\left\{y_{i}\right\}$ for all $1 \leqslant i \leqslant m$.

Proof of Theorem 2.1. We use induction. Suppose that $T=\left\{C_{1}^{*}, C_{2}^{*}, \ldots\right.$, $\left.C_{t}^{*}\right\}$. Clearly, the theorem is true for 2-connected graphs. Suppose that the theorem is true for all $(k-1)$-connected graphs, where $k \geqslant 3$. Now suppose that G is a k-connected graph $(k \geqslant 3)$. If $t=1$, then by Corollary 1.3, there is a circuit C containing all paths of S. If $t \geqslant 2$, by induction, there is a circuit C containing each path of S and meeting all except possibly one cocircuit, say C_{1}^{*} in T. If C meets C_{1}^{*} also then we are done. Thus we may assume that $E(C) \cap E\left(C_{1}^{*}\right)=\varnothing$. As C_{1}^{*} is a cocircuit, $G \backslash C_{1}^{*}$ has exactly two components, denoted by H and T. Clearly, either C is a circuit of H or a circuit of T. Without loss of generality we may assume that $V(C) \subseteq V(H)$. Let $A=V(H) \cap V\left(C_{1}^{*}\right)$ and $B=V(T) \cap V\left(C_{1}^{*}\right)$. Suppose that $C=v_{0} v_{1} \cdots v_{p} v_{0}$ where $v_{p+1}=v_{0}$ and $p \geqslant 2$.

Case 1. Suppose that $|A| \leqslant k-1$. Then as G has no vertex-cut with fewer than k elements, we deduce that $V(H)=A$ and $V(C) \subseteq A$. As S is a set of independent paths and each is contained in C, there is some i, $0 \leqslant i \leqslant p$, such that $v_{i} v_{i+1}$ is not in any path of S. As both v_{i} and v_{i+1} are elements of A, v_{i} and v_{i+1} are end-vertices of some edges a and b of C_{1}^{*}, respectively. Assume that $a=v_{i} u$ and $b=v_{i+1} w$. As T is connected, there is a path P connecting u and w in T (if $u=w$, take P as the trivial path). Thus $C_{1}=C \cup\{a, b\} \cup P \backslash v_{i} v_{i+1}$ is a circuit containing all paths of S and meeting C_{1}^{*}. We claim that C_{1} is a desired circuit. If $t=1$, then it is clearly true. Suppose $t \geqslant 2$. For each $j=2,3, \ldots$, t, we know that $E(C) \cap E\left(C_{j}^{*}\right) \neq \varnothing$. Since a cocircuit and a circuit cannot have exactly one element in common, we conclude that $\left(E(C) \backslash v_{i} v_{i+1}\right) \cap E\left(C_{j}^{*}\right) \neq \varnothing$. As $E(C) \backslash v_{i} v_{i+1} \subseteq E\left(C_{1}\right)$, it follows that C_{1} is a circuit with the required properties.

Case 2. Suppose that $|A| \geqslant k$. Add a new vertex x and for each vertex y in A add an edge $x y$. We denote the new graph by G_{1}. Since $|A| \geqslant k$, it follows that G_{1} is also k-connected. By Lemma 2.2, there exist distinct
vertices $y_{1}, y_{2}, \ldots, y_{m}$ in $V(C)$, where $m=\min \{k,|V(C)|\}$ and internallydisjoint paths $P\left[y_{1}, x\right], P\left[y_{2}, x\right], \ldots, P\left[y_{m}, x\right]$, such that (i) $P\left[y_{i}, x\right]$ is a $y_{i} x$-path, and (ii) $V\left(P\left[y_{i}, x\right]\right) \cap V(C)=\left\{y_{i}\right\}$ for all $1 \leqslant i \leqslant m$.

Suppose that $|V(C)| \geqslant k$. Then $m=k$ and $y_{1}, y_{2}, \ldots, y_{k}$ induce a partition of C into k segments. Now S contains a total of s edges which belong to at most s segments. Each cocircuit of $T-\left\{C_{1}^{*}\right\}$ meets C also. As $s+t-1<k$, by the pigeonhole principle, we can find a segment L such that $C \backslash L$ still contains all paths of S and meets each of $C_{2}^{*}, C_{3}^{*}, \ldots, C_{t}^{*}$. Suppose that $L=C\left[y_{i}, y_{j}\right]$. Traverse from y_{i} to x in the path $P\left[y_{i}, x\right]$ and let u_{1} be the first vertex in the path such that $u_{1} \in A$. Similarly choose w_{1} in the path $P\left[y_{j}, x\right]$. By the choice of u_{1} and w_{1} and that C_{1}^{*} is a cocircuit of G_{1}, we deduce that $V\left(P\left[y_{i}, u_{1}\right]\right) \subseteq V(H)$ and $V\left(P\left[y_{j}, v_{1}\right]\right) \subseteq V(H)$, where $P\left[y_{i}, u_{1}\right]$ is the subpath of $P\left[y_{i}, x\right]$ from y_{i} to u_{1} and $P\left[y_{j}, w_{1}\right]$ is the subpath of $P\left[y_{j}, x\right]$ from y_{j} to w_{1}. As $u_{1}, w_{1} \in A$, we deduce that there exist u_{2}, w_{2} in B such that $\left\{u_{1} u_{2}, w_{1} w_{2}\right\} \subseteq C_{1}^{*}$. As T is connected, there is a path Q connecting u_{2} and w_{2} (if $u_{2}=w_{2}$, take Q as the trivial path). Then $(C \backslash L) \cup P\left[y_{i}, u_{1}\right] \cup P\left[y_{j}, w_{1}\right] \cup\left\{u_{1} u_{2}, w_{1} w_{2}\right\} \cup Q$ is the required circuit.

Suppose that $|V(C)| \leqslant k-1$. Then $m=|V(C)|$ and $V(C)=\left\{y_{1}, y_{2}, \ldots\right.$, $\left.y_{m}\right\}$. Relabeling if necessary, we may assume that $C=y_{1} y_{2}, \ldots, y_{m} y_{1}$ (assume that $y_{m+1}=y_{1}$). As S is a set of independent paths and each is contained in C, there is some $j, 1 \leqslant j \leqslant m$, such that $v_{j} v_{j+1}$ is not in any path of S. Now we show that $E(C) \backslash v_{j} v_{j+1}$ meets all cocircuits of T except C_{1}^{*}. This is clearly true for $t=1$. Suppose that $t \geqslant 2$. Since a cocircuit and a circuit cannot have exactly one common element, we conclude that $\left(E(C) \backslash y_{j} y_{j+1}\right) \cap E\left(C_{i}^{*}\right) \neq \varnothing$ for all $2 \leqslant i \leqslant t$. By a similar argument to that in the previous paragraph, we can find a circuit containing all paths of S and meeting all $C_{1}^{*}, C_{2}^{*}, \ldots, C_{t}^{*}$. This completes the proof of the theorem.

3. CONSEQUENCES

If we take each cocircuit in Theorem 2.1 as a cocircuit associated with some vertex, we get the following result immediately.

Corollary 3.1. Let G be a k-connected graph where $k \geqslant 2$. Let S be a set of independent paths with a total of s edges and T be a set of t vertices, where $s+t=k$ and $t \geqslant 1$. Then there is a circuit of G containing each path of S and each vertex of T.

The above corollary generalizes both Theorem 1.1 (when $k \geqslant 3$) and Theorem 1.2. Indeed, if $s=k-1$, the above corollary generalizes Theorem 1.2. When we take $s=2$, we get the following result immediately,
which answers Oxley's Question 1 for graphic matroids affirmatively (note that when $k=2$, the result is well-known).

Corollary 3.2. Let G be a k-connected graph where $k \geqslant 2$. Given any two edges e, f and $k-2$ cocircuits $C_{1}^{*}, C_{2}^{*}, \ldots, C_{k-2}^{*}$, there is a circuit of G containing $\{e, f\}$ and meeting all of $C_{1}^{*}, C_{2}^{*}, \ldots, C_{k-2}^{*}$.

When $s=0$ in Theorem 2.1, we get the following result, which answers Question 2 for graphic matroids. It also generalizes the well-known result of Dirac that given any k vertices in a k-connected graph where $k \geqslant 2$, there is a circuit containing all of them.

Corollary 3.3. Let G be a k-connected graph where $k \geqslant 2$. For any set S of k cocircuits, there is a circuit of G meeting each member of S.

The following immediate consequence of Theorem 2.1 generalizes Theorem 1.2 of Häggkvist and Thomassen [3].

Corollary 3.4. Let G be a k-connected graph, where $k \geqslant 2$. Then for any set S of independent edges of size $k-1$ and a cocircuit C^{*}, there is a circuit containing all edges of S and meeting S^{*}.

When $t=0$ in Theorem 2.1, the result may not be true anymore. However, Lovasz [4] conjectured that for any set L of independent edges of size k in a k-connected graph, if k is even or $G-L$ is connected, then G has a circuit containing all edges of L. Our theorem shows that for any set L of independent edges of size k, and for any cocircuit C^{*} containing an element $e \in L$, there is a circuit containing $L \backslash e$ and meeting C^{*}.

REFERENCES

1. J. A. Bondy, Basic graph theory: paths and circuits, in "Handbook of Combinatorics," Vol. 1, pp. 3-110, Elsevier, Amsterdam, 1995.
2. G. A. Dirac, In abstrakten Graphen vorhandene vollstaendige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960), 61-85.
3. R. Häggkvist and C. Thomassen, Circuits through specified edges, Discrete Math. 41 (1982), 29-34.
4. L. Lovasz, Problem 5, Period. Math. Hungar. 4 (1974), 82.
5. K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927), 95-115.
6. J. G. Oxley, "Matroid Theory," Oxford University Press, New York, 1992.
7. J. G. Oxley, A matroid generalization of a result of Dirac, Combinatorica 17 (1997), 267-273.
