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In this paper, we give a generalization of a well-known result of Dirac that given
any k vertices in a k-connected graph where k�2, there is a circuit containing all
of them. We also generalize a result of Ha� ggkvist and Thomassen. Our main result
partially answers an open matroid question of Oxley. � 2001 Academic Press

1. INTRODUCTION

All graphs considered in this paper are simple. A well-known result of
Dirac [2] states that, given any k vertices in a k-connected graph where
k�2, there is a circuit containing all of them. More generally, Dirac [2]
proved the following theorem:

Theorem 1.1. Given any two edges and any k&2 vertices of a k-connected
graph, where k�2, there is a circuit containing all of them.

Considering edges rather than vertices, Ha� ggkvist and Thomassen [3]
proved the following result.

Theorem 1.2. For any set S of independent edges of size k&1 in a
k-connected graph, where k�2, there is a circuit containing all edges of S.
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The following corollary of Theorem 1.2 is a slight extension.

Corollary 1.3. For any set S of independent paths of total length k&1
in a k-connected graph, where k�2, there is a circuit containing all elements
of S.

The aim of this paper is to generalise both of these results, taking the
following result of Oxley [7] as inspiration. A cocircuit of a graph is a
nonempty minimal-edge cut. In a matroid, a circuit C meets a cocircuit C*
if they have at least one common element.

Theorem 1.4. If M is a 3-connected matroid, then, for every pair [a, b]
of distinct elements of M and every cocircuit C* of M, there is a circuit that
contains [a, b] and meets C*.

Note that for a k-connected graph where k�2, each vertex is associated
with a cocircuit, that is, the set of edges that are incident with that vertex.
Therefore, Theorem 1.4 generalizes Theorem 1.1 for the case k=3. The
answer to the following open question of Oxley [7], if true, would be a
natural extension of Dirac's results to matroids.

Question 1. Let M be a k-connected matroid where k�4. Given any
two edges e, f and k&2 cocircuits, is there a circuit of M containing e, f
and meeting all the k&2 cocircuits?

Clearly, Question 1 is stronger than the following question:

Question 2. Given any k cocircuits of a k-connected matroid, where
k�4, is there a circuit of M meeting all these cocircuits?

In this paper, we show that the answers to these two questions are
affirmative for graphic matroids. Our main theorem also gives a common
generalization to both Theorem 1.1 of Dirac and Theorem 1.2 of Ha� ggkvist
and Thomassen. For terminology not mentioned in the paper, we follow
Bondy [1]. In a graph, a circuit C meets a cocircuit C* if E(C) &
E(C*){<. Let T be a circuit or a cocircuit of a graph G, for simplicity,
we may use T to denote the set of edges in T. For example, we use G"T
to denote the graph G"E(T ).

2. THE MAIN RESULT

Our main result generalizes both Theorem 1.1 and Theorem 1.2. It also
answers Oxley's question affirmatively for graphic matroids.

323NOTE



Theorem 2.1. Let G be a k-connected graph where k�2. Let S be a set
of independent paths of total length s and T be a set of t cocircuits, where
s+t=k and t�1. Then there is a circuit of G containing each path of S and
meeting each cocircuit of T.

We will use the following well-known lemma, a direct consequence of
Menger's Theorem [5].

Lemma 2.2. Let G be a k-connected graph, where k�1, let x be a vertex
of G, and let Y be a set of vertices of G, where x � Y. Then there exist
distinct vertices y1 , y2 , ..., ym in Y, where m=min[k, |Y|] and internally-
disjoint paths P1 , P2 , ..., Pm , such that (i) Pi is an xyi -path, and (ii)
V(Pi) & Y=[ yi] for all 1�i�m.

Proof of Theorem 2.1. We use induction. Suppose that T=[C1*, C2*, ...,
C t*]. Clearly, the theorem is true for 2-connected graphs. Suppose that the
theorem is true for all (k&1)-connected graphs, where k�3. Now suppose
that G is a k-connected graph (k�3). If t=1, then by Corollary 1.3, there
is a circuit C containing all paths of S. If t�2, by induction, there is a
circuit C containing each path of S and meeting all except possibly one
cocircuit, say C 1* in T. If C meets C1* also then we are done. Thus we may
assume that E(C) & E(C1*)=<. As C 1* is a cocircuit, G"C 1* has exactly
two components, denoted by H and T. Clearly, either C is a circuit of
H or a circuit of T. Without loss of generality we may assume that
V(C)�V(H). Let A=V(H) & V(C1*) and B=V(T ) & V(C1*). Suppose that
C=v0v1 } } } vpv0 where vp+1=v0 and p�2.

Case 1. Suppose that |A|�k&1. Then as G has no vertex-cut with
fewer than k elements, we deduce that V(H)=A and V(C)�A. As S is a
set of independent paths and each is contained in C, there is some i,
0�i�p, such that vi vi+1 is not in any path of S. As both vi and v i+1 are
elements of A, vi and vi+1 are end-vertices of some edges a and b of C1* ,
respectively. Assume that a=vi u and b=vi+1w. As T is connected, there
is a path P connecting u and w in T (if u=w, take P as the trivial path).
Thus C1=C _ [a, b] _ P"vivi+1 is a circuit containing all paths of S
and meeting C1*. We claim that C1 is a desired circuit. If t=1, then it is
clearly true. Suppose t � 2. For each j = 2, 3, ..., t, we know that
E(C) & E(C j*){<. Since a cocircuit and a circuit cannot have exactly one
element in common, we conclude that (E(C)"vivi+1) & E(C j*){<. As
E(C)"vivi+1 �E(C1), it follows that C1 is a circuit with the required
properties.

Case 2. Suppose that |A|�k. Add a new vertex x and for each vertex
y in A add an edge xy. We denote the new graph by G1 . Since |A| � k,
it follows that G1 is also k-connected. By Lemma 2.2, there exist distinct
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vertices y1 , y2 , ..., ym in V(C), where m=min[k, |V(C)|] and internally-
disjoint paths P[ y1 , x], P[ y2 , x], ..., P[ ym , x], such that (i) P[ y i , x] is a
yi x-path, and (ii) V(P[ yi , x]) & V(C)=[ yi] for all 1�i�m.

Suppose that |V(C)|�k. Then m=k and y1 , y2 , ..., yk induce a partition
of C into k segments. Now S contains a total of s edges which belong
to at most s segments. Each cocircuit of T&[C 1*] meets C also. As
s+t&1<k, by the pigeonhole principle, we can find a segment L such
that C"L still contains all paths of S and meets each of C 2*, C3* , ..., C t*.
Suppose that L=C[ yi , yj]. Traverse from yi to x in the path P[ yi , x] and
let u1 be the first vertex in the path such that u1 # A. Similarly choose w1

in the path P[ yj , x]. By the choice of u1 and w1 and that C1* is a cocircuit
of G1 , we deduce that V(P[ y i , u1])�V(H) and V(P[ yj , v1])�V(H),
where P[ yi , u1] is the subpath of P[ yi , x] from yi to u1 and P[ yj , w1] is
the subpath of P[ yj , x] from yj to w1 . As u1 , w1 # A, we deduce that there
exist u2 , w2 in B such that [u1u2 , w1w2]�C1*. As T is connected, there is
a path Q connecting u2 and w2 (if u2=w2 , take Q as the trivial path). Then
(C"L) _ P[ yi , u1] _ P[ y j , w1] _ [u1u2 , w1w2] _ Q is the required circuit.

Suppose that |V(C)|�k&1. Then m=|V(C)| and V(C)=[ y1 , y2 , ...,
ym]. Relabeling if necessary, we may assume that C= y1 y2 , ..., ym y1

(assume that ym+1= y1). As S is a set of independent paths and each is
contained in C, there is some j, 1� j�m, such that vj vj+1 is not in any
path of S. Now we show that E(C)"vj vj+1 meets all cocircuits of T except
C1*. This is clearly true for t=1. Suppose that t�2. Since a cocircuit and
a circuit cannot have exactly one common element, we conclude that
(E(C)"yj yj+1) & E(C i*){< for all 2�i�t. By a similar argument to
that in the previous paragraph, we can find a circuit containing all paths
of S and meeting all C 1*, C2* , ..., C t*. This completes the proof of the
theorem. K

3. CONSEQUENCES

If we take each cocircuit in Theorem 2.1 as a cocircuit associated with
some vertex, we get the following result immediately.

Corollary 3.1. Let G be a k-connected graph where k�2. Let S be a
set of independent paths with a total of s edges and T be a set of t vertices,
where s+t=k and t�1. Then there is a circuit of G containing each path
of S and each vertex of T.

The above corollary generalizes both Theorem 1.1 (when k�3) and
Theorem 1.2. Indeed, if s=k&1, the above corollary generalizes
Theorem 1.2. When we take s=2, we get the following result immediately,
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which answers Oxley's Question 1 for graphic matroids affirmatively (note
that when k=2, the result is well-known).

Corollary 3.2. Let G be a k-connected graph where k�2. Given any
two edges e, f and k&2 cocircuits C1* , C2*, ..., C*k&2 , there is a circuit of G
containing [e, f ] and meeting all of C1* , C 2* , ..., C*k&2 .

When s=0 in Theorem 2.1, we get the following result, which answers
Question 2 for graphic matroids. It also generalizes the well-known result
of Dirac that given any k vertices in a k-connected graph where k�2, there
is a circuit containing all of them.

Corollary 3.3. Let G be a k-connected graph where k�2. For any set
S of k cocircuits, there is a circuit of G meeting each member of S.

The following immediate consequence of Theorem 2.1 generalizes
Theorem 1.2 of Ha� ggkvist and Thomassen [3].

Corollary 3.4. Let G be a k-connected graph, where k�2. Then for
any set S of independent edges of size k&1 and a cocircuit C*, there is a
circuit containing all edges of S and meeting S*.

When t=0 in Theorem 2.1, the result may not be true anymore.
However, Lovasz [4] conjectured that for any set L of independent edges
of size k in a k-connected graph, if k is even or G&L is connected, then
G has a circuit containing all edges of L. Our theorem shows that for any
set L of independent edges of size k, and for any cocircuit C* containing
an element e # L, there is a circuit containing L"e and meeting C*.
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