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1. INTRODUCTION

This paper is devoted to nonexistence of positive solutions for some
quasilinear elliptic inequalities and their systems in a bounded domain
� � � N, N � 1, without prescribing any boundary conditions.

We can formulate the typical problem that we shall study as follows:
‘‘Let � be a second order differential operator in divergence form and let
f : � � ��� �� be a given function. What are the sufficient conditions
that imply the nonexistence of positive solutions of

� u � f x , u in � , 1.1Ž . Ž . Ž .

when u � S, S being a suitable functional class that depends on �, f ,
and �?’’

The origin of the problem dates back to the classical Liouville theorem
for the Laplacian. In the case � � � N, its nonlinear versions have been
studied by many authors in connection with associated Dirichlet problems

Ž � 	 .in bounded domains see 1 and references therein . Most results in this
Ž � 	.direction deal with the class of radial solutions see 10, 12 . However,

� 	methods developed by Gidas and Spruck for the Laplace equation 6 and
by Mitidieri and Pohozaev for a wide class of quasilinear elliptic inequali-

� 	ties 7�9 allow us to obtain sharp nonexistence results without any
assumptions concerning the behaviour of eventual solutions. Here we

� 	adapt for our purposes some of the techniques developed in 9 .

1 On leave of absence from Department of Differential Equations, Moscow State Aviation
Institute, Volokolamskoe shosse 4, 125871, Moscow, Russia.
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For a bounded � and � � �, the most celebrated results are due to
� 	 Ž � 	.Brezis and Cabre 2 see also an earlier result obtained by Ni 11 . In´

particular, they have proved that the problem

� �
� q
�u � x u in � , 1.2Ž .½ u � 0 in � ,

has no solutions for � � 2 and q � 2. In this paper, we generalize the
� 	method of 2 in order to extend these nonexistence results to single

inequalities and systems of the form

� 
� a b� �
� u � x u � in � ,p� 
� c d 1.3Ž .� �
� � � x u � in � ,q

u , � � 0 in �

with p, q � 1 and appropriate conditions on a, b, c, d, � , and �.
The proof is based on an argument by contradiction which involves both

upper and lower a priori estimates. The lower bound follows directly from
the strong comparison principle. As for the upper bound, in anti-coercive
problems for the p-Laplacian it can be obtained by an appropriate change
of variables and applying the weak comparison principle to the trans-

� 	formed problem, as in 2 . However, this method requires rather restrictive
structural assumptions on the operator. Nevertheless, it is possible to
obtain the necessary estimates for a much wider class of problems, for
which the strong comparison principle is generally unknown. For this
purpose, we use special test functions in the definition of a weak solution

� 	similarly to 7�9 .
This paper is organized as follows.
Section 2 contains some auxiliary results which are used in the sequel

and a nonexistence theorem for a model problem associated to the
p-Laplacian operator.

Section 3 is devoted to systems of quasilinear elliptic inequalities of the
Ž .form 1.3 .

In Sections 4 and 5, these results are extended, respectively, to scalar
and vector non-homogeneous problems including coercive ones.

2. SINGLE INEQUALITIES

We start by considering the quasilinear elliptic problem

� �
� q
� u � x u in � ,p 2.1Ž .½ u � 0 in � ,
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where p � 1, � � � N is a bounded smooth domain, 0 � �, and N � 1 is
the dimension of the space.

We define the functional class of solutions as

p 
� q 1� � � �S � u � C � , Du , x u � L �Ž . Ž .� 4l oc

Ž . �Ž .which satisfy 2.1 in the sense of DD � , that is,

� � p
2 � �
� qDu Du , Dg d x � x u g d x 2.2Ž . Ž .H H
� �

Ž . Ž .for all g � DD � such that g � 0 in �. Throughout this paper, � , � will
denote the standard scalar product in � N.

Now we are able to formulate our first result.

Ž . Ž .THEOREM 2.1. Let � � min p, N and q � p 
 1. Then problem 2.1
has only a tri�ial solution in S.

One of the main ingredients in the proof of this theorem is the following
lemma.

1, pŽ . 1 Ž .LEMMA 2.2. Let u � W � and f � L � satisfyloc l oc


� u � f in DD
�

� . 2.3Ž . Ž .p

Let � : � � � be a C1, conca�e function such that

0 � �� � C in �

Ž �Ž Ž ... p
1 1 Ž .for some constant C. Then � u x � L � andl oc

p
1� �
� � u � � u f in DD � . 2.4Ž . Ž . Ž . Ž .Ž .p

� 	Proof. We modify for our use the method of proof of Lemma 1.7 in 2
� 	 2Ž .and Lemma 2 in 3 . Indeed, let us first suppose that � � C � , u �

2Ž . Ž .C � , and, respectively, f � C � . Then we have

2N � up
2 p
2� � � �
� � u � 
 p 
 1 � u � � u � Du �Ž . Ž . Ž . Ž .Ž . Ýp ž /� xii�1

N � � up
1 p
2� � �
 � u � DuŽ .Ž . Ý ž /� x � xi ii�1

p
1�� � u � f x . 2.5Ž . Ž . Ž .Ž .
Ž . 1Ž .It is clear that inequality 2.4 holds also for concave � � C � . If

1, pŽ . Ž . �Ž .u � W � is a solution to 2.3 in the sense of DD � , then we can takel oc
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2 1, p� 4 Ž . Ž .a sequence u � C � such that u � u in the sense of W � .k k l oc
Ž .Inequality 2.4 holds for each u . Multiplying it by an arbitrary nonnega-k

Ž .tive test function g � DD � and integrating its left-hand side by parts, we
get

p
2 p
1�D� u D� u , Dg d x � � u fg d x .Ž . Ž . Ž .Ž . Ž .H Hk k k
� �

Passing to the limit as k � 	, we obtain the claim.

For the proof of the theorem, we shall also make use of the following
Ž Ž . .result. Here and in the sequel B denotes B 0 .
 


LEMMA 2.3. Consider the problem

� �
p �
� w � c x in DD B ,Ž .p 0 

2.6Ž .½ w � 0 a.e. in B ,


where 
, c � 0.0

Ž . 1, pŽ . Ž .i Suppose that p � N and w � W B satisfies 2.6 . Then therel oc 


exist constants c , c � 0 depending only on N, p, 
, and c such that1 2 0

� �w x � c 
 c log x .Ž . 1 2

Ž . Ž . 1, pŽ .ii If p � N, problem 2.6 has no solutions in W B .l oc 


Ž . Ž .Proof. i First of all, let us search a radial solution w x of the
Dirichlet problem


p� �
� w � c x in B ,p 0 

2.7Ž .½ w � 0 on � B


Ž . � �in the form w x � c 
 c log x . A straightforward formal computation1 2
yields

c x c x2 1 2 n
Dw � 
 , . . . , ,2 2ž /� � � �x x

p
1N � � w c2p
2� �
� w � 
 Dw � N 
 p .Ž .Ý pp ž / � �� x � x xi ii�1

p 1� � Ž .Observe that Dw � L B if p � N. Therefore, if we choose cl oc 
 2
p 
 1

Ž .� c � N 
 p and c � c log 
, then w actually satisfies 2.7 in' Ž .0 1 2
�Ž .the sense of DD B , and the claim follows from the well-known weak


Ž � 	.comparison principle see, for example, 5 .
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Ž . Ž .ii Now suppose that p � N. Assume by contradiction that 2.6 has
1, pŽ .a solution w � W B . Then, by the Holder inequality, for each g �¨l oc 


Ž .DD � , we have

� � p
2 � � p
1 � �Dw Dw , Dg d x � Dw Dg . 2.8Ž . Ž .H p p
�

Ž . Ž .Now, if we choose a test function g � DD � such that g x � 1 in B for


Ž . Ž .some 
 � 0, B � �, then 2.2 and 2.8 imply


� � p
1 � �
1 � � p
2Dw � Dg Dw Dw , Dg d xŽ .p p H
�

� �
1 � �
p � �
1 � �
p� Dg x g d x � Dg x d x ,p H p H
� B


and the last integral diverges by the assumption p � N. This contradicts
� �our hypothesis that Dw � �	.p

Proof of Theorem 2.1. Suppose for contradiction that u � S is a solu-
Ž . � 4tion of 2.1 , and that u � 0, that is, there exists a point x � �� 0 such0

Ž .that u x � 0. In this case we can define a function0

� �
� q � �
� qf x � min x u x , x u x .� 4Ž . Ž . Ž .0 0

	Ž .Evidently, f � L � . Therefore we can conclude that there exists a
1, p 1Ž . Ž .unique solution u � W � � C � of the Dirichlet problem1 0


� u � f in � ,p 1
2.9Ž .½ u � 0 on � � .1

�Ž .By the weak comparison principle, u � u in DD � . On the other hand,1
	Ž . Ž Ž . � �
� qŽ . .since f � L � and 0 � f � 0 in particular, f x � x u x � 0 ,0 0 0

Ž .we can apply to 2.9 the strong maximum principle for the Dirichlet
Ž � 	.p-Laplacian see, for instance, 4 , which implies that there exist 
 � 0,

Ž .� � 0, and B with closure in � such that u x � � for all x � B .
 1 


Hence,

u � � in DD
� B . 2.10Ž .Ž .


Ž . � �
� qIf � � N, inequality 2.10 contradicts the assumption that x u �
1 Ž .L � .l oc

Ž .In the opposite case that is, if N � � � p , we introduce the function

p 
 1� 1
q�Ž p
1. 1
q�Ž p
1.s 
 � s � � ,Ž . Ž .� p 
 1 
 q� s � 2.11Ž . Ž .
 
q �Ž p
1.� s 
 � s � � .Ž . Ž .
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The assumption q � p 
 1 implies that the function � : � � � is
bounded in � and satisfies all conditions of Lemma 2.2. Hence,�

p
1 
� 
�� q � � � �
� � u x � � u u x � xŽ . Ž .Ž . Ž .p

�Ž .in the sense of DD B .


Now from the assumption � � p it follows that

� �
p �
� � u x � x in DD B 2.12Ž . Ž .Ž . Ž .p 


Ž .here we assume without loss of generality that 0 � 
 � 1 .
Ž .Since p � � � N, we can now apply Lemma 2.3 i with c � 1 and0

Ž . Ž Ž .. Ž Ž ..w x � � u x . Thus we obtain that � u x � �	 as x � 0, which is
incompatible with the fact that if u � 0 in �, the function � is defined

Ž .and bounded on the whole � , by virtue of 2.11 . Thus we arrive at a�
contradiction which proves the theorem.

Remark 2.4. If we restrict our attention to the class of radial solutions,
Ž .then the assumption u � C � is too strong. Indeed, if we suppose that

Ž � �. 1, pŽ . � �
� q 1 Ž .u � u x � W � and x u � L � , it follows directly from thel oc
�Ž .weak comparison principle that u � � in DD B for some � , 
 � 0,


B � �, and the rest of the proof remains unchanged.


Remark 2.5. For the proof of the theorem in case p � N, we can also
Ž . Ž .make use of Lemma 2.3 ii which implies that 2.12 has no solution

1, pŽ . 1, pŽ .� � W B . On the other hand, it is clear that if u � S � W � is al oc 
 l oc

Ž . Ž Ž .. Ž .solution of 2.1 and u � 0, then the function � u x defined by 2.11
1, pŽ . Ž Ž . .belongs to W B and satisfies 2.12 by Lemma 2.2 . This leads to al oc 


contradiction, too.

Remark 2.6. The above result can be easily generalized to a wider class
of nonlinear inequalities of the form


� u � a x f u x � � ,Ž . Ž . Ž .p

� . �where the function f : � � 0, �	 is continuous, nondecreasing on 0,
.�	 , strictly positive for s � 0, and

�	
1�Ž1
p.f s d s � �	,Ž .H

1

� 4while the function a : �� 0 � � is continuous, and there exist con-�
Ž .stants 
 � 0, c � 0, and � � min p, N such that0

� �
� � 4a x � c x for every x � B � 0 . 2.13Ž . Ž .0 
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For this purpose, it suffices to repeat the proof of Theorem 2.1 using the
Ž .function � s defined by the formula

s� 1�Ž1
p.f s d s s � � ,Ž . Ž .H�� s � �Ž . 
 1�Ž1
p.f � s 
 � s � �Ž . Ž . Ž .

Ž .instead of 2.11 .

3. SYSTEMS OF QUASILINEAR ELLIPTIC INEQUALITIES

In this section we shall study the quasilinear system of elliptic inequali-
ties

� 
� a b� �
� u � x u � in � ,p� 
� c d 3.1Ž .� �
� � � x u � in � ,q

u , � � 0 in �

with p, q, and � as above.
We suppose that the following hypotheses hold.

Ž .i a � p 
 1, d � q 
 1.
Ž . Ž .ii min b, c � 0.
Ž . Ž . Ž .iii � � min p, N , or � � min q, N .

We define the space of solutions as

S � u , � : u , � � C � ,Ž . Ž .�
� � p
1 � � q
1 � �
� a b � �
� c d 1Du , D� , x u � , x u � � L �Ž . 4l oc

Ž . �Ž .which satisfy 3.1 in the sense of DD � , that is,

� � p
2 � �
� a bDu Du , Dg d x � x u � g d x ,Ž .H H
� �

� � q
2 � �
� c dD� D� , Dg d x � x u � g d xŽ .H H
� �

Ž .for all g � DD � such that g � 0 in �.
Our first result in this section will be a generalization of Theorem 2.1.

Ž . Ž .THEOREM 3.1. Assume that hypotheses i � iii are fulfilled.
Ž . �Ž .Let u, � � S be a solution of system 3.1 in the sense of DD � . Then

u � 0 or � � 0.
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Proof. Suppose to the contrary that u and � verify our hypotheses, and
that u, � � 0. Similar to the beginning of the proof of Theorem 2.1, we
obtain that

u � � , � � � in DD
� B 3.2Ž .Ž .1 2 


Ž .for some � , � � 0 and B with closure in �. If � � N resp. � � N ,1 2 


Ž . � �
� a b 1 Ž .then inequality 3.2 contradicts the assumption that x u � � L �l oc

Ž � �
� c d 1 Ž ..resp. x u � � L � .l oc
Ž . Ž .Denote � � min � , � . By ii , we have1 2

� 
� a b� �
� u � x u � ,p� 3.3Ž .
� c d
 � �
� � � x � �q

�Ž .in DD B .


Now, we can define functions � and � as

p 
 1� 1
a�Ž p
1. 1
a�Ž p
1.s 
 � s � � ,Ž . Ž .� p 
 1 
 a� s � 3.4Ž . Ž .
 
a �Ž p
1.� s 
 � s � � ,Ž . Ž .

q 
 1� 1
d �Žq
1. 1
d �Žq
1.s 
 � s � � ,Ž . Ž .� q 
 1 
 d� s � 3.5Ž . Ž .
 
d �Žq
1.� s 
 � s � � .Ž . Ž .

Ž .By i , both functions � and � are bounded on � and satisfy all�
assumptions of Lemma 2.2. Hence,

p
1
� 
� 
��a b b b� � � � � � �
� � u x � x u � � u � x � � � x ,Ž . Ž .Ž . Ž .p� 3.6Ž .q
1
� 
� 
��c d c c
 � � � � � �
� � � x � x u � � � � x u � � xŽ . Ž .Ž . Ž .q

�Ž .in DD B .


We can assume without loss of generality that 0 � 
 � 1. Therefore, if
Ž Ž ..� � p recall that either this assumption, or � � q holds by iii , the first

Ž .inequality in 3.6 implies

b � �
p �
� � u x � � x in DD B . 3.7Ž . Ž .Ž . Ž .p 


Ž . Ž . b Ž .If N � p, we can apply to 3.7 Lemma 2.3 i with c � � and w x �0
Ž Ž .. Ž Ž ..� u x . Thus we can obtain that � u x � �	 as x � 0. On the other

Ž . 1, pŽ . Ž .hand, if p � N, then 3.7 has no solutions in W B by Lemma 2.3 ii .l oc 


Similarly, if � � q, we can apply the same argument to the second
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Ž . Ž Ž ..inequality in 3.6 and come to a conclusion that � � x � �	 as x � 0
Ž 1, qŽ ..or doesn’t exist in W B . This conclusion contradicts the fact that ifl oc 


Ž . Ž . Ž .u � 0 resp. � � 0 in � satisfies 3.1 , the function � resp. � is defined
Ž . Ž Ž ..and bounded on � by virtue of 3.4 resp. 3.5 , and moreover, if�

1, pŽ . Ž 1, qŽ .. Ž .u � W B resp. � � W B , the same property must hold for � ul oc 
 l oc 


Ž Ž ..resp. � � . This completes the proof of the theorem.

Remark 3.2. From the proof of Theorem 3.1 it is clear that in order to
Ž .establish nonexistence of solutions of the first inequality in 3.1 , it is

sufficient to assume that

a � p 
 1, b � 0, � � min p , N ,Ž .

Ž .and for the second inequality of 3.1 , respectively

d � q 
 1, c � 0, � � min q , N .Ž .

Moreover, similarly to Section 2, power functions at the right-hand side
can be replaced by more general nonlinearities. In fact, we can consider
the system of quasilinear elliptic inequalities

�
� u � a x g u g � in � ,Ž . Ž . Ž .p 1 2


� � � b x g u g � in � ,Ž . Ž . Ž .� q 3 4 3.8Ž .
u � 0 in � ,

� � 0 in � ,

Ž .where the assumptions on a, b, and g i � 1, . . . , 4 are specified below.i
Then the following assertion holds.

THEOREM 3.3. Let p, q � 1.
Ž .Suppose that there exist constants c , c , 
 � 0, � � min p, N , and � �1 2

Ž . Ž � 4 .min q, N such that B � � and the functions a, b � C �� 0 ; � satisfy
 �
the inequalities

� �
� � �
� � 4a x � c x , b x � c x in B � 0 .Ž . Ž .1 2 


� . Ž .Assume also that the nonlinearities g : � � 0, �	 i � 1, . . . , 4 are contin-i

� . Ž .uous, nondecreasing on 0, �	 , g s � 0 if s � 0, andi

�	
1�Ž1
p.g s d s � �	Ž .H 1

1
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or, alternati�ely,

�	
1�Ž1
q.g s d s � �	.Ž .H 4

1

Ž . Ž .Then any solution u, � � S of problem 3.8 is such that u � 0 or � � 0.

4. NON-HOMOGENEOUS SCALAR PROBLEMS

In order to prove the previous results, we needed Lemma 2.2 which was
based, in its turn, on the homogeneity of the left-hand side of the
inequalities in question. Moreover, certain assumptions on the structure of
the operator and�or behaviour of the solutions were essential in order to
apply the strong maximum principle. However, these assumptions are
rather restrictive. In the two remaining sections we shall show that an

� 	appropriate modification of the methods developed in 7�9 for quasilinear
elliptic inequalities and systems in � N enables us to prove nonexistence
results for a certain class of non-homogeneous problems.

Here and in the sequel we shall assume that A : � � � � � � � is a� �
Ž .Caratheodory function such that for any x, s, t � � � � � � we have´ � �

� � p
2 � � p
2c t � A x , s, t � c t , 4.1Ž . Ž .1 2

Ž . Ž .where c , c � 0 and p � 1. Denote 
 x � dist x, � � .1 2
Consider the problem

� � q
div A x , u , Du Du � a x u in � ,Ž . Ž .Ž . 4.2Ž .½ u � 0 in � ,

where the function a satisfies the inequality

a x � c 

� x x � � , 
 x � 
 4.3Ž . Ž . Ž . Ž .Ž .0 0

for some 
 � 0, c � 0, and � � p.0 0
We define the functional class of solutions as

a , p q�� q � � p �
1 1X � � u : � � � , a x u , a x u , Du u � L � ,Ž . Ž . Ž . Ž .� 4q , � � l oc

where � � � is a suitable negative number, p � 1, and q � 0.

Ž .THEOREM 4.1. Let A : � � � � � � � satisfy inequalities 4.1 with� �
1 � p � q � 1, p � N 
 1.

Suppose that the function a : � � � is continuous and that there exist�
Ž . Ž .constants 
 � 0, c � 0, and � � p such that a x enjoys property 4.3 .0 0
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Ž . a, pŽ .Then problem 4.2 has only a tri�ial solution in X � for any � suchq, �

that 1 
 p � � � 0.

Proof. We shall strictly follow the scheme of the proof of Theorems 2.1
� 	 Ž .and 4.1 in 9 . Let 1 
 p � � � 0 and suppose that u is a solution of 4.2 .

	Ž .We also introduce a cut-off function � � C �; � whose concrete form0 �
will be chosen later.

Ž . �Multiplying 4.2 by H � u �, where u � u � � with � � 0, and� � �

integrating by parts we obtain

q � � � � � 2 �
1a x u u � d x � � A x , u , Du Du u � d xŽ . Ž .H H� �

� � �� A x , u , Du u Du , D� d xŽ . Ž .H �

Ž .which by 4.1 implies

q � � � p �
1 � � p
2 �a x u u � d x � c � Du u � d x � Du Du , D� u d xŽ . Ž .H H H� 2 � �ž /
� � p �
1 � � p
1 � � �� c � Du u � d x � Du D� u d x .H H2 � �ž /

By the Young inequality with parameter � � 0 we have

q � � � � � p �
1a x u u � d x � c � Du u � d xŽ .H H� 2 �

p � � pc � p 
 1 c D�Ž .2 2p �
1 ��p
1� �� Du u � d x � u d x . 4.4Ž .H H� �p p
1p p� �

Ž � � pŽ . . Ž Ž .By putting � � c � 
 � p 
 1 �p note that � � � 0 if � is� 2
. pchosen sufficiently small and c � c �p� we obtain� 2

� � pD�pq � �
1 ��p
1� �a x u u � d x � � Du u � d x � c u d xŽ .H H H� � � � � p
1�

and then

� � pD�1�y 
1�yq � ��p
1a x u u � d x � c u a x a x d x , 4.5Ž . Ž . Ž . Ž .H H� � � p
1�
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Ž .where y � 1 has to be chosen. Next from 4.5 it follows that

1�y
q � Ž ��p
1. ya x u u � d x � c a x u � d xŽ . Ž .H H� � �ž /

1�y�
p y�� �D� 
y ��y

� a x d x 4.6Ž . Ž .H p y �
1ž /�

with 1�y � 1�y� � 1.
Next we can choose y satisfying

q � � � � � p 
 1 y ,Ž .
q � �i.e., y � . We observe that if � � 1 
 p then y � 1 since, by� � p 
 1

assumption, q � p 
 1 � 
�.
Ž . Ž .Using now 4.3 and passing to the limit as � � 0, from 4.6 we get

� � p y �D�
q�� � y �� ya x u � d x � c c 
 x d x . 4.7Ž . Ž . Ž .H H0 � p y �
1�

	Ž � 	.Now choose the cut-off function �. Let � � C �; 0, 1 be such that
 0

1 
 x � 2
 ,Ž .Ž .
� x �Ž .
 ½ 0 
 x � 
 ,Ž .Ž .

� �and D� � c �
 with c � 0 independent of 
.
 3 3

We define � by � � � 	 � � with � chosen sufficiently large.
 


Ž � 	.By this choice of �, using a standard change of variables see 9 , we
finally obtain

a x uq�� d x � k
 � , 4.8Ž . Ž .H
�


� Ž . 4where � � x � � : � x � 1 , k � 0 does not depend on 
, and
 


p q � � � � p 
 1Ž .
� � N 
 1 
 � � . 4.9Ž .ž /q 
 p � 1 q 
 p � 1

Observe that for � � 1 
 p � 
q, we have

p 
 � q � �Ž . Ž .
� � N 
 1 
 � 
 � N 
 1 
 � 
 p 
 �Ž .

q 
 p � 1

� N 
 1 
 p � 0. 4.10Ž .
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Ž Ž .We have made use of the assumptions p � min � , q � 1 and p � N 

.1.
Passing to the limit as 
�0, we obtain

a x uq�� d x � 0. 4.11Ž . Ž .H
�

This completes the proof.

If we choose � � 0, the same technique allows us to prove a similar
result for coercive problems. Indeed, the following theorem is valid.

THEOREM 4.2. Let 1 � p � N 
 1 and q � p 
 1. Suppose that the
� 4function a : �� 0 � � is continuous and that there exist constants 
 � 0,� 0

Ž .c � 0, and � � p such that a satisfies inequality 4.3 .0
Then the problem

� � q�div A x , u , Du Du � a x u in � ,Ž . Ž .Ž .�u � 0 in � , 4.12Ž .
a , p
u � X �Ž .q , �

has only a tri�ial solution for any 0 � � � p 
 1.

Another important class of operators that can be studied are the
so-called ‘‘mean curvature type’’ operators.

DEFINITION 4.3. Let A : � � � be a measurable function. Suppose� �
that there exists C � 0 such that for any t � 0 we have

0 � A t � C. 4.13Ž . Ž .

Then the operator T defined by

� � a , 2Tu � div A Du Du for u � X � 4.14Ž . Ž . Ž .Ž . q , �

is called a ‘‘mean curvature type operator’’ associated to the function A.

Some important examples are ‘‘mean curvature operator’’

1
A t � 4.15Ž . Ž .

2'1 � t

and the ‘‘generalized mean curvature operator’’

1
A t � , k , s � 0. 4.16Ž . Ž .sk� �1 � tŽ .
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A slight modification of the proof of Theorem 4.1 gives the following
result:

THEOREM 4.4. Let N � 2. Assume that the function A : � � � satisfies�
Ž .inequality 4.13 .

� 4Suppose also that the function a : �� 0 � � is continuous and that�
there exist constants 
 � 0, c � 0, and � � 2 such that a enjoys property0
Ž .4.3 .

Ž . Ž Ž ..Then problem 4.2 resp. 4.12 with q � 1 has only a tri�ial solution in
a, 2 Ž . Ž .X � for any � such that 
1 � � � 0 resp. for any 0 � � � 1 .q, �

Ž . Ž � 4 .Finally, suppose that instead of 4.3 the function a � C �� 0 ; ��
satisfies the inequality

� �
�a x � c x x � B 4.17Ž . Ž .Ž .
0

for some 
 , c � 0 and � � p, B � �. Then the following result holds.0 
0

Ž .THEOREM 4.5. Let A : � � � � � � � satisfy inequalities 4.1 with� �
Ž � 4 . Ž .1 � p � q � 1, p � N, and let a � C �� 0 ; � enjoy property 4.17 for�

some 
 , c � 0 and � � p, B � �.0 
0
Ž . a, pŽ .Then for 1 
 p � � � 0 problem 4.2 has no solutions u � X �q, �

such that

u x � � � 0 a.e. on � B . 4.18Ž . Ž .
0

Ž .Proof. From the weak comparison principle and 4.18 it follows that
Ž .u � � in B . Hence, using 4.17 , we obtain
0

uq�� x d x � k � q��
 N
� for all 0 � 
 � 
 , 4.19Ž . Ž .H 1 0
B


where k � 0 does not depend on 
 and � .1
Ž . �On the other hand, inequality 4.7 with a cut-off function � � � ,
 


	Ž � 	.� � C �; 0, 1 such that
 0

�1 x � B ,Ž .
�� x �Ž .
 
0 x � �� Bž /2


and � sufficiently large implies

uq�� x d x � k 
 ��1 4.20Ž . Ž .H 2
B


Ž .with � defined as in 4.8 and k � 0 independent of 
.2
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Ž . Ž .Comparing 4.19 and 4.20 and taking 
�0, we come to a contradiction
which proves the theorem.

Remark 4.6. In particular, Theorem 4.5 implies that if the function a
Ž . Ž . a, pŽ .satisfies 4.17 , problem 4.2 has no nontrivial radial solutions in X � .q, �

Moreover, if the function A is such that the strong maximum principle
Ž .holds for 4.2 , then from Theorem 4.5 it follows that this problem has no

a, pŽ .nontrivial solutions in X � at all.q, �

5. NON-HOMOGENEOUS SYSTEMS

In this section, we extend the results of Section 4 to systems of
quasilinear elliptic inequalities of second order.

In particular, consider the problem

� � q1�
div A x , u , Du Du � a x � in � ,Ž . Ž .Ž .
p1� �
div B x , � , D� D� � b x u in � ,Ž . Ž .Ž .� 5.1Ž .

u � 0 in � ,

� � 0 in � ,

assuming that A, B : � � � � � � � are Caratheodory functions such´� �
Ž .that for any x, s, t � � � � � � we have� �

� � p
2 � � p
2c t � A x , s, t � c t ,Ž .1 2
5.2Ž .

� � q
2 � � q
2c t � B x , s, t � c t ,Ž .3 4

Ž .where c � 0 i � 1, . . . , 4 .i
We define the class of solutions as

S � u , � : � � � � � , a x � q1 u� , a x � q1 ,Ž . Ž . Ž .�� � �

p1 � p1 � � p �
1 � � q �
1 1b x u � , b x u , Du u , D� � � L � .Ž . Ž . Ž . 4l oc

for some � � �.
Then the following result holds.

THEOREM 5.1. Let N � 2. Assume that the functions A, B : � � � ��
Ž . Ž . Ž .� � � satisfy inequalities 5.2 with max p, q � N 
 1, min p, q � 1.�

Suppose also that

Ž .i p 
 1 � p , q 
 1 � q .1 1

Ž .If a, b � C � are non-negati�e functions such that

Ž . Ž . 
� Ž . Ž . 
� Ž . � Ž . 4ii a x � c
 x , b x � d
 x in x � � : 
 x � 
 for0
some c, d, 
 � 0 and � , � satisfying the assumption0

q1
� � p 
 q 
 � 5.3Ž . Ž .

q 
 1
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or, alternati�ely,

p1
� � q 
 p 
 � , 5.4Ž . Ž .

p 
 1

Ž . Ž .then problem 5.1 has no nontri�ial solutions u, � � S for sufficiently�

small � � 0.

� 	Proof. To prove this theorem, we adapt a method developed in 7�9
N Ž � 	.for quasilinear elliptic systems in � see Theorem 5.1 of 9 .

Ž . 1, pŽ . 1, qŽ . Ž .Let u, � � W � � W � be a solution to 5.1 , and let � �l oc l oc
	Ž .C �; � be a standard cut-off function chosen as in Section 4.0 �

Ž . �By multiplying the first and second equation of 5.1 by u � and�

respectively by � ��, where u � u � � , � � � � � with � � 0, and inte-� � �

grating by parts we find

q1 � � � � � 2 �
1a x � u � d x � � A x , u , Du Du u � d xŽ . Ž .H H� �

� � �� A x , u , Du Du , D� u d x ,Ž . Ž .H �

p1 � � � � � 2 �
1b x u � � d x � � B x , � , D� D� � � d xŽ . Ž .H H� �

� � �� B x , � , D� D� , D� � d x .Ž . Ž .H �

Ž .Using inequality 5.2 , we obtain

q1 � � � p �
1 � � p
1 � � �a x � u � d x � c � Du u � d x � Du D� u d x ,Ž .H H H� 2 � �ž /
p1 � � � q �
1 � � q
1 � � �b x u � � d x � c � D� � � d x � D� D� � d x .Ž .H H H� 4 � �ž /

Further, by the Young inequality with parameter � � 0 we have

� � pD�p� �q � �
1 ��p
11 � �a x � u � d x � d Du u � d x � d u d x , 5.5Ž . Ž .H H H� � � � �p
1�

� � qD�q� �p � �
1 ��q
11 � �b x u � � d x � c D� � � d x � c � d x , 5.6Ž . Ž .H H H� � � � �q
1�
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where the constants c� , c� , d� , d� � 0 depend only on c , c , p, q, � , and� � � � 2 4
Ž .� � 0. Next we multiply 5.1 by � and obtain by the Holder inequality¨

1�ppŽ .p
1 �p � �D�pq �
1 Ž1
� .Ž p
1.1 � �a x � � d x � Du u � d x u d x ,Ž .H H H p
1ž / ž /�

5.7Ž .
1�qqŽ .q
1 �q � �D�qp �
1 Ž1
� .Ž q
1.1 � �b x u � d x � D� � � d x � d x .Ž .H H H q
1ž / ž /�

5.8Ž .

Ž . Ž .By using 5.5 and 5.6 and passing to the limit as � � 0, this last estimate
implies that

Ž .p
1 �pp� �D�
q ��p
11a x � � d x � D u d xŽ .H H� p
1ž /�

1�pp Ž1
� .Ž p
1.� �D� u
� d x , 5.9Ž .H p
1ž /�

Ž .q
1 �qq� �D�
p ��q
11b x u � d x � E � d xŽ .H H� q
1ž /�

1�qq Ž1
� .Ž q
1.� �D� �
� d x , 5.10Ž .H q
1ž /�

where E and D � 0 depend only on c , c , p, q, � , and � � 0.� � 2 4
Now we apply the Holder inequality with parameters a, a� to the first¨

Ž .integral on the right-hand side of 5.9 and we get

Ž .p
1 �pp� �D�
��p
1u d xH p
1ž /�

Ž .p
1 �p a�p a�Ž .p
1 �p a � �D�Ž .
 a��aŽ��p
1.a� b x u � d x b x d xŽ . Ž .H H p a�
1ž / ž /�

5.11Ž .

with 1�a � 1�a� � 1. By choosing the parameter a so that

� � p 
 1 a � pŽ . 1
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Ž . Ž .from 5.9 and 5.11 we have

Ž .p
1 �p a
q p1 1a x � � d x � D b x u � d xŽ . Ž .H H� ž /

Ž .p
1 �p a�p a�� �D�
a ��a
� b x d xŽ .H p a�
1ž /�

1�pp� �D�
Ž1
� .Ž p
1.� u d x . 5.12Ž .H p
1ž /�

By repeating this procedure with parameters y, y� � 1 on the third integral
Ž .of 5.12 we obtain

� � pD�
Ž1
� .Ž p
1.u d xH p
1�

1�y �p y �1�y � �D�
y ��yŽ1
� .Ž p
1. y� b x u � d x b x d x , 5.13Ž . Ž . Ž .H H p y �
1ž / ž /�

� Ž .Ž .where 1�y � 1�y � 1. By choosing y so that 1 
 � p 
 1 y � p in1
Ž . Ž .5.13 and taking into account 5.12 we deduce that

Ž .p
1 �p a
q p1 1a x � � d x � D b x u � d xŽ . Ž .H H� ž /

Ž .p
1 �p a�p a�� �D�
a ��a
� b x d xŽ .H p a�
1ž /�

1�p y �p y �1�p y � �D�
y ��yp1� b x u � d x b x d x ,Ž . Ž .H H p y �
1ž / ž /�

that is,
Ž .p
1 �p a�1�p y

q p1 1a x � � d x � D b x u � d xŽ . Ž .H H� ž /
Ž .p
1 �p a�p a�� �D�
a ��a

� b x d xŽ .H p a�
1ž /�

1�p y �p y �� �D�
y ��y
� b x d x , 5.14Ž . Ž .H p y�
1ž /�
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where we have chosen the parameters a, y such that

1 1�
� � 1, 1 
 � p 
 1 y � p ,Ž . Ž .� 1y y� 5.15Ž .

1 1
� � 1, � � p 
 1 a � p .Ž .
 � 1a a

Ž .We observe that this choice of a and y is admissible by our assumption i
provided � � 0 is chosen sufficiently small. Introducing the new parame-
ters b and z such that

1 1�
� � 1, 1 
 � q 
 1 z � q ,Ž . Ž .� 1z z� 5.16Ž .1 1
� � 1, � � q 
 1 b � qŽ .
 � 1b b

Ž .and estimating now the right-hand side of 5.10 , we obtain

Ž .q
1 �qb�1�q z
p q1 1b x u � d x � E a x � � d xŽ . Ž .H H� ž /

Ž .q
1 �qb�qb�� �D�
b ��b
� a x d xŽ .H qb�
1ž /�

1�q z �q z �� �D�
z ��z
� a x d x . 5.17Ž . Ž .H q z �
1ž /�

Ž . Ž .Combining 5.14 and 5.17 , we finally get

Ž .n q
1 �qb�qb�1
m n � �D�
b ��bq n1a x � � d x � D E a x d xŽ . Ž .H H� � qb�
1ž / ž /�

n�q z �q z �� �D�
z ��z
� a x d xŽ .H q z �
1ž /�

Ž .p
1 �p a�p a�� �D�
a ��a
� b x d xŽ .H p a�
1ž /�

1�p y�p y �� �D�
y ��y
� b x d x 5.18Ž . Ž .H p y �
1ž /�
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and

Ž .m p
1 �p a�p a�1
m n � �D�
a ��ap m1b x u � d x � E D b x d xŽ . Ž .H H� � p a�
1ž / ž /�

m�p y �p y �� �D�
y ��y
� b x d xŽ .H p y �
1ž /�

Ž .q
1 �qb�qb�� �D�
b ��b
� a x d xŽ .H qb�
1ž /�

1�q z �q z �� �D�
z ��z
� a x d x , 5.19Ž . Ž .H q z �
1ž /�

where

p 
 1 1�
n 	 � ,

pa py� 5.20Ž .q 
 1 1
m 	 � .
 qb qz

Ž . Ž .An easy computation, by taking into account 5.15 and 5.16 , gives the
explicit values of m and n, that is,

q 
 1 p 
 1
m � , n � . 5.21Ž .

q p1 1

Ž .Consequently from assumption i it follows that the exponent appearing
Ž . Ž .on the left-hand side of 5.18 � 5.19 is such that

p q 
 p 
 1 q 
 1Ž . Ž .1 1
1 
 mn � � 0.

p q1 1

Next by the same change of variables as in Section 4 it follows that for any
0 � 
 � 
0

� q1 d x � F 
 �1�� 1 5.22Ž .H �
�


and

u p1 d x � G 
 �2�� 2 , 5.23Ž .H �
�
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where F and G are positive and independent of 
 and� �

1 1
� � nz � z , � � z � mz ,Ž . Ž .1 1 2 2 1 21 
 mn 1 
 mn

n m
� � � m � � , � � � � � n ,Ž . Ž .1 21 
 mn 1 
 mn

N 
 1 
 qb� N 
 1 
 qz�

z 	 q 
 1 � ,Ž .� �1 qb qz

N 
 1 
 pa� N 
 1 
 py�

z 	 p 
 1 � .Ž .� �2 pa py

Ž . Ž .By our choice of parameters 5.15 � 5.16 the explicit values of � , � , � ,1 2 1
and � are given by2

� p q 
 1 � qqŽ . 1
� � � 	 N 
 1 
 p 
 p 
 1 ,Ž .1 � ½ 5p q 
 p 
 1 q 
 1Ž . Ž .1 1

q p 
 1 � ppŽ . 1
� � � 	 N 
 1 
 q 
 q 
 1 ,Ž .2 u ½ 5p q 
 p 
 1 q 
 1Ž . Ž .1 1� 5.24Ž .

� q 
 1 � �q p 
 1Ž . Ž .Ž .1
� � � 	 ,1 � p q 
 p 
 1 q 
 1Ž . Ž .1 1

� p � � p 
 1 q 
 1Ž . Ž .Ž .1
� � � 	 .2 u
 p q 
 p 
 1 q 
 1Ž . Ž .1 1

Ž . Ž .From assumptions i , ii it follows that either � � � � 0, or � � � � 0.1 1 2 2
Letting 
�0, we accomplish the proof similarly to that of Theorem 4.1.

Ž . Ž Ž ..Remark 5.2. If inequality 5.3 resp. 5.4 is strict, the same result
Ž . Ž Ž . .holds for p � max p, q � N 
 1 resp. for q � max p, q � N 
 1 .

Remark 5.3. Similarly to the previous section, this result can be ex-
tended to coercive problems, to quasilinear elliptic systems containing
operators of mean curvature type, and to those of the form

� 
� a b� � � �
div A x , u , Du Du � x u � in � ,Ž .Ž .� 
� c d� � � �
div A x , � , D� D� � x u � in � ,Ž .Ž .

u , � � 0 in �

under appropriate assumptions on a, b, c, d, � , and �.
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