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Using the Dirac–Brueckner–Hartree–Fock approach, the properties of neutron-star matter including 
hyperons are investigated. In the calculation, we consider both time and space components of the vector 
self-energies of baryons as well as the scalar ones. Furthermore, the effect of negative-energy states of 
baryons is partly taken into account. We obtain the maximum neutron-star mass of 2.08M� , which is 
consistent with the recently observed, massive neutron stars. We discuss a universal, repulsive three-body 
force for hyperons in matter.
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Neutron stars may be the most dense and exotic state of nu-
clear matter, and its core serves as a natural laboratory to in-
vestigate the nuclear matter whose density reaches several times 
higher than the normal nuclear-matter density, n0

B [1]. In fact, 
the recently observed, massive neutron stars, J1614-2230 (the 
mass of 1.97 ± 0.04 M� , M�: the solar mass) [2] and J0348+0432 
(2.01 ± 0.04 M�) [3], have provided important information on the 
equation of state (EoS) for dense nuclear matter.

To understand these heavy objects, various nuclear models have 
been examined, in which relativistic mean-field theory (RMFT) is 
very popular and has been successfully applied to the dense nu-
clear matter [4]. However, in RMFT, nucleon (N)-nucleon short-
range correlations in matter cannot be treated. In contrast, in the 
Dirac–Brueckner–Hartree–Fock (DBHF) approach, although the cal-
culation is involved, one can consider the effects of the Pauli ex-
clusion principle and short-range correlations.

Until now, several groups have performed the DBHF calculations 
not only in the region around n0

B but also in matter at higher den-
sities (see Refs. [5–15]). However, so far there has not been any 
relativistic attempt to take account of the degrees of freedom of 
hyperons (Ys) as well as nucleons in dense matter. Because it is 
quite interesting to see how hyperons contribute to the EoS and 
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to the maximum mass of neutron stars, it seems very urgent to 
perform the DBHF calculation for matter including hyperons.

In this Letter, we study such dense neutron-star matter using 
the DBHF approach. Here, we particularly pay attention to the fol-
lowing two points: (1) the space component of vector self-energy 
of baryon (B), �V

B , is taken into account, because, although it is 
certainly small at low density, it is expected to be important in 
dense matter, (2) as in Refs. [13–15], we partly consider the ef-
fect of negative-energy states of baryons in the Bethe–Salpeter 
(BS) equation to remove the ambiguity in the relationship between 
the on-shell T-matrix for baryon–baryon scattering and the baryon 
self-energies [8–10]. Furthermore, when hyperons take place in 
matter, the effective masses of interacting two baryons become 
very different from each other, and thus we should treat the 
baryon-mass difference in the BS equation explicitly.

We now start with the self-energy of baryon in the rest frame 
of infinite, uniform nuclear matter. It is given by

�B(k) = � S
B(k) − γ0�

0
B(k) + γ · k�V

B (k), (1)

where k (k) is the three (four) momentum of baryon. Here, 
�

S (0) [V ]
B is the scalar (zero-th component of vector) [space com-

ponent of vector] part of baryon self-energy. Using these self-
energies, the effective mass, M∗

B , the effective momentum, k∗
B , and 

the effective energy, E∗
B , in matter are defined by

M∗
B(k) ≡ MB + � S

B(k), k∗
B ≡ k[1 + �V

B (k)],
E∗ (k) ≡

√
k∗2 + M∗2(k), (2)
B B B
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with MB being the free baryon mass. Then, the baryon spinor 
states with positive or negative energy are respectively constructed 
as

�B(k, s) =
√

M∗
B(k) + E∗

B(k)

(
χs,

k∗
B ·σ

M∗
B (k)+E∗

B (k)
χs

)
, (3)

�B(k, s) =
√

M∗
B(k) + E∗

B(k)

( k∗
B ·σ

M∗
B (k)+E∗

B (k)
χ−s

χ−s

)
, (4)

where σ is the Pauli matrix, and χs denotes a 2-component Pauli 
spinor.

In the conventional DBHF calculation, the baryon–baryon scat-
tering is usually evaluated in the center of mass frame with re-
spect to the interacting two baryons. In such cases, instead of 
Eqs. (3)–(4), the helicity spinors and the partial-wave decompo-
sition are often used to solve the BS equation [5–11,13–15]. How-
ever, when �V

B remains finite and k �= k∗
B , although k and k∗

B are 
parallel with each other in the nuclear-matter rest frame, they are 
not in the center of mass frame. It is thus more convenient to per-
form the calculation with the standard spinors, Eqs. (3)–(4), in the 
nuclear-matter rest frame, rather than with the helicity spinors in 
the center of mass frame.

Furthermore, the inclusion of negative-energy states of baryon 
in the BS amplitude may be necessary to remove the ambiguity of 
the relationship between the reaction matrices for baryon–baryon 
scattering and the baryon self-energies [13–15]. Thus, we here de-
fine four reaction amplitudes

T B ′′′ B ′′ B ′ B(k′,k, s′′′, s′′, s′, s; P )

≡ �̄B ′′′
(

1

2
P + k′, s′′′

)
�̄B ′′

(
1

2
P − k′, s′′

)

× � �B ′
(

1

2
P + k, s′

)
�B

(
1

2
P − k, s

)
, (5)

R B ′′′ B ′′ B ′ B(k′,k, s′′′, s′′, s′, s; P )

≡ �̄B ′′′
(

1

2
P + k′, s′′′

)
�̄B ′′

(
1

2
P − k′, s′′

)

× � �B ′
(

1

2
P + k, s′

)
�B

(
1

2
P − k, s

)
, (6)

O B ′′′ B ′′ B ′ B(k′,k, s′′′, s′′, s′, s; P )

≡ �̄B ′′′
(

1

2
P + k′, s′′′

)
�̄B ′′

(
1

2
P − k′, s′′

)

× � �B ′
(

1

2
P + k, s′

)
�B

(
1

2
P − k, s

)
, (7)

P B ′′′ B ′′ B ′ B(k′,k, s′′′, s′′, s′, s; P )

≡ �̄B ′′′
(

1

2
P + k′, s′′′

)
�̄B ′′

(
1

2
P − k′, s′′

)

× � �B ′
(

1

2
P + k, s′

)
�B

(
1

2
P − k, s

)
, (8)

where � represents the effective reaction operator, and these am-
plitudes satisfy the following, coupled BS equations

T B B ′ B B ′(k,k, s, s′, s, s′; P )

= V̄ B B ′ B B ′(k,k, s, s′, s, s′; P )

+
∑

s′′s′′′ B ′′ B ′′′

∫
d3q

(2π)4
V̄ B B ′ B ′′ B ′′′(k,q, s, s′, s′′, s′′′; P )

× Q B ′′ B ′′′(P ,q)gT h B ′′ B ′′′(P ,q)

× T B ′′ B ′′′ B B ′(q,k, s′′′, s′′, s, s′; P ), (9)
R B B ′ B B ′(k,k, s, s′, s, s′; P )

= Ū B B ′ B B ′(k,k, s, s′, s, s′; P )

+
∑

s′′s′′′ B ′′ B ′′′

∫
d3q

(2π)4
Ū B B ′ B ′′ B ′′′(k,q, s, s′, s′′, s′′′; P )

× Q B ′′ B ′′′(P ,q)gT h B ′′ B ′′′(P ,q)

× T B ′′ B ′′′ B B ′(q,k, s′′′, s′′, s, s′; P ), (10)

O B B ′ B B ′(k,k, s, s′, s, s′; P )

= W̄ B B ′ B B ′(k,k, s, s′, s, s′; P )

+
∑

s′′s′′′ B ′′ B ′′′

∫
d3q

(2π)4
V̄ B B ′ B ′′ B ′′′(k,q, s, s′, s′′, s′′′; P )

× Q B ′′ B ′′′(P ,q)gT h B ′′ B ′′′(P ,q)

× O B ′′ B ′′′ B B ′(q,k, s′′′, s′′, s, s′; P ), (11)

P B B ′ B B ′(k,k, s, s′, s, s′; P )

= Z̄ B B ′ B B ′(k,k, s, s′, s, s′; P )

+
∑

s′′s′′′ B ′′ B ′′′

∫
d3q

(2π)4
Ū B B ′ B ′′ B ′′′(k,q, s, s′, s′′, s′′′; P )

× Q B ′′ B ′′′(P ,q)gT h B ′′ B ′′′(P ,q)

× O B ′′ B ′′′ B B ′(q,k, s′′′, s′′, s, s′; P ), (12)

with V̄ , Ū , W̄ and Z̄ being the anti-symmetrized matrices of one-
boson-exchange (OBE) interaction [16] with respect to the positive-
and negative-energy states (as seen in Eqs. (5)–(8)).

In Eqs. (9)–(12), Q B B ′ is the Pauli exclusion operator for 
baryons B and B ′ , and gT hB B ′ denotes the Thompson’s two-
particle propagator [17]. The seven arguments in the four reac-
tion amplitudes, T , R, O , P , are as follows: from left to right, 
the first variable represents the final (or intermediate) relative 
three-momentum; the second, the initial (or intermediate) rela-
tive three-momentum; the third and fourth are for the spins of 
the final (or intermediate) two baryons, each of which is up (+) or 
down (−); the fifth and sixth, the spins of the initial (or intermedi-
ate) two baryons; and the last one is the total three-momentum of 
interacting two baryons. We note that the negative-energy states 
appear only in the initial and/or final states of the BS amplitudes, 
and they are not included in the intermediate states, because, in 
the realistic baryon–baryon potentials such as the Bonn potentials, 
the negative-energy states are usually not considered [13,14].

The ladder-approximated, coupled BS equations can be numer-
ically solved in the nuclear-matter rest frame. To reduce the num-
ber of variables and make the present calculation feasible, we here 
average the azimuthal angle in the spinors, Eqs. (3)–(4), namely we 
replace E∗

B(1/2P ± k) by the averaged one, 1
2π

∫
dφE∗

B(1/2P ± k). 
We have checked that this change does not lead any large numer-
ical error in our final results.

Given the reaction amplitudes, we can calculate the following 
components [14]

�B
��(k) ≡ �̄B(k,+)�B(k)�B(k,+)

= 2M∗
B(k)� S

B(k) − 2E∗
B(k)�0

B(k) + 2k · k∗
B�V

B (k), (13)

�B
��(k) ≡ �̄B(k,+)�B(k)�B(k,−)

= 2|k∗
B |(k)�0

B(k) − 2|k|E∗
B(k)�V

B (k), (14)

�B
��(k) ≡ �̄B(k,+)�B(k)�B(k,+)

= −2M∗
B(k)� S

B(k) − 2E∗
B(k)�0

B(k) + 2k · k∗
B�V

B (k), (15)
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Table 1
Calculated properties of symmetric nuclear matter at the saturation point, n0

B . In 
the first column, the results of Bonn A, B and C are respectively labeled by A, B 
and C, while A∗ denotes the result of Bonn A with the modified coupling g∗

N Nσ (see 
Eq. (16)). The values of the binding energy per particle, E/n0

B − MN , the incompress-
ibility, K , the symmetry energy, S , and the slope parameter, L, are in MeV, and n0

B

is in fm−3. The fitted values in A∗ are denoted by †.

Case n0
B E/n0

B − MN K S L

A 0.149 −10.5 204 28.8 78.6
B 0.130 −7.3 133 22.7 58.2
C 0.112 −5.2 87 18.0 42.2
A∗ 0.168† −15.3† 233† 33.6† 95.0

where �B(k) is given by Eq. (1), and the components, �B
��(k), 

�B
��(k), �B

��(k), are respectively calculated through the reaction 
amplitudes, T , R, P . Using these relations, we can uniquely deter-
mine the self-energies in Eq. (1), and calculate the energy density 
and pressure of matter [7]. We here discard the contribution of 
retardation effect.

Now we are in a position to show our results. Through the 
whole calculation, we adopt the Bonn potentials [5], and use the 
conventional “reference spectrum” approximation (RSA) [5–12,15], 
where the momentum dependence of the self-energies is frozen at 
some reference momentum. Here, the reference point is chosen to 
be the Fermi momentum, kF B , at each baryon density. Note that 
the sum of all baryon densities gives the total baryon density, nB .

We first study the symmetric nuclear matter around n0
B , where 

it consists of only nucleons interacting through the exchanges of 
σ , δ, ω, ρ, η and π mesons. In Table 1, we present the properties 
of matter at n0

B . In the present calculation, the binding per parti-
cle in A ∼ C is relatively shallower than the empirical value. This 
tendency is close to the result by Poschenrieder and Weigel [13]
because our method resembles their approach.

We try to adjust the matter properties by assuming that the 
nucleon-σ coupling constant varies as a function of the scalar 
self-energy � S

N .2 Because baryon is a composite object, the meson–
baryon coupling strength may generally depend on the scalar den-
sity in matter [15,19–21]. To take account of such an effect, we 
suppose that the coupling is expressed as

g∗
N Nσ = gN Nσ

⎡
⎣1 +

4∑
i=1

αi

(
� S

N

MN

)i
⎤
⎦ , (16)

where gN Nσ is the value in vacuum. The four parameters, αi=1–4, 
are determined so as to reproduce the empirical binding value, n0

B , 
K and S (see Table 1), and we then find α1 = −0.36, α2 = −1.69, 
α3 = −3.07 and α4 = −1.86 for Bonn A potential. This modifica-
tion enhances gN Nσ by only 2% at n0

B . The properties of matter in 
this scheme (A∗) is also shown in the table.

Next we challenge the calculation of neutron-star matter in-
cluding hyperons. In the following calculations, we adopt the 
scheme A∗ .

We now have to determine the coupling constants for hyper-
ons. Using the experimental data of nucleon–hyperon scattering, 
the hyperon–meson coupling constants have been studied by sev-
eral groups [22]. However, due to poor experimental accuracy, the 

2 Because the scalar self-energy in RSA is related to nB through its Fermi mo-
mentum, the coupling depending on � S

N may be considered as a function of nB

indirectly. In such case, it is known that the contribution of the “rearrangement” ef-
fect caused by a density-dependent coupling appears in the expression of pressure 
(p) explicitly, while the expression of energy density (ε) remains unchanged [18]. In 
our actual calculations, we have, however, calculated pressure numerically from the 
energy density through the thermodynamic relation, p = n2

B∂(ε/nB )/∂nB .
Fig. 1. (Color online.) Particle fractions for (a) B5M6, (b) B8M6 and (c) B5M8.

coupling constants cannot be determined without large ambigui-
ties. Thus, in the present calculation, we determine them (except 
for the hyperon-σ couplings) by using SU(6) symmetry [21,23]. For 
the hyperon-σ interactions, we can use the recent analyses of hy-
pernuclei and hyperon production reactions, which have suggested 
that the �, �− and �− may respectively feel the optical poten-
tial, U�−,�−,�− � −27, +30, −15 MeV, in nuclear matter [24]. We 
thus choose the coupling constants, gY Yσ , so as to reproduce these 
potential depths at n0

B , using the Schröedinger-equivalent optical 
potential

U Y (k) = � S
Y (k) − �0

Y (k)

MY
[E∗

Y (k) − �0
Y (k)]

+ 1

2MY
[(� S

Y (k))2 − (�0
Y (k))2]. (17)

Furthermore, for nonstrange mesons, a cutoff parameter in the 
form factor at hyperon–meson vertex, �Y Y ′M , is assumed to be 
the same as in the nucleon–meson form factor, while, for strange 
mesons, a cutoff parameter, �B B ′ K (�B B ′ K ∗ ), is taken to be the 
average value of �B B ′η and �B B ′π (�B B ′ω and �B B ′ρ ). In Table 2, 
we present the coupling constants and cutoffs in the scheme A∗ .

Because an enormous amount of time is needed to perform the 
full calculation, we first perform two preliminary calculations: one 
includes e− , μ− and five baryons (neutron (n), proton (p), �, �− , 
�−),3 and the other includes the leptons and eight baryons (n, p, 
�, �− , �0, �+ , �− , �0). In these calculations, we consider only 
six nonstrange mesons (σ , δ, ω, ρ, η, π ), and exclude the baryon-
exchange and baryon-transition processes such as N +� → � + N , 
N + � → N + �, etc. Note that these processes are induced by the 
exchanges of K , K ∗ and iso-vector, nonstrange mesons. We call the 
first set B5M6, and the second B8M6.

In the panels (a) and (b) of Fig. 1, we present the particle frac-
tions in B5M6 and B8M6. As seen in the figure, both the results 
are very similar to each other, and show that the �− first ap-

3 From among the members of the � and � hyperons, we select the �− and �−
only. The reason is because, from the viewpoint of electric charge, it is expected 
that they can appear easier in matter rather than the other members (�+, �0 and 
�0) [21].
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Table 2
Coupling constants g and f (see also Table VI (Potential A) in Ref. [5]). In the first row, M denotes mesons. For the vector meson, the coupling f specifies the tensor strength, 
while, for the pseudoscalar meson, f denotes the strength of pseudovector coupling to baryon. The cutoff parameter in the form factor at hyperon-nonstrange meson vertex 
is fixed to be �Y Y ′ M = �N N M [5]. For strange meson K (K ∗), it is chosen as �B B ′ K (�B B ′ K ∗ ) = 1.28 (1.4) GeV.

M N N M ��M ��M ��M ��M M �N M ��M �N M ��M

g σ 10.2 4.82 3.08 0 2.94
g δ 3.11 0 6.22 0 3.11
g ω 15.9 10.6 10.6 0 5.28 K ∗ −6.11 6.11 −3.53 −3.53
f 0 −10.6 19.4 0 −12.8 −19.9 2.57 8.54 −21.5
g ρ 3.53 0 7.05 0 3.53
f 21.5 0 13.0 17.4 −8.54
f η 2.74 −2.33 2.18 0 −2.97
f π 1.01 0 0.633 0.567 −0.144 K −3.43 0.966 0.635 −2.70
Fig. 2. (Color online.) Mass-radius relations for neutron stars. The dot on each line 
represents the maximum mass (see also Table 3). The shaded area represents the 
mass of J0348+0432.

Table 3
Neutron-star radius, Rmax (in km), the central density, nc (in fm−3), and the ratio 
of the maximum neutron-star mass to the solar mass, Mmax/M� .

Case Rmax nc Mmax/M�
NM6 12.6 0.78 2.44
B5M6 13.1 0.76 2.03
B8M6 13.1 0.75 2.04
B5M8 13.1 0.74 2.08

pears around nB � 0.37 fm−3, and next the �− and � are created. 
However, the fraction of �− dwindles rapidly with increasing nB . 
In contrast, the numbers of �− and � grow steadily, once they 
emerge in matter.

Because the difference between B5M6 and B8M6 is expected 
to be small, we proceed to the final calculation, where the five 
baryons are considered and they interact through the exchanges of 
eight mesons (σ , δ, ω, ρ, η, π, K , K ∗). We here include the ef-
fect of the baryon-exchange and baryon-transition processes. We 
call this scheme B5M8. In the panel (c) of Fig. 1, the particle frac-
tion for B5M8 is displayed. It is interesting to notice that the result 
is again similar to the previous ones, but the fraction of �− is 
enhanced by the baryon-transition process between �− and �

hyperons. Furthermore, comparing with the result in B5M6, the 
thresholds for the � and �− in B5M8 move toward higher den-
sity.

Using the Tolman–Oppenheimer–Volkoff (TOV) equation [25]
with the BPS model [26] for the EoS in the crust region, we can 
calculate the neutron-star mass as a function of its radius. The 
calculation is performed under the conditions of charge neutral-
ity and β-equilibrium in weak interaction. The present results are 
summarized in Fig. 2 and Table 3, where we show the mass-radius 
relations and the properties of neutron stars at the maximum 
mass. Here, NM6 denotes the result in which only the leptons, nu-
cleons and six nonstrange mesons participate. We can find that the 
predicted maximum mass in each case is consistent with the ob-
served ones, 1.97 ± 0.04 M� (J1614-2230) [2] and 2.01 ± 0.04 M�
(J0348+0432) [3].

We would like to compare the present results with those in the 
non-relativistic Brueckner–Hartree–Fock (BHF) approach. It is well 
recognized that the saturation properties of symmetric nuclear 
matter cannot be explained by the BHF calculation with two-body 
interactions, and that it is vital to consider a repulsive three-body 
force (TBF) additionally to move the calculated saturation point to-
ward the empirical value [27]. In contrast, the DBHF calculation 
can provide a result close to the empirical value without further 
ingredients. This is because the DBHF approach involves an in-
herent ability to account for important TBFs through its density 
dependence, i.e., the TBF originating from virtual excitation of a 
nucleon–antinucleon pair, known as Z -graphs [5]. In fact, it is not 
difficult to find the term of Z -graphs, �E N

pair ≈ �k 2(� S
N )2/2M3

N , in 
the nucleon energy at the mean-field level [28–30]. The relativis-
tic effect on the binding energy per nucleon is then well fitted as 
�(E/n0

B)rel ∝ (nB/n0
B)8/3 [5], which depends on nB strongly, and it 

helps obtain a better saturation point [31]. From this point of view, 
the contribution of Z -graphs plays an important role in success 
of Dirac phenomenology. On the other hand, some people have 
argued that the pair creation should be suppressed by the com-
positeness of nucleon [28,32].4 However, even when the effect of 
the compositeness is taken into account, the repulsive term still 
remains [19,30].

In dense neutron-star matter, where hyperons can also partici-
pate, the similar situation may occur. In this case, it is again well 
known that, in the BHF approach, the inclusion of hyperons soft-
ens the EoS very much, and that such an EoS is inconsistent with 
the existence of heavy neutron stars [33]. To remedy this problem, 
it may be again necessary to introduce repulsive TBFs for hyperons 
[34]. On the other hand, the DBHF calculation inherently contains 
the density-dependent, repulsive TBF, and it seems to be univer-
sal for all baryons [19,30]. As long as the magnitudes of � S

B and 
�0

B are large, due to Lorentz structure, each baryon feels the re-
pulsive potential, �E B

pair , in nuclear matter, which may again play 
an important part in obtaining the EoS for sustaining the massive 
neutron stars, as shown in the present calculation. In the panel (a) 
of Fig. 3, we show the self-energies for hyperons as well as nucle-
ons in neutron-star matter. We can see that their magnitudes are 
certainly of the order of 100 MeV at high densities.

Finally, we give two comments on the present calculation. First, 
from the panel (b) in Fig. 3, we notice that the space compo-

4 In Ref. [28], it has been emphasized that the “Z -graphs” in Dirac phenomenol-
ogy should not be interpreted as arising from virtual nucleon–antinucleon pairs.
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Fig. 3. (Color online.) Self-energies at kF B in B5M8: (a) � S
B (solid lines) and −�0

B
(dashed lines), (b) kF B �V

B (dot-dashed lines). The Fermi momentum for hyperon, 
kFY , is set to be zero below the threshold of its creation.

nents of vector self-energies, �V
p,n , are certainly small around n0

B . 
However, they grow rapidly at nB � 0.2 fm−3, and the absolute 
values reach near 200 MeV at nB = 0.8 fm−3. Thus, they cannot be 
ignored in dense matter. In contrast, the space components for hy-
perons do not seem to be large even at high density. It is, however, 
important to notice that the self-energies of hyperons are influ-
enced by the nucleons through the exchanges of strange mesons 
in matter.

Secondly, to study the validity of RSA, we have calculated the 
momentum dependence of the nucleon self-energies at kF N =
1.34 fm−1 and 1.8 fm−1 in symmetric nuclear matter. Then, we 
have found that the momentum dependence is not strong in both 
cases, and the results are very close to those for the subtracted 
scheme of ps representation given in Ref. [9]. In the present calcu-
lation, the reference momentum in RSA is chosen to be the Fermi 
momentum. If we shift it a little toward higher (lower) density, the 
absolute values of � S

N and �0
N become smaller (larger) than those 

at kF (see Figs. 8 and 9 in Ref. [9]). Then, the change of � S
N makes 

M∗
N heavier (lighter) in matter, and the nucleon chemical poten-

tial, μN , becomes larger (smaller). In contrast, the variation of �0
N

affects μN oppositely. Thus, the leading effects due to the changes 
of � S

N and �0
N on the chemical potential are canceled each other. 

Even when the space component of the self-energy is included, 
this observation is not modified much and may be also applicable 
to the chemical potentials of hyperons. Therefore, we can expect 
that RSA may still work at higher densities, and that the result is 
insensitive to the choice of the reference momentum.

In summary, using the Dirac–Brueckner–Hartree–Fock approach, 
we have studied the properties of neutron-star matter including 
hyperons. The result has shown that the �− , � and �− ap-
pear in dense matter, but the fraction of �− decreases with in-
creasing nB . The maximum neutron-star mass is estimated to be 
2.08 M� , which is consistent with the masses of heavy neutron 
stars. Thus, we can conclude that it is very important to consider 
not only the effects of Pauli exclusion principle and short-range 
correlations in matter but also the relativistic effect involved in 
Dirac phenomenology. In the present calculation, we have deter-
mined the hyperon–meson couplings by SU(6) symmetry. However, 
those couplings should be improved in the future calculation. In 
the DBHF approach, it is very difficult to understand a neutron star 
with heavier mass than that of J0348+0432. Thus, if such an object 
is found in the future, it may clearly suggest that the nonbaryonic 
degrees of freedom (like quarks) emerge in its core region.
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