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Abstract

In this note, a method to derive the Seiberg duality by the matrix model is given. The key fact we used is that effective
given by matrix models should be identical for both electric and magnetic theories. We demonstrate our method for SQ
U(N), SO(N) andSp(N) gauge groups.
 2003 Published by Elsevier B.V.
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1. Introduction and motivation

The field theory vs. matrix model conjecture pr
posed by Dijkgraaf and Vafa [1–3] has intrigued
lot of works from various perspectives. The origin
idea comes from the relationship between field t
ories and string theories, but later the conjecture
proved by pure field theory methods in [5,6] for a
joint matter1 and in [7] for massive fundamental fla
vors and adjoint matter. (The generalization to ma
less flavors has been given in [19] based on the wor
Seiberg [7].) With these achievements, matrix mo
becomes another alternative way to investigate m
interesting problems in fields theories, like the new

E-mail address:fengb@sns.ias.edu (B. Feng).
1 The method in [5] can be applied to more general situations

multi-adjoint fields and matter in the fundamental representat
We want to thank Cumrun Vafa for informing us these results
fact, Gukov has checked these results explicitly in an un-publis
work.
0370-2693  2003 Published by Elsevier B.V.
doi:10.1016/j.physletb.2003.07.080

Open access under CC BY lice
ality demonstrated in [8] (the generalization to oth
cases in [9–11]) and related works in [12–14].

Besides these successes of matrix models,
also like to know the limit of the new metho
The baryonic deformation has been addressed
[21–24] where it has been shown that although
baryonic deformation makes the boundary condit
in matrix models very tricky, there is a way to su
up relative contributions for field theory in matr
model expansions. The multi-trace deformation w
investigated in [18,32] where it was pointed out [1
that the direct integration in the multi-trace mat
model does not give back correct results in field the
But by linearization we can reduce the multi-tra
matrix model to the single-trace matrix model, th
the standard result can be applied. Except the ad
and fundamental flavors, other matter contents,
the symmetric or anti-symmetric representation, h
been considered in [25]. We also like to ask what is
correct matrix model description (if it exists) for chir
theories because of their role in phenomenology.
  nse.

http://www.elsevier.com/locate/npe
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The question we like to address in the note is
Seiberg duality2 in matrix model. Seiberg duality o
N = 1 theories [26–29] is a very nontrivial stateme
above two different UV theories in IR. It states th
these two theories (the electric theory and the m
netic theory) will flow to same (nontrivial) conforma
fixed point in IR. With the new method provided b
matrix models, it is natural to apply to the Seiberg d
ality. In [16,17], explicit calculations in matrix mode
have been done for both electric and magnetic th
ries of SQCD with mass deformations of quarks a
it has been shown that effective actions are same
both theories, thus the Seiberg duality was check
Generalizations toSO/Spgroups are given in [30,31

However, as we emphasized in [17], these calc
tions serve as the check of Seiberg duality and we w
to ask more profound question:could we derive the
Seiberg duality from the matrix model? If we could, the
matrix model will be another powerful tool to stud
the duality in field theory.

Let us analyze this question. The first idea
derive Seiberg duality in matrix model is to try
find a proper transformation of superpotentials in o
matrix model to another matrix model. However,
seems this naive method does not work. There
several reasons. First, familiar transformations (l
the Legendre transformation) change one theory
another equivalent theory while the dual pair are to
different UV theories. This can be seen from anot
point of view. The dual pair will contribute to sam
effective action in IR, while the effective action
IR is not directly related to the free energy of mat
models, but through

(1.1)Weff =Nc

∂Fχ=2(S, g)

∂S
+Fχ=1(S, g).

The relationship (1.1) shows that ifWe = Wg , with
general differentNc for dual pair we will haveFe �=
Fg , i.e., they are two different matrix theories wi
total different free energies.

The second reason can also be seen from (1.1)
the matrix model does not have any memory ab
the rank of gauge groups. We recover the informa
of ranks only when we go from the free energy
the effective action where the rankNc appears as

2 Seiberg like duality in matrix model has been proved in [3,
We want to thank Cumrun Vafa for pointing out this point to us.
t

multiplier. It tells us that we should not seek to deri
the Seiberg duality at the level of free energy(or the
superpotential of the matrix model), but at the level
of effective action. More concretely, starting with tw
matrix models with superpotentialWe,tree andWg,tree,
we do the independent matrix model integrations
calculate effective actionsWe,eff and Wg,eff. These
effective actions will be functions of glueball fieldS
and other fields as well as coupling constants. The
is that if we requireWe,eff ≡ Wg,eff as functions of all
variables, we may derive the Seiberg duality. We w
show that the idea works, at least for these exam
we will discuss in this note.

2. The Seiberg dual theory of U(Nc) group

The theory we want to discuss is theU(Nc)

gauge group withNf flavorsQi, Q̃
i3 and arbitrary

deformationWtree = V (M) of meson fieldsMj
i =

Qα
i Q̃

j
α where α is color index. The matrix mode

integration of the prototype has been done in [15]
using theδ(Mj

i −Qα
i Q̃

j
α) insertion and the result is

Weff(S,M) = (Nc −Nf )S

[
1− log

S

Λ3

]

(2.1)− S log

(
det(M)

Λ2Nf

)
+ Vtree(M).

It is a very neat result because usually we canno
the matrix model integration exactly.4 For this simple
example with arbitrary deformation ofV (M), (2.1)
is exact. As a simple exercise we can takeV (M) =
mi
jQ

α
i Q̃

j
α = tr(mM) which has been done explicitl

in [16]. Eq. (2.1) gives

W = (Nc −Nf )S

[
1− log

S

Λ3

]

− S log

(
det(M)

Λ2Nf

)
+ tr(mM).

3 Various results in the SQCD likeN = 1 theory withU(N)

gauge group in matrix model can be found in [35].
4 The matrix model integration of delta-function requires that

rankM of matrix is larger than the numberNf of flavors. Since we
have keptNf fixed while taking the largeM limit in the matrix
model integration, the condition is satisfied.
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Integrating outM by

∂W

∂M
= 0 = −SM−1 +m

we get

(2.2)W =NcS

[
1− log

S

Λ3

]
− S log

(
ΛNf

det(m)

)

which matches the result in [16].
Now we will apply above general result given b

Demasure and Janik to our Seiberg dual pair. F
we need to guess the possible matter representat
Since the electric theory has the globalSU(Nf ) sym-
metry where the meson fieldsM is at the adjoint repre
sentation, it is not unreasonable to assume that the
magnetic theoryU(Ñc) will have Nf flavors qi, q̃i ,
singletsM and proper superpotentialV (q, q̃,M). In
principal, there could be other representations,
symmetric or anti-symmetric tensors. However, unl
the singletsM, these tensor fields will effect the inte
gration in the matrix model a lot by interacting wi
flavorsqi, q̃i . Because we require the dual pair ma
for arbitrary deformationV (M), it is unlikely to have
these tensor fields in the dual magnetic theory.

After constraining our scope of possible mat
contents to only fundemantal representations and
glets, all we need to do is to integrate out the magn
matrix model. Here we have fieldsqi, q̃i and gauge
singletsM. Should we integrate them all in the ma
netic matrix model? The answer is no.We should only
integrate out fieldsqi, q̃i in the matrix model while
keepingM as parameters. The reason is following
According to the field theory analysis in [5–7], b
cause fieldsM are gauge singlets, we should leaveM

untouched at the level of free energy and add th
back to the effective action directly by the prescr
tion (1.1). This point has also been emphasized in
19]. Using this new understanding, we redo the in
gration of magnetic matrix model in [16,17] at Appe
dix to show the consistence.

Since we do not need to integrate fieldsM, the
integration of the magnetic matrix model is sam
prototype as discussed by Demasure and Janik an
.

l

can write down the effective superpotential directly

(2.3)

Wg,eff(S,M,M̃)= (Ñc −Nf )S̃

[
1− log

S̃

Λ̃3

]

− S̃ log

(
det(M̃)

Λ̃2Nf

)
+ V (M,M̃),

where to distinguish the magnetic theory from t
electric theory, we use tilde for fields in the magne
theory (for example,M̃j

i are magnetic meson field
given by qi · q̃j ). To compare with the electric the
ory (2.1) we need to integrate out magnetic me
fieldsM̃ .

Now it comes to the key point.Since we require
We,eff = Wg,eff for arbitrary deformationV (M), it is
conceivable that we should haveV (M,M̃)= V (M)+
f (M,M̃) wheref (M,M̃), which describes the in
teraction of M and qi · q̃j , does not depend o
the deformationV (M). BecauseM are gauge sin
glets and adjoint under the flavor symmetrySU(Nf ),
the interaction ofM and qi · q̃j should be like∑

tr(Mp1M̃q1Mp2M̃q2 · · ·). Integrating out the mag
netic mesonM̃ , we have the equation

(2.4)
∂Wg

∂M̃
= 0 = −S̃M̃−1 + ∂f (M,M̃)

∂M̃
.

From (2.4) we suppose to solvẽM, put it back to
Wg,eff and compare withWe,eff. Especially, we should
have the termS log(det(M)) by puttingM̃ back to the
term S̃ log(det(M̃)). It is hard to imagine we can hav
this result unless the solution is̃M−1 ∼Mn. In another
word,

(2.5)f (M,M̃)= tr

(
M̃

Mn

µ2n−1

)
,

whereµ is a scale constant. Under this assumption,
have

(2.6)M̃−1 = Mn

S̃µ2n−1
.

Putting it back toWg,eff and simplifying, we get

Wg,eff = nS̃ det(M)+ ÑcS̃ − ÑcS̃ log S̃

(2.7)+ S̃ log
Λ̃3Ñc−Nf

(µ2n−1)Nf
,

where we have neglected the termV (M) in Wg,eff (we
will neglect the same term inWe,eff). The result should
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be compared with the effective action of the elec
theory

We,eff = −S det(M)+ (Nc −Nf )S

(2.8)− (Nc −Nf )S logS + S logΛ3Nc−Nf

which is just the rewritting of Eq. (2.1). Comparing th
first term of (2.7) and (2.8) we get the first condition

(2.9)−S = nS̃.

Using (2.9) to second and third terms we get

(2.10)Ñc = n(Nf −Nc).

From this we see thatn must be positive intege
Comparing the last term we get

(2.11)Λ3Nc−Nf
(
Λ̃3Ñc−Nf

) 1
n = (−n)

−Ñc
n

(
µ2n−1)Nf

n .

Now we need to determine the positive integern.
Using the fact that the dual theory of the dual the
will go back to the original theory

S →
[
S̃ = −S

n

]
→

[
˜̃
S = − S̃

n
= S

n2

]

we should choosen = 1. Then Eqs. (2.9)–(2.11) ar
exactly these relationships connecting the Seiberg
pair. In another word, under some minor assumptio
we do derive the Seiberg duality from the mat
model.

3. The Seiberg dual theory of SO(N) and Sp(N)
groups

The checking of Seiberg duality in matrix mo
els for SO(N) gauge group withNf flavorsQj 5 has
been done in [30]. The procedure to derive the Seib
duality will be parallel to theU(N) gauge groups
Using the delta-function technique, the general
fective superpotential under arbitrary meson deform
tionsV (M) with M =Qj ·Qj is given by [30]

We,eff = 1

2
(Nc − 2−Nf )S

[
1− log

S

Λ3

]

(3.1)− S

2
log

det(M)

Λ2Nf
+ V (M).

5 Other works ofSO/Spgroups in matrix models can be foun
also in [36].
To see this, choosingV (M)= 1
2 tr(mM) and minimiz-

ing We,eff in (3.1) regarding toM we get

∂We,eff

∂M
= −S

2
M−1 + m

2
= 0.

Putting it back toWe,eff and simplifying we get

We,eff

= S

2
(Nc − 2)

[
1− log

S

(Λ3(Nc−2)−Nf det(m))
1

Nc−2

]

which is the result got in [30]. Using similar argumen
(i.e., (1)M should not be integrated in matrix mode
(2) the matching for arbitrary deformationV (M) and
the termS logdet(M)) for the magnetic theory we wil
have

Wg,eff = 1

2
(Ñc − 2−Nf )S̃

[
1− log

S̃

Λ̃3

]

− S̃

2
log

det(M̃)

Λ̃2Nf
+ V (M)

(3.2)+ 1

2µ2n−1 tr(MnM̃).

Integrating out meson fields̃M we have

(3.3)
∂Wg,eff

∂M̃
= S̃

2
M̃−1 + Mn

2µ2n−1 = 0.

SolvingM̃ and putting it back we simplify the effec
tive action as (notice that we have neglected the t
V (M))

Wg,eff = nS̃

2
logdet(M)

+ S̃

2
(Ñc − 2)(1− logS̃)

(3.4)+ S̃

2
log

Λ̃3(Ñc−2)−Nf

(µ2n−1)Nf

which should be compared with

We,eff = −S

2
logdet(M)

+ S

2
(Nc −Nf − 2)(1− logS)

(3.5)+ S

2
logΛ3(Nc−2)−Nf .

From the first three terms we get

(3.6)−S = nS̃, Ñc − 2 = n
(
Nf − (Nc − 2)

)
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Λ3(Nc−2)−Nf
(
Λ3(Ñc−2)−Nf

) 1
n

(3.7)= (−n)−
Ñc−2
n

(
µ2n−1)Nf

n .

Similar reason as inU(Nc) case tells us to choos
n = 1. In this case, Eqs. (3.6) and (3.7) are exac
the dual relationships of Seiberg dual pair withSO(N)

gauge group. Notice that to compare (3.7) with
result in field theory [27], we need to set

(3.8)Λ
3(Nc−2)−Nf

matrix = 16Λ
3(Nc−2)−Nf

field

as noticed in [30].
Comparing above calculation ofSO(Nc) with the

one ofU(Nc), we see that they are same if we ma
the following replacementNc → Nc − 2. When we
discuss the gauge groupSp(N) we just need to use th
replacementNc → Nc + 2. With this replacement w
will simply write down results. Unlike theSO(N) case
where the meson fieldsM = Qi · Qj are symmetric,
for Sp(N) (the rankr of Sp(N) is N/2) the meson
fieldsM = Qi

aQ
j
bJ

ab are anti-symmetric [31] wher
Jab = iσ2 ⊗ 1r×r . The effective superpotential und
general meson deformations is

We,eff = 1

2
(Nc + 2−Nf )S

[
1− log

S

Λ3

]

(3.9)− S

2
log

det(M)

Λ2Nf
+ V (M).

Similar reason constraints the effective superpoten
for the dual magnetic theory to be

Wg,eff = 1

2
(Ñc + 2−Nf )S̃

[
1− log

S̃

Λ̃3

]

− S̃

2
log

det(M̃)

Λ̃2Nf
+ V (M)

(3.10)+ 1

2µ2n−1
tr
(
MnM̃

)
.

Integrating outS̃ from (3.10) and comparing with
(3.9), we get following dual relationships from matr
models forSp(N) gauge group

(3.11)−S = nS̃, Ñc + 2= n
(
Nf − (Nc + 2)

)
,

Λ3(Nc+2)−Nf
(
Λ3(Ñc+2)−Nf

) 1
n

(3.12)= (−n)−
Ñc+2
n

(
µ2n−1)Nf

n .
The requirement of two time dualities going back
the original theory picks upn= 1 solution.

These examples we discussed in this Letter
simple and standard. It will be interesting to genera
above method to other dual theories found in fi
theory, for example, the one discussed by Kuta
and Schwimmer in [33,34]. Unlike these did in th
paper for which general effective actions are known
matrix models, we do not know results for generaliz
Seiberg dual theories at this moment. But if w
manage to do it by matrix models, it should be poss
to derive the dual theory by the matrix model meth
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Appendix A. Matrix integration in the magnetic
theory

For the simplest magnetic theory with mass def
mation

(A.1)Wg = tr(mM)+ 1

µ
qiM

i
j q̃j

the matrix integration has been done in [16,17], wh
we integrated all fieldsq, q̃ as well as the gaug
singlet fields M. However, from the field theor
analysis in [5–7] as well as emphasized in [18,1
we should only integrate fieldsq, q̃ in matrix model
and leave terms which are gauge invariant to
effective superpotential. This method has been u
to generalize the work of Seiberg [7] with mass
flavors to the case of massless flavors in [19] wh
as a by-product, the original proposal of insert
of delta-function with fundamental flavors [15] h
been explained (see also [20] from another po
of view about the delta-function). With these ne
understandings, we should redo the matrix mo
integration for above magnetic superpotential (A.
It is similar to the example given in [19], but w
include following calculations for completeness whi
can also be considered as another example for
justification of the delta-function.
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Now let us do the calculation. The matrix mod
integration forq, q̃ can be found in [16] where meso

fields
M

j
i

µ
have been treated as mass parameters.

result is

(A.2)

Wg,eff = Ñc

(
Λ̃3Ñc−Nf det

(
M

µ

)) 1

Ñc + tr(mM),

where the first term comes after integrating out
glueball fieldS̃ and the second term, from the origin
tree level superpotential without matrix model integ
tion. The next step is to minimize meson fieldsM.
From (A.2) we have

(A.3)

∂Wg,eff

∂M
= 0=

(
Λ̃3Ñc−Nf det

(
M

µ

)) 1

Ñc
M−1 +m

which gives us

(A.4)

det(M)

Ñc−Nf

Ñc = (−)Nf

(
Λ̃3Ñc−Nf

µNf

)Nf

Ñc
(
det(m)

)−1
.

Putting them back we get

Wg,eff = (Ñc −Nf )

(
Λ̃3Ñc−Nf

µNf

) 1

Ñc det(M)
1

Ñc

= (Ñc −Nf )

(
Λ̃3Ñc−Nf

det(−µm)

) 1

Ñc−Nf

which is exactly the correct effective superpotentia
the magnetic theory.
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